
Proceedings of A. Razmadze
Mathematical Institute
Vol. 150 (2009), 91–97

A NOTE ON EXTRAPOLATION AND MODULAR

INEQUALITIES

V. KOKILASHVILI

Abstract. In this note we present the Orlicz modular version of
the well-known Littlewood-Paley’s theorem. The result is based on a
certain extrapolation theorem established in the given paper.

îâäæñéâ. ïð�ðæ�öæ éëõã�êæèæ� èæðãñèá{ìâèæï ùêë�æèæ åâëîâ-

éæï �ê�èëàæ ëîèæøæï éëáñè�îâ�æå. âï öâáâàæ âõîáêë�� à�îçãâñ-

èæ âóïðî�ìëè�ùææï åâëîâé�ï, îëéâèæù á�éðçæùâ�ñèæ� û�îéëá-

àâêæè ïð�ðæ�öæ.

1. Some Definitions and Auxiliary Statements

By the symbol Φ we denote a set of all functions ϕ : R1 → R1 which
are nonnegative, even, increasing on [0,∞) and such that ϕ(0+) = 0,
lim

t→∞
ϕ(t) = ∞.

Definition 1. A function ϕ ∈ Φ is said to be the Young function if ϕ is
convex and

lim
t→0+

ϕ(t)

t
= lim

t→∞

t

ϕ(t)
= 0.

Definition 2. A nonnegative function ϕ : [0,∞) → [0,∞) is quasiconvex
if there exists a Young function ω and a constant c ≥ 1 such that

ω(t) ≤ ϕ(t) ≤ c ω(c t), t ≥ 0.

A quasiconvex function can be associated with its complementary func-
tion, that is the function ϕ̃ defined by

ϕ̃(t) = sup
s≥0

(
s t− ϕ(s)

)
.

The subadditivity of a supremum implies that ϕ̃ is always a Young func-

tion. Moreover,
≈
ϕ ≤ ϕ. The equality holds if ϕ itself is a Young function.
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Definition 3. A function ϕ ∈ Φ satisfies the ∆2 condition (ϕ ∈ ∆2) if
there exists c > 0 such that

ϕ(2t) ≤ c ϕ(t), t > 0.

In the sequel, we will need the following propositions.

Proposition 1. Let h ∈ Φ. Then the following two conditions are

equivalent:

(i) hα is quasiconvex for some α ∈ (0, 1];

(ii) h̃ ∈ ∆2 and h is quasiconvex.

(See [1], [2], Lemma 6.1.6.)

Proposition 2. Let ϕ ∈ Φ. Then the following statements are equivalent:

(i) ϕ is quasiconvex on [0,∞);
(ii) the inequality

ϕ
(
tx1 + (1 − t)x2) ≤ c1

(
t1ϕ(c1x1) + (1 − t)ϕ(c1x2)

)

holds for all x1, x2 ∈ [0,∞) and all t ∈ (0, 1) with a constant c1 independent

of x1, x2 and t.

(See [1], Lemma 1.1.1.)

Proposition 3. Let ϕ ∈ Φ. The following conditions are equal:

(i) ϕ is quasiconvex;

(ii) there is a positive constant ε such that

ϕ̃

(
ε
ϕ(t)

t

)
≤ ϕ(t), t > 0.

When ϕ is convex, the inequality holds with ε = 1.
(See [2], Lemma 1.1.1.)

Let (X, d, µ) be a quasimetric measure space satisfying the following so-
called doubling condition: There exists a positive constant c > 0 such that

µB(x, 2r) ≤ c µB(x, r)

for an arbitrary ball with center at x, of radius r. Let

M f(x) = sup
r>0

1

µB(x, r)

∫

B(x,r)

|f(y)| dµ

be the Hardy-Littlewood maximal function defined for an arbitrary locally
µ-integrable function.

