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Abstract. We introduce a new Banach function space - a Lorentz type
space with variable exponent. In this space the boundedness of singular integral
and potential type operators is established, including the weighted case. The
variable exponent p(t) is assumed to satisfy the logarithmic Dini condition and
the exponent 3 of the power weight w(t) = |t|” is related only to the value p(0).
The mapping properties of Cauchy singular integrals defined on Lyapunov curves
and on curves of bounded rotation are also investigated within the framework of
the introduced spaces.

1. Introduction

In the last decade the generalized Lebesgue spaces LP()(Q) and the
related Sobolev type spaces WP (R") attracted much attention, we
refer to Sharapudinov [26] (1979), [27] (1996), Kovacik , Rdkosnik [19]
(1991), Edmunds, Rékosnik [10] (1992), Samko [24]-[23] (1998), [25] (1999),
Edmunds, Lang, Nekvinda [9] (1999), which obviously grows at present,
see for example, the recent investigations Cruz, Fiorenza, Neugebauer [3]
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(2002), Diening [5]-[6] (2002), Diening, Ruzicka [7] (2002), Edmunds,
Nekvinda [8] (2002), Fiorenza [11](2002), Kokilashvili, Samko [15]-[17]
(2002), and references therein. Investigations in this topic are strongly
stimulated by applications in various problems related to objects with
non-standard local growth in which growth conditions of variable order
arise (in elasticity theory, fluid mechanics, differential equations, see for
example Riizicka [22], [7] and references therein). The spaces LP()(Q) and
Wm’p(z)(R”) proved to be an appropriate tool applicable in this area.

The theory of the spaces LP()(Q) nowadays is quickly developed. After
the first disappointment caused by some undesirable properties (functions
from these spaces are not p(z)-mean continuous, the space LP()(€2) is not
translation invariant, convolution operators in general do not behave well
and so on) a rapid progress followed for continuous exponents p(z) satisfying
the logarithmic Dini condition. We mention in particular the result on
denseness of Cg°-functions in the Sobolev space W™ P(®)(R"), see [25], and
the breakthrough connected with the study of maximal operators, see [5],
[6].

Because of applications, a reconsideration of the main theorems of
harmonic analysis is actual, with the aim to find new proofs of those
theorems which remain valid for variable exponents, or to find their
substituting analogs. Among the challenging problems there were: the
Sobolev type theorem on boundedness of the Riesz potential operator I
from LP() into L), ﬁ = ﬁ — o and the boundedness in LPO) of
singular integral operators. Boundedness of I¢ (Sobolev type theorem) for
bounded domains was proved in [23] conditionally, under the assumption
that the maximal operator is bounded in the spaces LP(), which turns to
be unconditional after the result of [5]-[6] on maximal operators (we refer
also to [3] for maximal operators on unbounded domains).

Singular operators within the framework of the spaces with variable
exponents were treated in [18], [17] and [7].

We introduce a new form of spaces with variable exponents for which
the problem of boundedness of singular type integral operators may be
resolved positively in a natural way, including the case of weighted spaces
with variable exponents. We consider the Calderon-Zygmund operators,
singular operators with the Cauchy kernel along Lyapunov curves or curves
of bounded variation in the complex plane, the Riesz potential operator and
the Poisson integral and its conjugates. The main statements are given in
Theorems 3.1-3.5, 4.1-4.4.

2. On some Banach function spaces

Let (2,u) be a measure space and M(Q,u) a space of measurable
functions on €.
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Definition 1. A normed linear space X = (X(Q, u),|| ||x) is called a
Banach function space, if the following conditions are satisfied:

i) the norm || f||x is defined for all f € M(Q, u);

ii) ||fllx = 0 if and only if f(x) =0 p-a.e. on ;

i) [1fl1x = [1£1] for all f € X;

iv) for every @ C Q with u@ < oo we have ||xg|lx < oo;

v)if foe M(Q,u),n=1,2,... and f,, 7 f p-a.e. on §, then

1fallx A~ N1Fllxs
vi)if f, g€ M(Q,u) and 0 < f(z) < g(z) p-a.e. on 2, then

If1lx < llgllx;

vii) given @ C Q with pu@Q < oo, there exists a constant c¢g such that for
all f € X

/Q F@)ldp < collllx.

