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1. On some Banach function Spaces

Let (Ω, µ) be a measure space. Let M(Ω, µ) be a space of measurable functions on Ω.

Definition 1. A normed linear space X = (X(Ω, µ), ‖ ‖X) is called a Banach function
space if the following conditions are satisfied:

i) The norm ‖f‖X is defined for all f ∈ M(Ω, µ).
ii) ‖f‖X = 0 if and only if, f(x) = 0 µ-a.e., on Ω.

iii) ‖f‖X =
∥∥|f |

∥∥
X

for all f ∈ X.

iv) For every Q ⊂ Ω with µQ < ∞ we have ‖χQ‖X < ∞.

v) If fn ∈ M(Ω, µ), n = 1, 2, . . . and fn ր f µ-a.e., on Ω then

‖fn‖X ր ‖f‖X .

vi) If f , g ∈ M(Ω, µ) and 0 ≤ f(x) ≤ g(x) µ-a.e., on Ω then

‖f‖X ≤ ‖g‖X .

vii) Given Q ⊂ Ω with µQ < ∞, there exists a constant cQ such that for all f ∈ X,
∫

Q

|f(x)|dµ ≤ cQ‖f‖X .

Every Banach function space is a Banach space. For definition and fundamental proper-
ties of Banach function space we refer to [1].

We shall deal with some special Banach function space.

Let Ω be a bounded open subset of Rn and p(x) is a measurable function on Ω such
that

1 < p0 ≤ p(x) ≤ P < ∞, x ∈ Ω, (1)

and

|p(x) − p(y)| ≤
A

ln 1/(|x − y|)
, |x − y| ≤ 1/2, x, y ∈ Ω. (2)

By Lp(·)(Ω) we denote the space of measurable functions f(x) on Ω such that

Ap(f) =

∫

Ω

|f(x)|p(x)dx < ∞.
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This is a Banach function space with respect to the norm

‖f‖Lp(·) = inf{λ > 0 : Ap(f/λ) ≤ 1}

(see e.g., [2]).

In [3] the boundedness of maximal functions in Lp(·) spaces has been proved. Fur-
ther in [4] the mapping properties of maximal operator and singular operator with fixed
singularity in weighted Lp(·) spaces was studied.

On the base of Lp(·) we introduce some new Banach function space. Let us denote by

f∗(t) = sup
{

s ≥ 0 : m{x ∈ Ω : |f(x)| > s} > t
}

-the non-increasing rearrangment of function f . Here by m we denote the Lebesgue
measure. It is clear that f∗(t) = 0 when t > mΩ, since mΩ < ∞.

Let a function p(t) satisfy the condition (1.1) when t ∈ [0, mΩ].

Definition 2. The subset of all functions of M(Ω, m) for which

‖f‖Λp(·) = ‖f∗∗‖Lp(·) < ∞

we call a space Λp(·).

Here

f∗∗(t) = 1/t

t∫

0

f∗(y)dy.

It is clear that f∗(t) ≤ f∗∗(t). According to the Theorem IV from [4] we conclude that
there exists such constant c > 0 that

‖f∗‖Lp(·) ≤ ‖f∗∗‖Lp(·) ≤ c‖f∗‖Lp(·) .

Note that ‖f∗∗‖Lp(·) is a norm. The triangle inequality follows from the inequality

(f + g)∗∗(t) ≤ f∗∗(t) + g∗∗(t)

(See e.g., [5], Section 2).

2. Integral Transforms in Rn

Let us start by mapping property of singular integrals in Λp(·). The singular operators
we take into account have the form

Kf(x) = lim
ε→0+

∫

{y:|y|≥ε}

k(y)

|y|n
f(x − y) dy, x ∈ Ω,

where K is an odd function on Rn which is homogeneous of degree 0 and satisfies the
following Dini condition on the unit sphere Sn−1 on Rn

∫

0

ω(δ)

δ
dδ < ∞, where ω(δ) = sup

x,y∈Sn−1

|x−y|≤δ

∣∣k(x) − k(y)
∣∣.

Observe that this definition includes classical operators, such as the Hilbert transform
(n = 1, k(x) = x/|x|) and Riesz transform (n ≥ 2, k(x) = (xj)/(|x|),
j = 1, . . . , n).
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Theorem 1. Let 1 ≤ p(t) < P < ∞ for t ∈ [0, mΩ]. Let the conditions

1 < p0 ≤ p(t) < P < ∞

and ∣∣p(t1) − p(t2)
∣∣ ≤ A

ln 1/(|t1 − t2|)
, |t1 − t2| ≤ 1/2,

be satisfied in a neighbourhood [0, d] of the origin, d > 0.

Then K is bounded in Λp(·).

Theorem 2. Let p(t) satisfy the conditions of previous theorem. Suppose that

−1/
(
p(0)

)
< β < 1/

(
q(0)

)
. (3)

Then the inequality

‖Kf‖p
Λβ

(·) ≤ c‖f‖
Λ

p(·)

β

holds with a constant c independent of f .

Corollary 1. Let p be as in Theorem 1. Then if the condition (3) is satisfied the

operators Rj (j = 1, . . . , n) are bounded in Λ
p(·)
β

.

In the sequel we discuss the boundedness in Λp(·) of Riesz potentials and application
to the imbedding of certain spaces of differentiable functions.

Let us start by Riesz potential

Iαf(x) =

∫

Ω

f(y)

|x − y|n−α
dy, x ∈ Ω, 0 < α < n.

