
JOURNAL OF c© 2007, Scientific Horizon

FUNCTION SPACES AND APPLICATIONS http://www.jfsa.net

Volume 5, Number 3 (2007), 299–317

The maximal operator in

weighted variable spaces Lp(·)

Vakhtang Kokilashvili, Natasha Samko and Stefan Samko

(Communicated by Vladimir D. Stepanov)

2000 Mathematics Subject Classification. 42B25, 47B38.

Keywords and phrases. Maximal functions, weighted Lebesgue spaces, variable

exponent, Carleson curve, Zygmund conditions, Bari-Stechkin class.

Abstract. We study the boundedness of the maximal operator in the weighted

spaces Lp(·)(ρ) over a bounded open set Ω in the Euclidean space R
n or a

Carleson curve Γ in a complex plane. The weight function may belong to a

certain version of a general Muckenhoupt-type condition, which is narrower than

the expected Muckenhoupt condition for variable exponent, but coincides with

the usual Muckenhoupt class Ap in the case of constant p . In the case of

Carleson curves there is also considered another class of weights of radial type

of the form ρ(t) =
�m

k=1 wk(|t − tk|) , tk ∈ Γ, where wk has the property that

r
1

p(tk) wk(r) ∈ Φ0
1 , where Φ0

1 is a certain Zygmund-Bari-Stechkin-type class. It is

assumed that the exponent p(t) satisfies the Dini–Lipschitz condition. For such

radial type weights the final statement on the boundedness is given in terms of

the index numbers of the functions wk (similar in a sense to the Boyd indices for

the Young functions defining Orlich spaces).
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1. Introduction

Within the frameworks of variable exponent spaces Lp(·)(Ω), the
boundedness of maximal operators was proved in L. Diening [7] for bounded
domains in Rn and in D. Cruz-Uribe, A. Fiorenza and C. J. Neugebauer
[6] and A. Nekvinda [22], [21] for unbounded domains. The weighted
boundedness with power weights was proved in V.Kokilashvili and S. Samko
[11] in the case of bounded domains.

We refer also to L. Diening [8] and D. Cruz-Uribe, A. Fiorenza,
J. M. Martell, and C. Perez [5] for problems of boundedness of maximal
operators in variable exponent spaces.

In [11] the power weights |x− x0|γ were considered and one of the main
points in the result obtained in [11] was that in condition on γ only the
values of p(x) at the point x0 are of importance: − n

p(x0)
< γ < n

q(x0)

(under the usual log-condition on p(x)).
However, an explicit description in terms of Muckenhoupt-type condition

of general weights for which the maximal operator is bounded in the spaces
Lp(·) still remains an open problem.

A certain subclass of general weights was considered in [10], where for
the case of bounded domains Ω in the Euclidean space, the boundedness of
the maximal operator in the spaces Lp(·)(Ω, ρ) was proved. This subclass
may be characterized as a class of radial type weights which satisfy the
Zygmund-Bari-Stechkin condition. Radial weights w in this class are
almost increasing or almost decreasing and may oscillate between two power
functions with different exponents and have non-coinciding upper and lower
indices mw and Mw (of the type of Boyd indices). In comparison with the
approach in [11], the main problems arising are related to the situation
when the indices mw and Mw do not coincide, in particular when mw is
negative while Mw is positive.

In this paper, because of applications to weighted boundedness of singular
integral operator along Carleson curves, we prove similar results for the
maximal operator along Carleson curves. This extension from the Euclidean
space to the case of Carleson curves required an essential modification of
certain means used in [10]. To obtain this result, we first prove a certain
general theorem with a certain version of the Muckenhoupt-type condition.

The weighted results obtained for the maximal operator pave the way to
the study of Fredholmness of singular integral equations on Carleson curves
in case of more general weights. In fact the main Theorems A, A ′ and
B may be rewritten in terms on function spaces defined on metric spaces.
However, because of application to the theory of singular integral equations,
we prefer to present the results in the context of Carleson curves.
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The paper is organized as follows. In Section 2 we formulate the main
results — Theorems A,A ′ and B — on the weighted boundedness of the
maximal operator. In Section 4 we recall the notion of the upper and
lower indices of almost increasing non-negative functions and develop some
properties of weights in the Zygmund-Bari-Stechkin class, which we need to
prove the main result. In Sections 5 and 6 we give the proof of Theorems
A, A ′ and B.

