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Boundedness in Lebesgue Spaces with Variable Exponent of
the Calderon Singular Operator on Carleson Curves
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ABSTRACT. We prove the boundedness of the Calderon singular integral operator in variable exponent
weighted Lebesgue spaces [ (')(F, w) on arbitrary Carleson curve under the assumption that p(7) satisfies the

log-condition on I'. © 2008 Bull. Georg. Natl. Acad. Sci.
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1. Introduction

Let I' = {t eC:t= t(s), 0<s<i< oo} be a simple rectifiable curve with arc-length measure. In the sequel we
denote

7e.r)=TNB(t,r), teT, r>0, (1.1)

where B(t, r) = {z eC:lz—-tkr } We also denote by | 7/(1, r)| arc-length measure of )/(r, t).

We remind that a curve is called Carleson curve (regular curve), if there exists a constant ¢, > 0 not depending
on 7 and r, such that

|)/(t,r)|Scor, (1.2)
We consider the Calderon singular integral operator
Crla,f)= [AD=4D 1(r)qr (1.3)
r (z 1)

on Carleson curves I" and establish that C. is bounded in weighted spaces Lp(')(F,w), w(t): H|t—tk|'8 Yot el
k=1

with variable exponent p(f) (see definitions in Section 2), under the assumption that p(f) satisfies the standard log-
condition.

2. Definitions

Let p be a measurable function on I" such that p:T" — (1, oo). In what follows we assume that p satisfies the
conditions
1< p_ =essinf p(t) < esssup p(t) = p, <o, (2.1
tel’ tel
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Ip(f)—p(fl‘(i, tel’, 7el, |!—Z'|S%. (2.2)

-1

In the case where I' is an infinite curve, we also assume that p satisfies the following condition at infinity

|p(.i‘)—p(f]£i4—°°, YR Y (2.3)

forsome L >0.

From (2.3) it follows that there exists p_ = |;‘|i_?lp(’] and |p(c)- pleo) S%‘l’;l,

f|2 max{L,2}.

The conditions (2.2), (2.3) are called the log-conditions.
The generalized Lebesgue space with variable exponent is defined via the modular

=i I
I, = mf{/l >0: If (7] < 1}_

1207)= e
T
By L"('J(l', w) we denote the weighted Banach space of all measurable functions f :I" — C such that
Iflp(,),\.- =||“’-'f||,.,(.) <o

by the norm

plr)

We denote p'(t)=——"—.
=50

3. The main statements
In the sequel we consider the power weights of the form

wt)=Tf-u|* . e, t#t; wheniz;. (3.1)
k=1

Theorem 1. Let
i) T beasimple Carleson curve with finite or infinite length;
ii) the functions p(t) and r(t) satisfy conditions (2.1) and (2.2) in the case of finite " and also (2.3) when T is

infinite;
i) a’e L"('](I“)‘

Then the operator C\(a,) is bounded from U’(')(I") into L"’{')(F] where

1 1 1

= —_—t

gle)  ple) rle)
Theorem 2. Let

i) T and p satisfv conditions from Theorem 1.

ii)a’e L”(T).

Then the operator Cy(a,) is bounded in the space Lf:,(')(l") with power weight w of the form (3.1) if’

1 1
———<f <——, k=12,...,n
pley) Pt
and also

1 2 1
—w<ﬁ+§ﬁf.— <m

in the case T is infinite.
Theorem 3. Let
i) T be asimple closed rectifiable curve;
ii) p(1) satisfy conditions (2.1) and (2.2);
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iii) there exist positive constants m and M such that
0<m S|a'(t)|SM<oo.

Then fiom the boundedness of Cy in L? (‘)(F) follows that T is a Carleson curve.

For the case T'=R', p=const. and @' € L*(I') we refer to [1]. When I' is a Carleson curve, p=const. and

a(t) =t Theorem 2 is due to G. David [2] and when an exponent is variable see [3].
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