
J. oflnequal. & Appl., 2002, Vol. 7(4), pp. 453-477
Taylor &Francis
Taylor& Francis Group

On the Kneser Problem
forTwo-Dimensional Differential
Systems with Advanced Arguments
I. KIGURADZE* and N. PARTSVANIAr

A. Razmadze Mathematical Institute of the Georgian Academy
of Sciences, Tbilisi, Georgia

(Received 20 July 2000; In final form 7 November 2000)

For the differential system

ul(t f.(t,u(’ri(t)), u_(.2(t)))(i= 1,2)

with advanced arguments ’ik (i,k-1,2), sufficient conditions are established for the
existence and uniqueness of a solution of the Kneser problem

qa(u(0), u2(0)) 0, u(t) > O, u2(t) _> 0 for > 0,

and the asymptotic behaviour of this solution is studied.
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1. INTRODUCTION

In this paper we consider the problem on the existence of a solution
(u, u2)" R +R

2 of the differential system

uPi(t) fi(t, ul(7"il(t)), u2(7"i2(t))) (i 1,2) (1.1)
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satisfying the conditions

(u (0), u2(O)) -0, u (t) > O, u2(t) > 0 for > O. (1.2)

Throughout this paper, we will assume that Rk is the k-dimensional
Euclidean spaces, R+-[0, +o[, the functions.:R+ R2--,R (i-
l, 2) satisfy the local Carath6odory conditions, while qa" R2R and

rik R+-,R+ (i, k- l, 2) are continuous functions.
By a solution of system (l. l) on R/ is understood a vector function

(u, u2) R / R2 which is absolutely continuous on each finite segment
contained in R/ and satisfies (l.l) almost everywhere on R/.
We are especially interested in the case, where the functions f. and

’ik (i, k- 1,2) satisfy the conditions

f,.( t, O, O) O, fi( t, x, y) <_ O fort>0, x>0, y>_0(i=l,2), (1.3)

7"ik(t) >_ for >_ 0 (i,k 1,2), (1.4)

while the function qa satisfies one of the following two conditions:

q(O,O)<O, (x,y)>O forx>r, y>_O (1.5)

and

p(O,O)<O, p(x,y)>O forx>O, y>_O, x+y>r, (1.6)

where r is a positive constant.
If

f(t,x,y) -y, f2(t,x,y) -f(t,x,-y), ik(t) (i,k 1,2),
p(x, y) x- r,

then (1.1), (1.2) is equivalent to the problem

u" =f(t,u,u’), (1.1’)

u(O) r, u(t) >_ O, u’(t) < 0 for _> O. (1.2’)

In the case f t, x, y) f t, x) problem (1.1’), (1.2’) first was posed and
solved by Kneser [17]. The interest in this problem essentially
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enhanced after the appearance of the works of Thomas [22] and Fermi
[3], dealing with the distribution of electrons in a heavy atom. In these
works the considered physical problem is reduced to the Kneser
problem for the differential equation

u" t-1/2u3/2

which subsequently became known as the Thomas-Fermi equation.
In the papers of Mambriani, Scorca-Dragoni, Lampariello, Tonelli

(see [21] where the results of these authors are used), and Hartman and
Wintner [4] problem (1.1’), (1.2’) is investigated in full detail when

f: R+ x R2R is a continuous function, while in [9] this problem
is studied when the function f satisfies the local Carath6odory
conditions.

In [6-8, 10-13, 15, 18] optimal, in a sense, conditions are estab-
lished for the solvability and unique solvability of the Kneser problem
for higher order differential equations and asymptotic properties of
solutions of this problem are studied.

Nonlinear Kneser problems for differential systems of the type

dxi(t)
dt fi(t,x(t), ,Xn(t)) (i= 1,...,n)

are investigated in 1,2, 5, 16, 19, 20].
As for problem (1.1), (1.2), in the case i(t) (i,k 1,2) it has

remained practically unstudied.
In this paper, we make an attempt to fill to some extent the existing

gap.

2. AUXILIARY STATEMENTS

2.1. Lemmas on the Solvability of Problem (1.1), (1.2)

For system (1.1) along with (1.2) we will consider the auxiliary
boundary value problem

9(Ul (0), U2(0)) 0, Ul (t) Ul (a), u2(t) 0 for _> a, (1.2a)

where a E ]0, +[.
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LEMMA 2.1 Let conditions (1.3) and (1.5) be.fulfilled and let there exist

positive numbers ao and Po such that.for any a > ao problem (1.1), (1.2,)
has at least one nonnegative sohttion (u, u2) whose second component
admits the estimate

u2(0) < P0. (2.1)

Then problem (1.1), (1.2) has at least one solution.

Proof According to the condition of the lemma, for any natural m
system (1.1) has a nonnegative solution (u,,,, u2,,,) on [0, ao+m]
satisfying the boundary conditions

o.
Ulm(t) Ulm(ao + m), U2m(t) O fort>a0+m

(2.2)

and the second component of this solution admits the estimate

U2m(O) /90.