Notation

a.d. =almost decreasing ⇐⇒ f(x) ≥ Cf(y) for x ≤ y, C > 0,

a.i. =almost increasing ⇐⇒ f(x) ≤ Cf(y) for x ≤ y, C > 0; where f is a
non-negative function on R1

+ ;

Γ is an arbitrary bounded Carleson curve on the complex plane, closed or
open;

γ denotes an arbitrary portion of Γ;

γr(t) = {τ ∈ Γ : |τ − t| < r} ;

dν(t) = ds denotes the arc measure on Γ;

Ω is a bounded open set in Rn ;

B(x, r) is a ball in Rn centered at x of radius r ;

|γ| is the arc length of γ ; |Ω| is the Euclidean measure of Ω;

χγ is the characteristic function of γ ;

f ∼ g ⇐⇒ there exist C1 > 0 and C2 > 0 such that C1f(t) ≤ g(t) ≤
C2f(t).

q(·) = p(·)
p(·)−1 , 1 < p(·) <∞ , 1

p(·) + 1
q(·) ≡ 1 ;

p∗ = p∗(X) = inf
t∈X

p(t), p∗ = p∗(X) = sup
t∈X

p(t), where X = Γ or X = Ω;

q∗ = inf
x∈Ω

q(t) = p∗
p∗−1 , q∗ = sup

t∈Γ
q(t) = p∗

p∗−1 ;

C, c may denote different positive constants.

In what follows, X will always denote either a bounded open set Ω in
Rn , or a bounded Carleson curve Γ. The variable exponent p(·) defined on
X is supposed to satisfy the conditions

(1.1) 1 < p∗ ≤ p(t) ≤ p∗ <∞, t ∈ X
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and

(1.2) |p(t) − p(τ)| ≤ A

ln 1
|t−τ |

, |t− τ | ≤ 1
2
, t, τ ∈ X.

By Lp(·)(X, ρ), where ρ(t) ≥ 0, we denote the weighted Banach space of
measurable functions f : X → C such that
(1.3)

‖f‖Lp(·)(X,ρ) := ‖ρf‖p(·) = inf

{
λ > 0 :

∫
X

∣∣∣∣ρ(t)f(t)
λ

∣∣∣∣p(t)

dμ(t) ≤ 1

}
<∞.

where dμ(t) stands for the arc-length measure dν(t) in case X = Γ and
dμ(t) = dt in case X = Ω.

2. Statements of the main results

We use the notation Mρ both for

(2.1) Mρf(x) = sup
r>0

ρ(x)
|B(x, r)|

∫
B(x,r)

|f(y)|
ρ(y)

dy

and

(2.2) Mρf(t) = sup
r>0

ρ(t)
|γr(t)|

∫
γr(t)

|f(τ)|
ρ(τ)

dν(τ)

We write M = Mρ|ρ≡1 .

The boundedness of the operator Mρ was proved in the case of the power
weight ρ(x) = |x − x0|β , x0 ∈ Ω in [11] and ρ(t) = |t − t0|β , t0 ∈ Γ in [12]
under the following (necessary and sufficient) condition − n

p(x0)
< β < n

q(x0)

or

(2.3) − 1
p(t0)

< β <
1

q(t0)
,

respectively. We prove two main results given in Theorems A and B.
In Theorem A stated below we consider some general Muckenhoupt type
weights, the proof being the same both for Carleson curves and domains in
Rn . In Theorem B, in the case of Carleson curves we deal with a special
class of radial type weights in the Zygmund-Bari-Stechkin class. Such a
result for the Euclidean case was earlier obtained in [10]. The proof for the
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case of Carleson curves required an essential modification of the technique
used.

The class of weights in Theorem A is narrower than the naturally
expected Muckenhoupt class Ap(·) should be. However, it coincides with
the Muckenhoupt class Ap in case p is constant. Theorem B is proved by
means of Theorem A, but it is not contained in Theorem A, being more
general in its range of applicability.

We introduce the following “ersatz” of the Muckenhoupt condition
(2.4)

sup
x∈Ω,r>0

(
1

|B(x, r)|
∫

B(x,r)

|ρ(y)|p(y)dy

)(
1

|B(x, r)|
∫

B(x,r)

dy

|ρ(y)| p(y)
p∗−1

)p∗−1

<∞,

which coincides with the Muckenhoupt condition in the case p(x) ≡ p∗ is
constant, as well as its version
(2.5)

sup
t∈Γ,r>0

(
1

|γr(t)|
∫

γr(t)

|ρ(τ)|p(τ)dν(τ)

)(
1

|γr(t)|
∫

γr(t))

dν(τ)

|ρ(τ)| p(τ)
p∗−1

)p∗−1

<∞

for Carleson curves in the complex plane.
Observe that the class of weights satisfying condition (2.4)-(2.5) is

evidently narrower that what we expect from the ”real” Muckenhoupt class
Ap(·) . Thus, in the case of power weights |x − x0|β , condition (2.4) yields
− 1

p(x0)
< β < 1

q0
with q0 = p(x0)

p∗−1 which is narrower than the interval
− 1

p(x0)
< β < 1

q(x0)
, where the boundedness of the maximal operator holds

[11]. Obviously conditions (2.4)-(2.5) are sharp on those power functions
which are ”fixed” to a point at which the minimum of p(·) is reached.