Every Banach function space is a Banach space. For definition and
fundamental properties of Banach function space we refer to [2].

We shall deal with some special Banach function space.

Let © be a bounded open subset of R™ and p(z) a measurable function
on (2 such that

(1.1) 1<po<p(x) <P<oo, z€N
and
A 1 —
(1.2) p(@) =P\ < ——F— le—yl <5 v yel
In
|z -yl

By LP()(Q) we denote the space of measurable functions f(z) on € such
that

40 = [ 1@)Peds < .
Q
This is a Banach function space with respect to the norm
1fllpper =inf{A >0: A,(f/N) <1}
(see e.g. [9]). We denote
1 1

—=1-—

q(x) p(x)
The following integral transforms will be treated:
a) the potential operator

1) f(z) = /Q m_ﬁii)_a@)d% 0 <a(z) <n,
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b) the weighted potential operator

I f@) =z -z B/ 1) dy, xo €
/8 f( ) | 0| Q |y—1‘0|B|Z’—y|”*O‘(I) y 0

and
c) the Hardy-type operator

z [
Hﬁf(a:):lﬁ_l/o %d% Hf(z) = 2" f;—i)ldt,

where 0 < £ < o0.
In [16] (see also [15], [14] ) the following theorems were proved:

Theorem 1. Under assumptions (1.1), (1.2) and the conditions
(1.3) inf a(z) >0 and sup a(z)p(z) < n,
zeQ zeQ

the potential operator 1*) is bounded from LPC)(Q) into L™)(Q) with
1 1 a(z)

r(@)  pl@)

Theorem II. If the assumptions (1.1)-(1.2) and the condition irelsf)a(:r) >
T

0 are satisfied, then the operator I*\) is compact in LP1)(Q).

Theorem III. Under assumptions (1.1), (1.2) and the condition
igga(x) > 0, the operator Ig(') is bounded in LP0)(Q) if

n n
<B<

(14) " pleo) a@)

Theorem IV. Let 1 < p(z) < P < oo for x € [0,4).

I. Let the conditions (1.1), (1.2) be satisfied on a neighbourhood [0, d]
of the origin, d > 0. Then the operators H® and H? are bounded from
LPO(Q) into L*O)(Q) with any s(x) such that 1 < s(z) < S < oo for some
S,0<z <4, and

(1.5)  s(0) =p(0) and |s(z) —p(z)| < il , 0<z <4, 0<d<1,
In —
if
1 1
(1.6) ~20) <B< 20

IL. If p(0) < p(z), 0 < = < d, for some d > 0, then the same statement on
boundedness from L) (Q) into L*()(Q) is true if the requirement of validity
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of conditions (2.1), (2.2) on [0,d] is replaced by the weaker assumption

(1.7)  p(0) >1 and |p(z) — p(0)] < il’ 0 < z < min (K, 1/2).
In =

x

Observe that Theorem IV provides norm estimates for Hardy operators
in spaces with variable exponent. In [28] there was proved a natural fact
that the modular inequality for the Hardy operator (and more generally for
some integral operators) is impossible in the case of variable exponents, see
[28], Theorem 2.2.

On the base of LP(*) we introduce now some new Banach function spaces.
By

fX(@) =sup{s > 0:m{z € Q:|f(z)| > s} >t}

we denote the non-increasing rearrangement of a function f, m denoting the
Lebesgue measure. It is clear that f*(¢) = 0 for ¢t > mQ, since mQ < co.

Let the function p(t) satisfy condition (1.1) for ¢ € [0,mQ]. In the
following definition we use the notation

o= [ roa ro<eo.