Theorem 3. Let us suppose that p(t) satisfy the requirments from the previous The-

orem. Let s(x) be a measurable function on [0, mΩ] such that 1 ≤ s(x) < S < ∞ for all

x ∈ [0, mΩ], and

s(0) = p(0) and |s(x) − p(x)| ≤
A

ln 1|x|
, 0 < x < δ, δ > 0.

Then Iα acts boundedly from Lp(·) into Ls(·).

Moreover, if

−1/p(0) < β < 1/(q(0)),

then the inequality

‖tβIα‖Λs(·) ≤ c‖tβf‖Λp(·)

holds with a constant c independent of f .

Theorem 4. Let n ≥ 2 and let k be any positive integer smaller than n. Suppose

that p(x) and s(x) satisfy the conditions of Theorem 1. Then

i) a positive constant c exists such that

‖u‖Λs(·) ≤ c‖Dku‖Λp(·) (4)

for all real-valued functions u in Ω where the continuation by 0 outside Ω has weak

derivatives up to order k over Rn. Here Dk stands for the vector of k-th order derivatives

of u.

If Ω is convex, then a positive constant c exists such that

inf
P∈Pk−1

‖f − Q‖Λs(·) ≤ c‖Dku‖Λp(·) (5)

for all real valued functions u in Ω having weak derivatives up to order k in Ω. Here

Qk−1 denotes the set of all polynomials Q of degree ≤ k − 1.
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When k = 1 inequality (5) holds, in particular, with Q = 1/(mΩ)
∫
Ω

u(x)dx-the mean

value of u over Ω.

Now we are going to discuss the mapping properties of Poisson integral and conjugate

Poisson integrals in Λ
p(·)
β

spaces. Let us consider the Poisson integral

uf (x, y) =

∫

Ω

f(u)
y

(|x − u|2 + y2)(n+1)/2
du, x, y ∈ Ω,

and the system of conjugate Poisson integrals

vj
f
(x, y) =

∫

Ω

f(u)
xj − yj

(|x − u|2 + y2)(n+1)/2
du, x, y ∈ Ω j = 1, 2, . . . , n.

Since mΩ < ∞ for f ∈ Lp(·)(Ω) we have that f ∈ Lp0(Ω). Thus we conclude that

Tf(x) = sup
y>0

|uf (x, y)| ≤ cMf(x) (6)

and

vj
f
(x, y) = uRj

(x, y) (7)

(see [6], chapters 6 and 2).

From (6) thanks to the known estimate (see [7]) we have

(
sup

y

|uf (x, y)|
)∗

(t) ≤ c(Mf)∗(t) ≤ c11/t

t∫

0

f∗(y)dy. (8)

Theorem 5. Let p(t) and β satisfy the conditions of Theorem 1. Then T is bounded

in Λ
p(·)
β

.

Now consider the operator

T̃jf(x) = sup
y

∣∣vj
f
(x, y)

∣∣.

Theorem 6. Let a function p(t) and a number β satisfy the conditions of Theorem 1.

Then the operators T̃j are bounded in Λ
p(·)
β

.

3. Cauchy Singular Integrals on Lyapunov curves and curves of bounded

rotation

In this section we deal with the Cauchy singular integral

SΓf(t) =

∫

Γ

f(τ)

τ − t
dτ

where Γ is a finite rectifiable Jordan curve on which as a parameter the arc-length is
chosen starting any fixed point. The equation of the curve in the case is t = t(s),
0 ≤ s ≤ l, where l is its length.

Γ is called the Lyapunov curve if t′(s) ∈ Lipα, 0 < α ≤ 1. When t′(s) is a function
of bounded variation, then Γ is called as a curve of bounded rotation.

Our goal is to study the mapping property of SΓ when Γ is a Lyapunov curve or a
curve of bounded rotation without cusps.
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We assume that a function p(s) is defined on [0, l]. In the sequel f(t(s)) will denoted
by f0(s).

Theorem 7. Let Γ be a Lyapunov curve.

Let

1 ≤ p(s) ≤ P < ∞ for s ∈ [0, l].

Suppose that the conditions

1 < p0 ≤ p(s) ≤ P < ∞

and

|p(s1) − p(s2)| ≤
A

ln 1/(|s1 − s2|)
, s1, s2 ∈ [0, l]

are satisfied in some neighbourhood of the origin.

Then SΓ is bounded in Λp(s).

Theorem 8. Let Γ be a curve of bounded rotation without cusps. Let p(s) satisfy the

condition of Theorem 1 supposing that m denotes the arc-length measure on Γ. Then

SΓ is bounded in Λp(s).

Note that for the constant p the boundedness of SΓ on Lyapunov curve and on curve
of bounded rotation without cusps has been proved in [8] and [9] respectively.

Theorem 9. Let Γ be a Lyapunov curve or a curve of bounded rotation without cusps.

Let a weight

w(s) = |t(s) − t(0)|β

where

−1/(p(0)) < β < 1/(q(0)).

Then Cauchy singular operator SΓ acts boundedly in Λp
w.

Basing on the recent results on the singular integrals from [10] we conclude the validity
of

Theorem 10. Let Γ be a Lyapunov curve or a curve of bounded rotation without

cusps. If the function p(s) satisfies the conditions (1) and (2) on Ω = [0, ℓ], then SΓ is

bounded in Lp(s).
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