Theorem A. Let the exponent p(t) satisfy conditions (1.1), (1.2) and
the weight ρ fulfill condition (2.4). Then the operator M is bounded in
Lp(·)(Ω, ρ) .

Theorem A ′ . Let the exponent p(t) satisfy conditions (1.1), (1.2) and
the weight ρ fulfill condition (2.5). Then the operator M is bounded in
Lp(·)(Γ, ρ) .

In the next theorem, we deal with weights of the form

(2.6) ρ(t) =
m∏

k=1

wk(|t− tk|), tk ∈ Γ,
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where wk(x) may oscillate as x→ 0+ between two power functions (radial
Zygmund-Bari-Stechkin type weights).

The Zygmund-Bari-Stechkin class Φ0
1 of weights and the upper and lower

indices of weights (of the type of the Boyd indices) used in the theorem
below are defined in Section 4. Note that various non-trivial examples of
functions in Zygmund-Bari-Stechkini-type classes with coinciding indices
may be found in [23], Section II; [24], Section 2.1, and with non-coinciding
indices in [26].

Theorem B. Let Γ be a bounded Carleson curve and p(t) satisfy
conditions (1.1), (1.2) on Γ . The operator M is bounded in Lp(·)(Γ, ρ) with
the weight (2.6), where wk(r) are such functions that r

1
p(tk)wk(r) ∈ Φ0

1 , if

(2.7) − 1
p(tk)

< mwk
≤Mwk

<
1

q(tk)
, k = 1, 2, ...,m.

A similar statement for bounded domains in Rn was proved in [10].

3. Some basics for variable exponent spaces

The weighted space Lp(·)(Γ, ρ) was introduced in (1.3). We write
Lp(·)(Γ, 1) = Lp(·)(Γ) in the case ρ(t) ≡ 1.

We recall some basic facts for the variable exponent spaces Lp(·)(Γ) and
refer e.g. to [14] for details.

The Hölder inequality holds in the form

(3.1)
∫

Γ

|f(t)g(t)| dν(t) ≤ k
∥∥f∥∥

p(·) ·
∥∥g∥∥

q(·)

with k = 1
p∗

+ 1
q∗

. The modular Ip(f) =
∫
Γ |f(t)|p(t) dν(t) and the norm

‖f‖p(·) are simultaneously greater than one and simultaneously less than 1:
‖f‖p∗

p(·) ≤ Ip(f) ≤ ‖f‖p∗
p(·) if ‖f‖p(·) ≤ 1 and ‖f‖p∗

p(·) ≤ Ip(f) ≤ ‖f‖p∗

p(·) if
‖f‖p(·) ≥ 1. Hence

(3.2) c1 ≤ ‖f‖p ≤ c2 =⇒ c3 ≤ Ip
Γ(f) ≤ c4

and

(3.3) C1 ≤ Ip
Γ(f) ≤ C2 =⇒ C3 ≤ ‖f‖p ≤ C4

with c3 = min(cp∗
1 , c

p∗
1 ), c4 = max(cp∗

2 , cp
∗

2 ), C3 = min(C1/p∗
1 , C

1/p∗
1 ) and

C4 = max(C1/p∗
2 , C

1/p∗

2 ).
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Lemma 3.1. Let Γ be a bounded Carleson curve, the exponent p satisfy
condition (1.2) and let w be any function such that there exist exponents
a, b ∈ R1 and the constants c1 > 0 and c2 > 0 such that c1ra ≤ w(r) ≤
c2r

−b, 0 ≤ r ≤ 	 = diam (Γ). Then

(3.4)
1
C

[w(|t− t0|)]p(t0) ≤ [w(|t − t0|)]p(t) ≤ C[w(|t− t0|)]p(t0),

where C > 1 does not depend on t, t0 ∈ Γ.

Proof. Let
g(t, t0) = [w(|t − t0|)]p(t)−p(t0).