Theorem A ([1], Theorem 1.2.1). Let ϕ ∈ Φ. Then the following

statements are equivalent:

(i) there exists a positive constant c1 such that the inequality
∫

X

ϕ
(
M f(x)

)
dµ ≤ c1

∫

X

ϕ
(
c1 f(x)

)
dµ
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holds;

(ii) the function ϕα is quasiconvex for some α ∈ (0, 1).
(See also [2], Theorem 6.4.4 for w ≡ 1.)

Definition 4. A nonnegative locally integrable function w is said to be
of the class A1 if

M w(x) ≤ cw(x)

for almost all x ∈ X in a µ-measure sense.

2. Main Results

By F we denote a family of ordered pairs (f, g) of µ-measurable nonneg-
ative functions defined on the measure space (X, d, µ).

Theorem 1. Let ϕ(t
1

p0 ) be a Young function satisfying the ∆2 condition

for some p0 > 1.
Let there exist a constant c > 0 such that for arbitrary pairs (f, g) ∈ F

and arbitrary weight function w ∈ A1 the inequality
∫

X

fp0(x)w(x) dµ ≤ C

∫

X

gp0(x)w(x) dµ (1)

holds when the left–hand side is finite.

Then there exists a constant C1 such that
∫

X

ϕ(f)(x) dµ ≤ C

∫

X

ϕ(g)(x) dµ (2)

for any (f, g) ∈ F such that the left-hand side is finite.

Let T be the interval [−π, π] and F ∈ L1(T).

F (x) ∼
1

2
a0 +

∞∑

k=1

(ak cos kx+ bk sin kx)

be the Fourier series.

We introduce the notations:

Ak(x) := (ak cos kx+ bk sin kx), δ0 :=
1

2
a0

and

δk :=
2k−1∑

j=2k−1

Aj(x).
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Theorem 2. Let ϕ
(
t

1
p0

)
be a Young function for some p0 > 1 satisfying

the ∆2 condition. Then there exist two positive constants c1 and c2 such

that

c1

∫

T

ϕ(F )(x) dx ≤

∫

T

ϕ

(( ∞∑

k=0

δ2k

)1/2
)
dx ≤ c2

∫

T

ϕ(F )(x) dx (3)

for arbitrary F ∈ L1(T) ∩ Lϕ(T).

3. Proofs

Proof of Theorem 1. We will essentially use the idea of proving Theorem 3.1
from [3] which in its turn is based on the well-known extrapolation method
of J. L. Rubio de Francia [4]. In fact, we present a modification of the
above-mentioned proof.

Let

ψ := ϕ
(
u

1
p0

)
.

Under our notation

ψ̃(t) = sup
s>0

(
ts− ψ(s)

)

is the complementary function to ψ. We supposed that ψ ∈ ∆2. According

to Propositions 1 and 2, we find that ψ̃ α is quasiconvex for some α, 0 <
α < 1 and

ψ̃(θ t) =
[
ψ̃ α(θ t+ (1 − θ) · θ)

]1/α
≤ a

1/α
1 θ1/α ψ̃(a1t) (4)

for 0 < θ < 1 and some a1 ≥ 1.
On the other hand, by Theorem A we have

∫

X

ψ̃
(
M f(x)

)
dµ ≤ a2

∫

X

ψ̃(a2 f)(x) dµ,

since ψ̃ α is quasiconvex.

Let a0 = max
{
a1, a

1/α
1 , a2

}
. It is clear that a0 ≥ 1. Therefore we have

two estimates:
∫

X

ψ̃

(
M f(x)

a0

)
dµ ≤ a0

∫

X

ψ̃(f)(x) dµ (5)

and

ψ̃(θ t) ≤ a0 θ
1/α ψ̃(a0 t). (6)

Let θ, 0 < θ < 1 to be chosen later on.
Let

0 ≤ h(x) =
θ ψ(fp0)

a0 fp0
.
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Define now the function

Rh(x) :=
2a0 − 1

2a0

∞∑

k=0

1

(2a0)k

Mk h(x)

a0
,

where Mk is the k-th iteration of the Hardy-Littlewood function M .
Arguing similarly to the arguments given in [3], we can easily see that

R(h) satisfies the following conditions:

(i) h(x) ≤
2a0

2a0 − 1
Rh(x); (7)

(ii)

∫

X

ψ̃(Rh)(x) ≤
2a0 − 1

2a0

∫

X

ψ(h)(x); (8)

(iii) M(Rh)(x) ≤ 2a2
0Rh(x). (9)

The last property means that R(h) ∈ A1 with a constant, independent
of f .

