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ABSTRACT. We prove the boundedness of the Calderon singular integral operator in variable exponent

weighted Lebesgue spaces wLp ,  on arbitrary Carleson curve under the assumption that )(tp  satisfies the

log-condition on . © 2008 Bull. Georg. Natl. Acad. Sci.
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1. Introduction 
Let lssttCt 0,:  be a simple rectifiable curve with arc-length measure. In the sequel we 

denote 

0,,,, rtrtBrt , (1.1)

where rtzCzrtB ||:, . We also denote by rt,  arc-length measure of tr, .
We remind that a curve is called Carleson curve (regular curve), if there exists a constant 00c  not depending 

on t and r, such that 

rcrt 0, . (1.2)

We consider the Calderon singular integral operator 
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on Carleson curves  and establish that C  is bounded in weighted spaces wLp , ,
n
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with variable exponent p(t) (see definitions in Section 2), under the assumption that p(t) satisfies the standard log-
condition. 

2. Definitions 
Let p be a measurable function on  such that ,1:p . In what follows we assume that p satisfies the 

conditions 
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iii) there exist positive constants m and M such that
Mtam0 .

Then from the boundedness of C  in pL   follows that  is a Carleson curve. 

For the case = 1R , p=const. and La  we refer to [1]. When  is a Carleson curve, p=const.  and
tta  Theorem 2 is due to G. David [2] and when an exponent is variable see [3]. 
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