To show that 1
C ≤ g(t, t0) ≤ C , that is, | ln g(t, t0)| ≤ C1, C1 = ln C , we

| ln g(t, t0)| = |p(t) − p(t0)| · |ln w(|t − t0|)| ≤ A	
| ln w(|t− t0|)|

ln 2�
|t−t0|

which is bounded by the condition on w . �

4. Preliminaries on Zygmund-Bari-Stechkin classes

4.1. Index numbers mw and Mw of non-negative a.i. functions.
Let

(4.1) W = {w ∈ C([0, 	]) : w(0) = 0, w(x) > 0 for x > 0, w(x) is a.i.}.
The numbers

mw = sup
x>1

ln
(

lim inf
h→0

w(hx)
w(h)

)
lnx

= sup
0<x<1

ln
(

lim sup
h→0

w(hx)
w(h)

)
lnx

= lim
x→0

ln
(

lim sup
h→0

w(hx)
w(h)

)
lnx

and

Mw = sup
x>1

ln
(

lim sup
h→0

w(hx)
w(h)

)
lnx

= lim
x→∞

ln
(

lim sup
h→0

w(hx)
w(h)

)
lnx

(see [23], [26], [25]), will be referred to as the lower and upper indices of the
function w(x) (compare these indices with the Matuszewska-Orlicz indices,
see [18], p. 20; they are of the type of the Boyd indices, see [15], p. 75; [16],
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or [3], p. 149 about the Boyd indices). We have 0 ≤ mw ≤ Mw ≤ ∞ for
w ∈ W .

The indices mω and Mω may be also well defined for functions w(x)
positive for x > 0 which do not necessarily belong to W , for example, if
there exists an a ∈ R1 such that wa(x) := xaw(x) is in W . Obviously,

mwa = a+mw, Mwa = a+Mw.

So we also introduce the class

W̃ = {w : xaw(x) ∈ W for some a ∈ R
1}.

4.2. The Zygmund-Bari-Stechkin class Φ0
γ . Let δ > 0. The

following class Φ0
δ was introduced and studied in [2] (with integer δ ); there

are also known “two-parametrical” classes Φβ
δ , 0 ≤ β < δ < ∞ , see [20],

[19], [28] and [27], p. 253).

Definition 4.1 ([2]). The Zygmund-Bari-Stechkin type class Φ0
δ, 0 <

δ < ∞, is defined as Φ0
δ := Z0 ∩ Zδ , where Z0 is the class of functions

w ∈ W satisfying the condition∫ h

0

w(x)
x

dx ≤ cw(h) (Z0)

and Zδ is the class of functions w ∈W satisfying the condition∫ �

h

w(x)
x1+δ

dx ≤ c
w(h)
hδ

, (Zδ)

where c = c(w) > 0 does not depend on h ∈ (0, 	].

In the sequel we refer to the above conditions as (Z0 )- and (Zδ )-
conditions. The following statement is valid, see [23], [26] for δ = 1 and [9]
for an arbitrary δ > 0.

Theorem 4.2. Let w ∈ W . Then w ∈ Z0 if and only if mw > 0 , and
w ∈ Zδ, δ > 0, if and only if Mw < δ , so that

(4.2) w ∈ Φ0
δ ⇐⇒ 0 < mw ≤Mw < δ.

Besides this, for w ∈ Φ0
δ and any ε > 0 there exist constants c1 = c1(ε) > 0

and c2 = c2(ε) > 0 such that

(4.3) c1x
Mw+ε ≤ w(x) ≤ c2x

mw−ε, 0 ≤ x ≤ 	.

The following properties are also valid

(4.4) mw = sup{μ ∈ R
1 : x−μw(x) is a.i.},

(4.5) Mw = inf{ν ∈ R
1 : x−νw(x) is a.d.}.

Statements (4.3)-(4.5) remain valid for the case when Mw or mw may
be non-positive. Namely, the following corollary from Theorem 4.2 is valid.
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Corollary 4.3. Let w(x), 0 < x ≤ 	 , be such a function that taw(t) ∈ Z0

for some a ∈ R1 . Then formula (4.4) remains valid and for any ε > 0 there
exists c1 > 0 such that

(4.6) w(x) ≤ c1x
mw−ε.

Similarly, if xaw(x) ∈ Zδ , then (4.5) is valid and for any ε > 0 there exists
c2 > 0 such that

(4.7) w(x) ≥ c2x
Mw+ε.

Remark 4.4. If w ∈ W̃ and mω > 0 , then w ∈W .

