M. BERIASHVILI AND A. KIRTADZE

ON RELATIVE MEASURABILITY OF REAL-VALUED FUNCTIONS WITH RESPECT TO SOME MEASURES IN THE SPACE \mathbf{R}^{N}

Let E be a set and let M be a class of measures on E (we assume, in general, that the domains of measures from M are various σ -algebras of subsets of E). We shall say that a function

 $f: E \to \mathbf{R}$

is relative measurable with respect to M if there exists at least one measure $\mu \in M$ such that f is measurable with respect to μ , where **R** is the set of all real numbers. Otherwise, we shall say that f is absolutely nonmeasurable with respect to M.

Example 1. Let μ be a measure on E and let M(E) be the class of all nonzero σ -finite diffused measures on E. Let $f: E \to \mathbf{R}$ be a function and let, for some $t_0 \in \mathbf{R}$, the relation $\operatorname{card}(f^{-1}(t_0)) > \omega$ be satisfied, where ω denotes the first infinite cardinal number. In this case, we can assert that f is relative measurable with respect to the class M(E).

In particular, if an original set E is such that $\operatorname{card}(E) > 2^{\omega}$, then every function $f: E \to \mathbf{R}$ is relative measurable with respect to M(E).

The above-mentioned notation and example are discussed in [1] and [3].

Example 2. Let V be an equivalence relation on \mathbf{R} whose all equivalence classes are at most countable. We shall say that $f : \mathbf{R} \to \mathbf{R}$ is a Vitali type function for V if $(r, f(r)) \in V$ for each $r \in \mathbf{R}$ and the set $\operatorname{ran}(f)$ is a selector of the partition of \mathbf{R} determined by V. Let M_1 be the class of all translation invariant extensions of the Lebesgue measure λ on \mathbf{R} and let M_2 be the class of all translation quasi-invariant extensions of λ on \mathbf{R} . Then there exists a Vitali type function for V which is relatively measurable with respect to the class M_2 and is absolutely nonmeasurable with respect to the class M_1 .

Notice that if M denotes the class of all measures on \mathbf{R} extending classical Lebesgue measure on \mathbf{R} , then every Vitali type function for V is relatively measurable with respect to M.

²⁰¹⁰ Mathematics Subject Classification. 28A05, 28D05.

 $Key\ words\ and\ phrases.$ Relative measurability of real-valued functions, thick graphs.

⁹⁵

In connection with Example 2, see [1], [3].

Example 3. Let M_1 be the class of all nonzero σ -finite separable measures on \mathbf{R} and let M_2 be the class of all nonzero σ -finite non-separable measures on \mathbf{R} . If a function $f : E \to \mathbf{R}$ is relatively measurable with respect to the class M_2 , then f is relatively measurable with respect to the class M_1 .

The above-mentioned example is discussed in [5].

Let μ be a σ -finite measure given on a base set E. A subset X of E is called μ -thick if $\mu_*(E \setminus X) = 0$, where μ_* denotes the inner measure associated with μ (see, e. g., [1], [4]).

As usual, the symbol N denotes the set of all natural numbers and $\mathbf{R}^{\mathbf{N}}$ denotes the space of all real-valued sequences.

The following two statements are valid.

Theorem 1. There exists a function

$$f: \mathbf{R}^{\mathbf{N}} \to \mathbf{R}$$

having the following property: for any σ -finite diffused Borel measure μ on $\mathbf{R}^{\mathbf{N}}$ and for any σ -finite diffused Borel measure ν on \mathbf{R} , the graph of f is a $(\mu \times \nu)$ -thick subset of $\mathbf{R}^{\mathbf{N}} \times \mathbf{R}$.

From the Theorem 1 we deduce the following statement.

Theorem 2. The function

$$f: \mathbf{R}^{\mathbf{N}} \to \mathbf{R}$$

is relatively measurable with respect to the class of all extension of any σ -finite diffused Borel measure μ on $\mathbf{R}^{\mathbf{N}}$.

Notice that there exists nonzero, σ -finite, diffused Borel measure χ on $\mathbf{R}^{\mathbf{N}}$, which is invariant with respect to an everywhere dense vector subspace of $\mathbf{R}^{\mathbf{N}}$ and, in addition, is metrical transitive (i. e., ergodic) with respect to the same subspace (see, for example [3]). Also, notice that on the space $\mathbf{R}^{\mathbf{N}}$ there exists maximally large class of σ -finite, non-separable measures, which are invariant with respect to an everywhere dense vector subspace of $\mathbf{R}^{\mathbf{N}}$ and extend the measure χ (see [7]).

Acknowledgement

The research has been partially supported by Shota Rustaveli National Science Foundation, Grants No. 31/25, 31/24.

References

- A. B. Kharazishvili, Topics in measure theory and real analysis. Atlantis Studies in Mathematics, 2. Atlantis Press, Paris; World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009.
- A. B. Kharazishvili, Invariant measures in Hilbert space. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 114 (1984), No. 1, 45–48.
- A. B. Kharazishvili and A. P. Kirtadze, On the measurability of functions with respect to certain classes of measures. *Georgian Math. J.* 11 (2004), No. 3, 489–494.
- 4. K. Kodaira and S. Kakutani, A non-separable translation invariant extension of the Lebesgue measure space. Ann. of Math. (2) 52 (1950), 574–579.
- M. Beriashvili and A. Kirtadze, Non-separable extensions of invariant Borel measures and measurability properties of real-valued functions. *Proc. A. Razmadze Math. Inst.*, 162 (2013), 111–115.
- 6. M. Beriashvili and A. Kirtadze, On the uniqueness property of non-separable extensions of invariant Borel measures and relative measurability of real-valued functions. *Georgian Mathematical Journal (to appear).*

Authors' addresses:

A. Kirtadze

A. Razmadze Mathematical Institute

I. Javakhishvili Tbilis State University

6, Tamarashvili St., Tbilisi 0177

Georgia

Department of Mathematics of Georgian Technical University, 77, Kostava Str., Tbilisi 0175 Georgia E-mail: kirtadze2@yahoo.com

M. Beriashvili

Tbilisi State University 2, University St., Tbilisi 0143 Georgia E-mail: mariam.beriashvili217@ens.tsu.edu.ge