Definition 2. The subset of all functions of M (2, m) for which
(1.8) 1fllarer = 1f N per <00
is called the space AP(),

According to Theorem IV we conclude that there exists a constant ¢ > 0
such that

(1.9) 1 e <A Mo < ellF Mlpee-
Note that ||f**||;»c) is a norm. The triangle inequality follows from the
inequality
(f+9)™ () < f7 () + g™ (b).
(See e.g. [12], Section 2).

Proposition 1. A?() is a Banach function space.

Proof. Most of requirements of Definition 1 follow directly from
properties of non-increasing rearrangements of functions and properties of
the space LP(").

For example, iv) is valid since for 0 < f,, * f we have f* 7 f* (see e.g.
[29], Lemma 3.5, Chapter 5). Then

1 falleeer AN I Lrer
by the property of L*().
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Applying the Holder inequality for LP()| we get

mQ
/Qlf(ﬂ«”)ldm :/0 Fr@dt < | f*peer M pacr < c@llfllarcr- O

Let w(t) be a nonnegative function defined on [0, mQ] such that

o™ ly(y < .

Definition 3. The subset of all functions in M (€, m) for which
(1.10) 1flxper = llwf [l Loc) < 00

is called the space AR

If w(t) = t°, L <p< L, then from Theorem IV it follows that

p(0) q(0)

11l yer = 1 wll g -

The space Afu(') is a Banach space. The proof is similar as above.
In the sequel for w(t) =% we put || - ||,»c) = || - | ;o
w 8

3. Integral transforms in R"

We begin with the mapping properties of singular operators

K f(z) :V.P./ k()

Yyl

f(x_y)dyv ZCEQ,

in AP(), where k is an odd function on R"™ homogeneous of degree 0 and
satisfying the Dini condition on the unit sphere S~ ! on R"

2
/ w(9) dé < oo, where w(d) = sup |k(z) — k(y)]-
o O z,yeSn—1,|z—y|<4

As particular cases one may mention the Hilbert transform (n = 1,

k(z) = k”;—|

Theorem 3.1. Let 1 < p(t) < P < oo fort € [0,m)]. Let the conditions
1<po<p(t) <P <o0

) and the Riesz transforms (n > 2, k(z) = |x_]|’ j=1,...,n).
z

and 4
p(t1) —p(t2)| < ——F—, |1 —t2| <
ln ———
t1 — o]
be satisfied in a neighbourhood [0, d] of the origin, d > 0. Then K is bounded
in APC),

N | =
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Proof. As it is known (see [1])

. INVA. " (y
e wro<e(; [ rwas [Ty o
0 t
Applying Theorem IV, we obtain the boundedness of K in LP(). d

Theorem 3.2. Let p(t) satisfy the conditions of Theorem 2.1. Suppose
that

(2.2 ~ gt
Then the inequality

IEflIx, () < ellfllypo
holds with the constant ¢ not depending on f.

Proof. Applying (2.1) we obtain

t m rx
C<t5_1/ F) dy+t5/ ) y(y) dy)
0 t
= ¢ tﬁ‘l/Mdy+t5/ vy dy>
( 0 y? t ys+t
Now from Theorem IV it follows that
(K F)* N oer <l -yl oo O

From Theorem 2.2, for the Riesz transforms

T —Yj .
R;f(z :V.P./ji dy, =1,2,...,n,

(K f)(t)t?

IN

we have the following corollary.

Corollary 3.1. Let p be as in Theorem 2.1. Then the operators R;
(j =1,...,n) are bounded in Ag(') under condition (2.2).

In the sequel we discuss the boundedness in AP(") of Riesz potentials and
give an application to imbedding of certain spaces of differentiable functions.
The next theorem deals with the Riesz potential operator

Iaf(m):/gl%dy, re, 0<a<n.

Theorem 3.3. Let p(t) satisfy the assumptions of Theorem 2.2 and s(z)
be a measurable function on [0,mQ)] such that 1 < s(z) < S < oo for all
x € [0,mQ] and

s(0) =p(0) and |s(x)—p(x)|§—1, O0<z<d, 6>0.
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Then I, is bounded from LP") into L5"). Moreover, if

then the inequality
(2.3) 167 Tallascr < ellt? fllanc

holds with the constant ¢ not depending on f.