Indeed, let a ∈ R1 be such that wa(x) = xaw(x) ∈ W . Then according
to (4.4) the function wa(x)

xmwa−ε is a.i. for every ε > 0. But mwa = mw + a ,

so that w(x)
xmw−ε is a.i. for every ε > 0. Since mw > 0, then the function w

itself is a.i., which means that it is in W .

Remark 4.5. Every function w ∈ W̃ with Mw < ∞ satisfies the
doubling condition

(4.8) w(2r) ≤ Cw(r), 0 ≤ r ≤ 	

which follows from the fact that the function w(r)
rν with μ > Mw is a.d.

according to (4.5).

4.3. On examples of functions in Φ0
γ . Power and power-logarithmic

functions w(x) = xμ , xμ(ln 1
x )α , xμ(ln ln 1

x )α etc, are in Φ0
γ in the case

0 < μ < γ and have coinciding indices m(w) = M(w) = μ .
Apart from this trivial examples, observe that the condition

(4.9) lim
h→0

w(th)
w(h)

= tμ, μ = const,

is sufficient for w(x) to have coinciding indices. The function w(x) =
xμ+ c

lnα x , α ≥ 1, and more generally w(x) = xμ(x) where μ(x) satisfies
the Dini condition |μ(x + h) − μ(x)| = o( 1

| ln |h| |), fulfills condition (4.9)
and xμ(x) ∈ Φ0

γ if 0 < μ(0) < γ.
Examples of non-equilibrated characteristics are much less trivial. An

example of such a function w with different indices m(w) and M(w) was
given in [1]; in the context of submultiplicative convex functions another
example of functions with non-coinciding Matuszewska-Orlicz indices was
given in [17], the latter example been also exposed in [18], p. 93. In [26]
there was explicitly constructed a family of functions with different indices
belonging to the class Φ0

γ .
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4.4. Auxiliary lemmas.

Lemma 4.6. Let w ∈ W̃ ([0, 	]), 0 < 	 <∞, and −∞ < mw ≤Mw <∞ ,
let λ ≥ 0 and λMw < δ, where δ > 0. Then tδ

[w(t)]λ ∈ Z0 , that is,

(4.10)
∫ r

0

xδ−1dx

[w(x)]λ
≤ C

rδ

[w(r)]λ
, 0 < r ≤ 	,

where the constant C > 0 does not depend on r ∈ [0, 	] ; it does not depend
also on 0 ≤ λ ≤ d where d > 0 is arbitrary if Mw ≤ 0 and d < δ

Mω
, if

Mw > 0 .

Proof. The function w1(x) = xδ

[w(x)]λ is almost increasing, because the

function w(x)
xδ/λ is almost decreasing when δ

λ > Mω , according to formula
(4.5), the validity of which follows from Corollary 4.3. Therefore, w1 ∈ W .
By the definition of the lower index, we easily obtain that mw1 = δ−λMw.
Hence mw1 > 0 and consequently w1 ∈ Z0 by Theorem 4.2.

In order to show that the constant C in (4.10) does not depend on the
appropriate choice of λ , we proceed as follows∫ r

0

xδ−1dx

[w(x)]λ
=

1
[w(r)]λ

∫ r

0

[
w(r)
w(x)

· x
Mw+ε

rMw+ε

]λ
r(Mw+ε)λ dx

x(Mw+ε)λ+1−δ
.

The function w(x)
xMw+ε is almost decreasing for every ε > 0 by Corollary 4.3.

Therefore, the expression in the brackets is bounded from above. Since
λ ≥ 0, we get ∫ r

0

xδ−1dx

[w(x)]λ
≤ C

r(Mw+ε)λ

[w(r)]λ

∫ r

0

dx

x(Mw+ε)λ+1−δ

=
C

δ − λ(Mw + ε)
· rδ

[w(r)]λ

≤ C1r
δ

[w(r)]λ

under the choice of ε sufficiently small: 0 < ε < δ
d −Mw. �

Lemma 4.7. Let Γ be a bounded Carleson curve, λ(t) ≥ 0 on Γ and
Λ := sup

t∈Γ
λ(t) . Let also w ∈ W̃ ([0, 	]), 	 = |Γ| and −∞ < mw ≤ Mw < 1

Λ .