By virtue of (7), we have
∫

X

ϕ(f)(x) dµ =

∫

X

ψ(fp0)(x) dµ =
a0

θ

∫

X

fp0(x)h(x) dx ≤

≤
2a2

0

(2a0 − 1)θ

∫

X

fp0(x)Rh(x) dµ. (10)

Let us now prove that
∫

X

fp0(x)Rh(x) dµ <∞. (11)

Using the Young inequality, we obtain
∫

X

fp0(x)Rh(x) dµ ≤

∫

X

ψ(f(x)) dµ +

∫

X

ψ̃(Rh(x)) dx.

But according to our assumption, the first term on the right-hand side is
finite. Taking into account (8) and (6), for the second summand we have
∫

X

ψ(Rh(x)) dµ ≤
2a0 − 1

a0

∫

X

ψ(h(x))dµ=
2a0 − 1

a0

∫

X

ψ

(
θ ψ(fp0)(x)

a0fp0(x)

)
dµ ≤

≤
2a0 − 1

a0
a0 θ

1/α

∫

X

ψ

(
ψ(fp0)(x)

a0 fp0(x)

)
dµ.

Applying Proposition 3, the latter estimate implies
∫

X

ψ(Rh(x)) dµ ≤ (2a0 − 1) θ1/α

∫

X

ψ(fp0)(x) dµ.
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Thus ∫

X

ψ(Rh(x)) dµ ≤ (2a0 − 1) θ1/α

∫

X

ϕ(f)(x) dµ (12)

and hence the proof of inequality (11) is complete.
Taking into account the assumption of the theorem and the condition

Rh ∈ A1, we obtain
∫

X

ϕ(fp0)(x) dµ ≤
2a2

0

(2a0 − 1) θ
C

∫

X

gp0(x)Rh(x) dµ.

Using the Young inequality on the right-hand side of the latter inequality,
we can conclude that

∫

X

ψ(fp0) dµ ≤
2a2

0

(2a0 − 1) θ
C

( ∫

X

ψ(gp0)(x) dµ+

∫

X

ψ̃(Rh)(x) dµ

)
.

Then by virtue of (12), we have
∫

X

ψ(fp0)(x) dµ ≤
2a2

0

(2a0 − 1) θ
C

∫

X

ψ(gp0)(x) dµ+

+ 2a2
0(C + 1) θ

1−α
α

∫

X

ϕ(f)(x) dµ.

Choose now θ =
(
4a2

0(C + 1)
)− α

1+α . It is clear that 0 < θ < 1.
Therefore

∫

X

ϕ(f)(x) dµ ≤
2a2

0

(2a0 − 1) θ
C

∫

X

ϕ(g)(x) dµ +
1

2

∫

X

ϕ(f)(x) dµ.

The last inequality provides us with a desired result. �

Proof of Theorem 2. We need the following result due to D. S. Kurtz (see
[5], [6]).

Let w ∈ Ap, 1 < p <∞, then

c1
∥∥f

∥∥
Lp

w
≤

∥∥∥∥
( ∞∑

k=0

δ2k

)1/2
∥∥∥∥

Lp
w

≤ c2
∥∥f

∥∥
Lp

w
.

But arbitrarily w ∈ A1 belongs to the Ap class, too.
Now we derive the right part of a chain of desired inequalities taken in

Theorem 1,

f :=

( ∞∑

k=0

δ2k

)1/2

and g := |F |.

As for the left part, we have to change the role of the functions. �
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Remark. It is evident that in a similar way we can derive modular in-
equalities for various operators of harmonic analysis.
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