Proof. We make use of the estimate for the decreasing rearrangements
of I (see [21]):

t N
(Iaf)*(t)SC<t””/” [ rrwan f*(y)y””/”dy> — (Bif+Bof).

Applying Theorem IV, we obtain

s ot Py
t—1+a/ fo yoln d

1By f|

o = |
Ls()

< Al @y e
< dlf*llze
= allfllaee

since 0 <t <mf and 0 < a < m.
Similarly, according to the same theorem we have

N . _
1Bafllper = I J, fry=+o/mdy||
< elf Wy e
< allf* Mo
= 2|l fllarer- O
For a multi-index of nonnegative integers K = (ki,kz,...,ky), let
HIK]|
DX = o———— |K|=ki+ ko +... + ky.
ot ... On"

Theorem 3.4. Letn > 2 and let k = | K| be any positive integer smaller
than n. Suppose that p(x) and s(x) satisfy the assumptions of Theorem 2.1.
Then

i) there ezists a positive constant ¢ such that

(2.4) lellpecr < el DFull gy

for all real-valued functions u on 0 where the continuation by zero beyond
Q has weak derivatives up to the order k over R™.
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(1) If Q0 is convex, then a positive constant ¢ exists such that

2.5 inf [|f = Qlla-r < el D" ul|uc
(2.5) QEHQIFIHf Qllaser < || D7 ullare)

for all real valued functions u on Q which have weak derivatives up to the
order k in Q. Here Q) 1 denotes the set of all polynomials Q) of degree
<k-1.

In the case k = 1, inequality (2.5) holds with Q equal to the mean value

of u over Q, Q = % Jo u(z)dz.
m

Proof. The part i). It is clear that DXu € L'(Q). Then by Theorem 1.1.
10/2 of [20] we have the estimate

DK
(2.6) lu(z)| < c/ |71L(y216 dy for xz €.
alz—y|?

Applying Theorem 2.1, we arrive at the desired result.

The proof of part ii) is similar, since by Theorem 1.1. 10/1 of [9],
there exists a constant ¢ depending only on n, k and 2, and a polynomial
Q € Q_1, depending on u, such that

K
|u(m)—Q(m)|§c/ﬂ%dy for z€Q

provided that DXu € L(Q). ad

Now we pass to the mapping properties of Poisson integral and conjugate
Poisson integrals in Ag(') spaces. We consider the Poisson integral

— Y
Uf(CC,y) - /Qf(u) (|CC _ U,|2 + y2)(n+1)/2 d’U,, 35,?/ € Q

and the system of conjugate Poisson integrals

J Ly Yj d .
x,Y) = , t,yeQ =12 ....n.
Uf( y) / f(u) (| U,|2 y2)(n+1)/2 u () J n

Since mf) < oo, for f € LP()(Q) we have f € LP°(Q). Thus we conclude
that

(2.7) Tf(z)= sup lug(z,y)] < cMf(x)
and
(2.8) vi(z,y) = ug,(z,y)

(see [29], Chapters 6 and 2).
From (2.7), by the known estimate (see [1]) we have

@9)  (ulusle. ) (0 < )0 <l / F*(w)dy.

By means of Theorem IV we derive the following result.
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Theorem 3.5. Let p(t) and B satisfy the conditions of Theorem 1. Then
T is bounded in Ag(').
Now consider the operator

Tif(z) = sgplvﬁé(w,y)l-

By inequality (2.9) we have

@< [ 1o
Thus
(2.10) 1T > < ellBj -
Basing on (2.10) and Corollary 1 we obtain the following result.
Theorem 3.6. Let a function p(t) and a number 3 satisfy the assumptions
of Theorem 2.1. Then the operators Tj are bounded in Ag(').