Then

(4.11)
∫

γr(t)

dν(τ)
[w(|t − τ |)]λ(t)

≤ C
r

[w(r)]λ(t)

where C > 0 does not depend on t ∈ Γ and r ∈ [0, 	] .
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Proof. Let μ < mw and wμ(x) = w(x)
xμ so that wμ(x) is an a.i. function

according to (4.4) and Corollary 4.3. We proceed as follows:

(4.12) J :=
∫

γr(t)

dν(τ)
[w(|t − τ |)]λ(t)

=
∞∑

k=0

∫
Lk(t,r)

|t− τ |−μλ(t)dν(τ)
[wμ(|t− τ |)]λ(t)

where Lk(t, r) = {τ ∈ Γ : 2−k−1r < |t− τ | < 2−kr} . Since the function wμ

is almost increasing, and |t − τ |−μλ(t) ≤ C
(
2−kr

)−μλ(t) for τ ∈ Lk(t, r),
we obtain

(4.13) J ≤ C
∞∑

k=0

(
2−kr

)−μλ(t) |L(k, r)|
[wμ(2−k−1r)]λ(t)

≤ C
∞∑

k=0

2−kr

[w(2−k−1r)]λ(t)
.

The inequality

(4.14)
2−k

[w(2−k−1r)]λ(t)
≤ C

∫ 2−k

2−k−1

dx

[w(xr)]λ(t)

is valid, which follows from the direct estimation similar to the above
arguments:∫ 2−k

2−k−1

dx

[w(xr)]λ(t)
≥ C

[wμ(2−kr)]λ(t)

∫ 2−k

2−k−1
(xr)−μλ(t)dx

≥ C2−k

[w(2−kr)]λ(t)
.

By (4.14) from (4.13) we get

J ≤ Cr
∞∑

k=0

∫ 2−k

2−k−1

dx

[w(xr)]λ(t)

= Cr

∫ 1

0

dx

[w(xr)]λ(t)
= c

∫ r

0

dx

[w(x)]λ(t)

≤ C
r

[w(r)]λ(t)
,

where in the last inequality we used Lemma 4.6 with δ = 1. �

5. Proof of Theorems A and A ′

Proof of Theorem A. To Prove Theorem A, we have to show that

Ip(Mρf) ≤ c for ‖f‖p(·) ≤ R.

Following the idea in [7], we represent Ip(Mρf) as

(5.1) Ip(Mρf) =
∫

Ω

(
[ρ(x)]p1(x)

∣∣∣∣M(
f(y)
ρ(y)

)
(x)
∣∣∣∣p1(x)

)p∗

dν(t),
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where

p1(x) =
p(x)
p∗

.

We make use of the known estimate

(5.2) |Mψ(x)|p1(x) ≤ c(1 + M[ψp1(·)](x))

(see [7], valid for for all ψ ∈ Lp1(·)(Ω) with ‖ψ‖p1(·) ≤ C . We intend to
choose ψ(y) = f(y)

ρ(y) with f ∈ Lp(·)(Ω) in (5.2). This is possible because

(5.3)
∫

Ω

∣∣∣∣f(y)
ρ(y)

∣∣∣∣
p(y)
p∗

dy ≤ C,

for all f ∈ Lp(·) with ‖f‖p ≤ c . Estimate (5.3) is obtained by means of the
usual Hölder inequality with the constant exponents p∗ and q∗ = p∗

p∗−1 ,
taking into account that

∫
Ω

dy

[ρ(y)]
p(y)

p∗−1
< ∞ , the latter following from

condition (2.4). In view of (5.3), we may apply estimate (5.2). Then (5.1)
implies

Ip(Mρf) ≤ c

∫
Ω

[ρ(x)]p(x)

[
1 + M

(∣∣∣∣f(y)
ρ(y)

∣∣∣∣p1(y)
)]p∗

dx.

Since
∫
Ω[ρ(x)]p(x)dx <∞ by (2.4), we obtain

(5.4) Ip(Mρf) ≤ c+ c

∫
Ω

[Mρ1(|f(·)|p1(·))(x)]p∗dx

under notation (2.1) with ρ1(x) = [ρ(x)]p1(x) .
As is known [29], p. 201, the weighted maximal operator Mρ1 is bounded

in Lp∗ with a constant p∗ > 1, if the weight [ρ(x)]p1(x) is in Ap∗ , which
is nothing else but condition (2.4). Therefore, by the boundedness of the
weighted operator Mρ1 in Lp∗ , from (5.4) we get

(5.5) Ip(Mρf) ≤ c+ c

∫
Ω

|f(y)|p1(y)·p∗ dy = c+ c

∫
Ω

|f(y)|p(y) dy <∞.

