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APPROXIMATION OF PERIODIC FUNCTIONS IN GRAND
VARIABLE EXPONENT LEBESGUE SPACES

The goal of this talk is to discuss some approximation problems for
2π-periodic functions in new function spaces, introduced and studied re-
cently by V. Kokilashvili and A. Meskhi [1]. These spaces unified two non-
standard Banach function spaces, in particular, grand and variable exponent
Lebesgue spaces. It is worth mentioning that the grand variable exponent
Lebesgue spaces are non-reflexive, non-separable and non-rearrangement
invariant.

Let T = [−π, π] and let s(x) be continuous, 2π-periodic function defined
on R. We suppose that s(x) satisfies the log-Hölder continuity condition i.e.
there exists a positive constant A such that for all x, y ∈ R, |x− y| < 1

2 , the
inequality

|s(x)− s(y)| ≤ A

− log |x− y|
holds.

In the sequel we denote the class of 2π-periodic functions satisfying the
log-Hölder continuity condition by P log. Further, we say that s ∈ P if

1 < s− ≤ s+ < ∞,

where
s− = inf

T
|s(x)|, s+ = sup

T
|s(x)|.

Definition. Let p ∈ P and θ > 0. By Lp(·),θ(T) we denote the class of
those 2π-periodic measurable functions for which

‖f‖p(·),θ = sup
0<ε<p−−1

ε
θ

p−−ε ‖f‖p(·)−ε < ∞

where

‖f‖s(·) = inf
λ>0

{
λ :

∫

T

∣∣∣f(x)
λ

∣∣∣
s(x)

dx ≤ 1
}

.

2010 Mathematics Subject Classification: 26A33, 41A10, 41A25.
Key words and phrases. Grand variable exponent Lebesgue spaces, trigonometric

approximation, moduli of smoothness, best approximation.

100



101

Let f ∈ Lp(·),θ and let

Ahf(x) =
1
2h

x+h∫

x−h

f(t)dt, x ∈ T.

For r > 0 we set

σr
hf(x) := (I −Ah)rf(x) =

∞∑

k=0

(−1)kΓ(r + 1)
Γ(k + 1)Γ(r − k + 1)

(Ak)rf(x).

For f ∈ Lp(·),θ(T) and r > 0 the fractional moduli of smoothness is
defined as

Ωr(f, δ)p(·),θ = sup
0<hi,t≤δ

∥∥∥∥
[r]∏

i=1

(I −Ahi
)σ{ri}

i

∥∥∥∥
p(·),θ

where
0∏

i=1

(I −Ahi
)σr

t f := σr
t

for 0 < r < 1.
The closure of the space Lp(·)(T) by the norm of Lp(·),θ(T), θ > 0, does

not coincide with the latter space. Let us denote this closure by L̃p(·),θ(T).
This subspace of Lp(·),θ is a set of functions for which

lim
ε→0

ε
θ

p−−ε ‖f‖p(·)−ε = 0.

For f ∈ L̃p(·),θ by En(f)p(·),θ we denote the best trigonometric approxi-
mation:

En(f)p(·),θ = inf ‖f − T‖p(·),θ

where the infimum is taken over all trigonometric polynomials T of order
not greater than n. For f ∈ L̃p(·),θ we have

lim
n→∞

En(f)p(·),θ = 0.

We announce that the following statements are valid.

Theorem 1. Let p ∈ P ∩P log, θ > 0 and r > 0. Then for f ∈ L̃p(·),θ(T)
the following inequality holds

Ωr(f,
1
n

)p(·),θ ≤
c

n2r

n∑
ν=0

(ν + 1)2r−1Eν(f)p(·),θ (1)

with a constant c > 0 independent of f and n.
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Theorem 2. p ∈ P ∩ P log, θ > 0. If for f ∈ L̃p(·),θ and some natural k
the series

∞∑
ν=1

νk−1Eν(f)p(·),θ (2)

converges, then the function f (k−1) is absolutely continuous, f (k) ∈ L̃p(·),θ

and the inequality

En(f (k))p(·),θ ≤ c

(
nkEn(f)p(·),θ +

∞∑

k=n+1

νk−1Eν(f)p(·),θ

)
(3)

holds with a constant c independent of f .

Theorem 3. Let p ∈ P ∩ P log, θ > 0. Then under the conditions of
Theorem 2 we have

Ωr(f (k),
1
n

)p(·),θ ≤
(

c

n2r

n∑
ν=0

(ν + 1)2r+k−1Eν(f)p(·),θ+

+
∞∑

ν=n+1

νk−1Eν(f)p(·),θ.

The proofs of above-mentioned results are based on the boundedness of
conjugate operator in Lp(·),θ(P), Bernstein type inequality (see [3], Propo-
sition 3.1) and the following

Lemma. Let p ∈ P ∩ P log and θ > 0. Then for f ∈ Lp(·),θ(T) with the
condition f (k) ∈ Lp(·),θ(T) the inequality

Ωr(f, δ) ≤ cδ2r‖f (k)‖p(·),θ

holds with a constant c > 0 independent of f and δ.

For the analogous results in variable exponent Lebesgue spaces we refer
e.g. to [4].
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