Remark 1. Applying the results of [5] and using the idea which was
developed above, we can deduce that the theorems of this section are also
valid in R™ if a function p(t) is assumed to satisfy the local logarithmic Dini
condition and in addition is constant outside some large interval (0, ¢), i.e.
p(t) = p, t > to. For the power weight we assume that

() <0 <o ).
p

where ¢ = ——.
p—1

4. Cauchy singular integrals on Lyapunov curves and
curves of bounded rotation

In this section we deal with the Cauchy singular integral

SFf(t):/Fj_c(_T)th, t=1t(s), 0<s<U,

where I is a finite rectifiable Jordan curve on which the arc-length is chosen
as a parameter, starting from any fixed point.

T is called Lyapunov curve if ¢'(s) € Lip a, 0 < a < 1. When #/(s) is a
function of bounded variation, I' is called a curve of bounded rotation.

Our goal is to study the mapping properties of St when I' is a Lyapunov
curve or a curve of bounded rotation without cusps.

We assume the function p(s) to be defined on [0,]. The function f(t(s))
will be denoted by fo(s).
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Theorem 4.1. Let T be a Lyapunov curve. The operator St is bounded
in AP if
1<py<p(s)<P<oo for sel0,]

and the condition n
[p(s1) — plsa)] € ——
In —
|s1 — s2

is satisfied in a neighbourhood of the origin.

Proof. In the case of Lyapunov curve the following estimate

sy ey < (| [ 22l [ IO o)

holds with a € (0,1) (see e.g. [13]). Applying Theorems 2.1 and 2.3, we
obtain the boundedness of Sp in AP(). O

Theorem 4.2. Let ' be a curve of bounded rotation without cusps. Let
p(s) satisfy the condition of Theorem 2.1 with m denoting the arc-length
measure on I'. Then the operator Sy is bounded in AP(%)

Proof. We have
fo(o) Lt (o)do 1
82) sese) = [ 2D o [ (GO0 LY o) an
As t'(s) is a function of bounded variation, we have
[#'(s) = t'(o) < [V(s) =V (o),

where V' (s) is the total variation of ¢’ on [0,1].
Let

!
T4(t(5) = [ hlo,9)fa(o) do
0
where
t'(o) 1
t(o) —t(s) o—s
Since I' is a curve of bounded rotation without cusps, it satisfies the arc-
chord condition, i.e.
t(s) —t(o) ‘
. )

— 0

h(o,s) =

0<C1<‘

Therefore, we can derive the estimate

() 1 ‘

= ‘t(rf)—t(s) p

|h(o, )|

"(s) — t'(u)| du

(s —0)?



56 Some Banach function spaces with variable exponent

S [ 10 = v(w) du
< s —0) (V(s) - V(o).
Thus
! S) — o
rree)l < o[ T o) a0
[ l
(3.3) < c(V(s) ; %da +‘/0 W(ia )

Now from (3.1) and (3.3) and boundedness of the function V, in virtue
of Theorem 1.1 we obtain the boundedness of Sp in AP($). O

Note that for the p(s) a constant function p(s) = p the boundedness of
St on Lyapunov curve and on curve of bounded rotation without cusps was
proved in [13] and [4], respectively.

Theorem 4.3. Let I' be a Lyapunov curve or a curve of bounded rotation
without cusps. Let
w(s) = [t(s) — t(0)|

where
1 1

—— =< B < —=.
p(0) q(0)
Then the Cauchy singular operator Sr is bounded in AP, .

Proof. As mentioned in the proof of Theorem 3.2, I satisfies the arc-chord
condition. Thus
w(s) ~ s°.
Therefore, we may follow the scheme of the proof of Theorems 3.1 and
3.2 and apply Theorems 1.2 and 2.1 to obtain the boundedness of Sr in AP .

O

Basing on the recent results on the singular integrals from [7] and on the
proofs of Theorems 3.1 and 3.2 we conclude the validity of the following
theorem.

Theorem 4.4. Let I’ be a Lyapunov curve or a curve of bounded rotation
without cusps. If the function p(s) satisfies the conditions (1.1) and (1.2)
on Q = [0,1], then Sp is bounded in LP().
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