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ON SOME PROPERTIES OF CERTAIN DISCRETE
POINT-SETS IN EUCLIDEAN SPACES

A system X of points in the Euclidean space Rn (n ≥ 1) is called discrete
if every ball in Rn contains only finitely many points from X.

In general, a set X is discrete in a topological space E if every point
x ∈ X has a neighborhood U such that X

⋂
U = {x}.

If a space E has a countable base, then any discrete set in E is either
finite or countably infinite. The standard example of an infinite discrete set
on the real line R is the set { 1

m : m ∈ N, m ≥ 1}.
In any reasonable space, a finite set turns out to be discrete.
Discrete point-systems can be met in various fields of pure and applied

mathematics. We may indicate several such directions in contemporary
mathematics, for instance, discrete and computational geometry, classical
number theory, combinatorics (finite or infinite), the theory of convex sets,
etc.

The investigation of the combinatorial structure of various discrete and
finite point-systems in Euclidean spaces is a rather attractive and important
topic. Properties of various discrete point systems are considered in many
works (see, for example, [1]–[5]).

Let D be a point-set (finite or infinite) in the n-dimensional Euclidean
space Rn.

We say that this D is a Diophantine set if the distance between any two
points from D is a natural number.

The most simple example of an infinite Diophantine set is the set of all
integer numbers in R.

A point-set Y is a quasi-Diophantine set if the distance between any two
points from Y is a rational number.

Lemma 1. Let X be a finite quasi-Diophantine subset of Rn. Then there
exists a homothety h of Rn with integer coefficient such that the set h(X)
is Diophantine.

Let X be a point-set in Euclidean space Rn.
We shall say that a line segment l is an edge of X if there exist two points

from X which are the end-points of l. This terminology is compatible with
graph theory.
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Take any four points x, y, z and t from X such that the intersection of
the line segments [x, y] and [z, t] is a singleton. The family of all singletons
obtained in this manner will be denoted by I(X).

Note that if X contains at least three points, then X ⊂ I(X).

Remark 1. In general, we cannot assert that if X is a quasi-Diophantine
set, then the set I(X) is also quasi-Diophantine. We only can prove a
somewhat weaker result (see Theorem 1 below).

We shall say that a line segment l is admissible for X if its end-points
belong to I(X) and there exists an edge of X containing l.

Theorem 1. Let X be a finite quasi-Diophantine set in the space Rn.
Then the length of each admissible line segment for X is a rational number.

The proof of Theorem 1 uses the method of induction on card(X), where
card(X) ≥ 4.

The basis of induction, i.e., the case card(X) = 4 essentially relies on the
fact that if the points of quasi-Diophantine set {a, b, c, d} are the vertices of
quadrangular in Rn and [a, b]

⋂
[c, d] = {x}, then the set {a, b, c, d, x} is a

quasi-Diophantine set, too.

A well-known result of combinatorial geometry states that any infinite
Diophantine subset D of the Euclidean plane R2 is necessarily collinear, i.e.,
all points of D belong to a certain line (see, for instance, [2], [4]). Notice
also that the analogous proposition is not valid for finite Diophantine sets
in R2 (see, for example, [2], [3]).

The following statements are true.

Lemma 2. Let D be a Diophantine subset of an n-dimensional sphere
of integer radius r, where r ≥ 2. Then in the Euclidean space Rn+2 there
exists a Diophantine set D1 containing D and such that card(D1 \D) = 2.

Theorem 2. For any natural number n ≥ 2, there are Diophantine sets
in Rn which have arbitrarily many points and do not lie in a hyperplane
of Rn.

Theorem 3. Let D be an infinite Diophantine set in the Euclidean space
Rn, where n ≥ 1. Then all points of D are collinear.

The proof of Theorem 3 is essentially concerned with some geometric
properties of intersections of finite families each member of which is a hy-
perboloid in the Euclidean space Rn. The main fact here is that the inter-
section of sufficiently many algebraic surfaces, which are is general position,
always yields the empty set.

Remark 2. The analogue of the above-mentioned Theorem 3 is not valid
for infinite-dimensional vector spaces. Indeed, the set of vectors ( ei√

2
)i∈N

from the classical infinite-dimensional Hilbert space l2, where e1, e2, . . . ,
en, . . . are elements of orthonormal basis of l2, is a Diophantine set in l2,
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and it is clear that these points are not collinear (moreover, they do not lie
in any finite-dimensional subspace of l2).
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