Hence, by (3.2)-(3.3) we conclude that ‖Mf‖Lp(·)(Ω,ρ) ≤ C for all f ∈
Lp(·)(Ω, ρ) with ‖f‖Lp(·)(Ω,ρ) ≤ 1. Since M is sublinear, this yields its
boundedness in the space Lp(·)(Ω, ρ). �

Proof of Theorem A ′ . The proof of Theorem A ′ is essentially the same.
We only mention that an analogue of the pointwise estimate (5.2) for
Carleson curves is also known, see Theorem 3.3 in [13] and Subsection 4.2
in [12], and the boundedness of the maximal operator along Carleson curves
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with Muckenhoupt weights satisfying the Ap -condition (p ≡ const)
(5.6)

sup
t∈Γ

sup
r>0

(
1

|γr(t)|
∫

γr(t)

[ρ(τ)]pdν(τ)

)(
1

|γr(t)|
∫

γr(t)

[ρ(τ)]−qdν(τ)

)p−1

<∞,

is also known, see [4], p. 149. �

6. Proof of Theorem B

It suffices to prove Theorem B for a single weight w(|t − t0|), t0 ∈
Γ, t

1
p(t0)w(t) ∈ Φ0

1 , which may be shown by standard arguments, we refer for
instance to [10], Subsection 5.1, where the Euclidean case was considered.

6.1. On condition (2.5) for weights in W̃ .

Lemma 6.1. Let Γ be a bounded Carleson curve and let w ∈
W̃ ([0, 	]), 	 = |Γ| and −∞ < mw ≤Mw < 1 . Then the inequality

(6.1) Mw
r (1) :=

w(|t− t0|)
|γr(t)|

∫
γr(t)

dν(τ)
w(|τ − t0|) ≤ c

holds with c > 0 not depending on 0 < r < 	 and t ∈ Γ , if either mω > 0
or |t− t0| ≥ 2r . In the case |t− t0| ≤ 2r , the estimate

(6.2)
w(r)
|γr(t)|

∫
γr(t)

dν(τ)
w(|τ − t0|) ≤ c.

also holds.

Proof. 10 . The case |t− t0| ≥ 2r . We have

(6.3) |τ − t0| ≥ |t− t0| − |τ − t| ≥ |t− t0| − r ≥ 1
2
|t− t0|.

As in the proof of Lemma 4.7, let μ < mw and wμ(x) = w(x)
xμ . Since wμ

is an a.i. function, we have wμ(|τ − t0|) ≥ cwμ

(
1
2 |t− t0|

)
. Taking also into

account the doubling property (4.8), we obtain

wμ(|τ − t0|) ≥ cwμ(|t− t0|).
Then we have

Mw
r (1) ≤ C

w(|t− t0|)
rwμ(|t− t0|)

∫
γr(t)

dν(τ)
|τ − t0|μ

= C
|t− t0|
r

μ ∫
γr(t)

dν(τ)
|τ − t0|μ



312 The maximal operator in weighted variable spaces Lp(·)

If μ ≥ 0, we use (6.3) again and obtain (6.1). If μ < 0, then
1

|τ − t0|μ = |τ − t0||μ| ≤ C(|τ − t||μ| + |t− t0||μ|)

≤ C(r|μ| + |t− t0||μ|) ≤ C1|t− t0||μ|,
whence (6.1) again follows.

20 . The case |t − t0| ≤ 2r . Observe that in this case γ(t, r) ⊂ γ(t0, 3r),
since |τ − t| < r =⇒ |τ − t0| ≤ |τ − t| + |t− t0| < 3r . Hence

Mw
r (1) ≤ w(|t − t0|)

|γr(t)|
∫

γ3r(t0)

dν(τ)
w(|τ − t0|)

and then by Lemma 4.7 (with λ(t) ≡ 0) and Remark 4.5 we get

(6.4) Mw
r (1) ≤ w(|t− t0|)

w(r)
.

This gives (6.2). In the case mω > 0 the function w(x) is almost increasing
and then (6.4) yields (6.1). �

Corollary 6.2. Let w ∈ W̃ ([0, 	]), 	 = |Γ| , and p(t) be a bounded non-
negative function on Γ satisfying condition (1.2). Then

(6.5)
1

|γr(t)|
∫

γr(t)

[w(|τ − t0|)]p(τ)dν(τ) ≤ C[w(ξ)]p(t0), if mω > − 1
p(t0)

and

(6.6)
1

|γr(t)|
∫

γr(t)

dν(τ)
[w(|τ − t0|)]p(τ)

≤ C

[w(ξ)]p(t0)
, if Mω <

1
p(t0)

where ξ = max(r, |t− t0|) .
Proof. By Lemma 3.1, the exponent p(τ) on the left-hand side of (6.5)

and (6.6) may be replaced by p(t0) from the very beginning. It easily seen
that M[w(·)]p(t0) = p(t0)Mw and M[w(·)]−p(t0) = p(t0)mw . Then (6.5)-(6.6)
follow directly from (6.1)-(6.2). �

Theorem 6.3. Let w(x) ∈ W̃ (0, 	), 	 = |Γ| and t0 ∈ Γ . A function
ρ(t) = w(|t− t0|) satisfies condition (2.5) if

(6.7) − 1
p(t0)

< mw ≤Mw <
1
q0
,

where 1
q0

= p∗−1
p(t0) ≤ 1

q(t0) .

Proof. By Corollary 6.2, we have
1

|γr(t)|
∫

γr(t)

[w(|τ − t0|)]p(τ)dν(τ) ≤ C[w(ξ)]p(t0)
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and (
1

|γr(t)|
∫

γr(t))

dν(τ)

[w(|τ − t0|]
p(τ)

p∗−1

)p∗−1

≤ C

[w(ξ)]p(t0)

just under condition (6.7), which yields the validity of (2.5). �

6.2. Proof itself of Theorem B.

10 The case (6.7). This case is covered by Theorem A ′ , because in the
case (6.7) the weight w(|t− t0|) satisfies condition (2.5) by Theorem 6.3.

20 The remaining case. To get rid of the right-hand side bound in
(6.7), we may split integration over Γ into two parts, one over a small
neighborhood γδ = γδ(t0) of the point t0 , and another over its exterior
Γ\γδ , and to choose δ sufficiently small so that the number p∗(γδ)−1

p(t0) is

arbitrarily close to p(t0)−1
p(t0) = 1

q(t0) . To this end we put

Mw = χγδ
Mwχγδ

+ χγδ
MwχΓ\γδ

+ χΓ\γδ
Mwχγδ

+ χΓ\γδ
MwχΓ\γδ

=: Mw
1 + Mw

2 + Mw
3 + Mw

4 .

(6.8)

Since the weight is strictly positive beyond any neighborhood of the point
t0 , we have

(6.9) Mw
4 f(t) ≤ CMf(t).

For Mω
3 we have

Mw
3 f(t) = sup

r>0

χΓ\γδ(t0)(t)
|γr(t)|

∫
γr(t)∩γδ(t0)∩Γ

w(|t − t0|)
w(|τ − t0|) |f(τ)| dν(τ).

Here |t − t0| > r > |τ − t0| . Observe that the function wε(t) = w(t)
tMw+ε is

a.d. for any ε > 0 according to (4.5). Therefore

w(|t − t0|)
w(|τ − t0|) =

wε(|t− t0|)
wε(|τ − t0|) · |t− t0|Mw+ε

|τ − t0|Mw+ε
≤ C

|t− t0|Mw+ε

|τ − t0|Mw+ε
.

Hence

(6.10) Mw
3 f(t) ≤ CMMw+εf(t)

where MMw+εf(t) is the weighted maximal function with the power weight
|t− t0|Mw+ε . Similarly we conclude that

(6.11) Mw
2 f(t) ≤ CMmw−εf(t).

Thus from (6.8) according to (6.9), (6.10) and (6.11) we have

(6.12) Mwf(t) ≤ χγδ
Mwχγδ

f(t) + Mf(t) + MMw+εf(t) + Mmw−εf(t).

Here the operators M,MMw+ε and Mmw−ε are bounded in the space
Lp(·)(Γ), because the boundedness condition (2.3) is satisfied for β = Mw+ε
and β = mω − ε under a choice of ε sufficiently small.
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It remains to prove the boundedness of the first term on the right-hand
side of (6.12). This is nothing else but the boundedness of the same operator
Mw over a small set Γδ = γδ(t0) ∩ Γ. According to the previous case, this
boundedness holds if

(6.13) − 1
p(t0)

< mw ≤Mw <
1
qδ

where qδ = p∗(Γδ)−1
p(t0)

and p∗(Γδ) = min
t∈Γδ

p(t). Let us show that, given the

condition − 1
p(t0) < mw ≤Mw < 1

q(t0) , one can always choose δ sufficiently
small such that (6.13) holds. Given Mw < n

q(t0) , we have to choose δ so
that Mw < 1

qδ
≤ n

q(t0) . We have

1
qδ

=
1

q(t0)
− a(δ), where a(δ) =

1
p(t0)

[p(t0) − p∗(Γδ)] .

By the continuity of p(t) we can choose δ so that a(δ) < 1
q(t0) − Mw .

Then 1
qδ
> Mw and condition (6.13) is fulfilled. Then the operator Mw is

bounded in the space Lp(·)(γδ) which completes the proof.
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