Hence in view of (1.3) and (1.5) it is obvious that the functions u,,,
and U2m are nonincreasing and

Ulm(t)<_r, u2m(t)_<po for0_<t<ao+m,

[UPim(t)l <f.*(t) for 0 < _< ao + m (i 1,2), (2.3)

where

if(t)--max{If,’(t,x,y)l" O<x<r, 0<y<p0} (i= 1,2).

Consequently, the sequences (Uim +o)m= (i 1,2) are uniformly bound-
ed and equicontinuous on each finite segment contained in R+.
By the Arzela-Ascoli lemma, from these sequences we can choose
subsequences (ui,,.,)j+=7 (i 1,2) converging uniformly on each finite
segment contained in R+. On the other hand,

Uimj(t) Uimj(O) q" fi(S, Ulmj(Til(S)), U2mj(Ti2(S))) ds

for 0 <_ <ao +mj (i 1,2; j 1,2,...).
(2.4)

The values of Ul,,, and u_,, on [a0 + m, +[ are defined by boundary conditions (2.2).
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Put

ui(t) lim Uimj(t) for >_ 0 (i-- 2). (2.5)
j---*+oo

If now in equalities (2.4) we pass to the limit as j--. +, then by virtue
of the Lebesgue dominated convergence theorem we find

u(t) u(O) + f(s, Ul (’i (s)), u(’(s)))ds for _> 0 (i 1,2).

Consequently, (u, u) is a solution of system (1.1) on R+. On the other
hand, if along with (2.2) and (2.5) we take into account the fact that
(umj,Um) (j 1,2,...) are nonnegative, then it becomes clear that
(Ul, U2) satisfies conditions (1.2). m

Let all the conditions of Lemma 2.1 be fulfilled and let,LEMMA 2.2
moreover,

where

’+f(t) dt < + , (2.6)

f(t) max(lf2(t,x,y)l" 0 < x < r, 0 < y < po).

Then problem (1.1), (1.2) has a solution (Ul, u2) such that

lim u.(t) O. (2.7)

Proof Let,{uimim=lh* and (Uim)j+=c (i ,2) be sequences appearing in
the proof of Lemma 2.1 and let (Ul, U2) be a vector function whose
components are given by (2.5). As is shown above, (Ul, u2) is a solution
of problem (1.1), (1.2). On the other hand, according to (2.2) and (2.3)
we have

ao+mj

U2m(t) <_ f(s)ds for 0 < < ao + mj (j 1,2,...),
,It

whence on account of (2.5) and (2.6) we get

u2(t) < f(s)ds for >_ 0.

Consequently, u2 satisfies condition (2.7). m
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2.2. Lemmas on A Priori Estimates

Consider the system of differential inequalities

4(0 -< e(t, u2(0)), (t) _> -[h(t) + (2.8)

with the initial condition

u, (0) _< r, (2.9)

where 6:[0, ao] R+R+ is a continuous in the first and nondecreas-
ing in the second argument function, h:[0, ao] R+ is a summable
function and o :R+ ]0, +[ is a nondecreasing continuous function.

Consider also on the segment [0, ao] the system of differential
inequalities

’, (t) _< #u’ (t’), -z,(t)( + u((t)))’+ _< (t) _< 0,

where aoE]0,1], 0<x_<l, fl>-l, 1>0, A>0, A2_>0, while
h’[0, ao] R+ and 7-’[0, a0] [0, a0] are measurable functions.
A vector function (u,u) with the nonnegative components

ui" [0, ao]--*R+ (i 1,2) is said to be a nonnegative solution of problem
(2.8), (2.9) (of problem (2.10), (2.9)) if the functions u and u2 are
absolutely continuous, the function u satisfies the inequality (2.9),
and the system of differential inequalities (2.8) (2.10) holds almost
everywhere on [0, ao].

LEMMA 2.3 Let

a
lira 6(s, y)ds > r,
y+c

+ dy
w(y)

Then there exists a positive number Po such that the second component of
an arbitrary nonnegative solution (u, u2) of the problem (2.8), (2.9)
admits the estimate

U2(t) <_ PO for 0 <_ <_ ao.
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LEMMA 2.4 Let 7"(t) > for 0 < < ao and

a[r(t)]-((l+#)a2/(aA))h(t)dt < + cxz. (2.11)

Then there exists a positive number po such that the second component of
an arbitrary nonnegative solution (u,u2) of the problem (2.10), (2.9)
admits the estimate

u2(O) < po.

The proofs of Lemmas 2.3 and 2.4 are contained in [14, see Lemmas
2.5 and 2.6].

2.3. A Lemma on Nonnegative Solutions of Linear
Homogeneous Differential Systems with Advanced
Arguments

The following assertion is obvious.

LEIIA 2.5 Let fig" R+ R+ (i,k= 1,2) be locally summable
functions and rik: R+R+ (i,k-- 1,2) be continuous functions satisfy-
ing inequalities (1.4). Let, moreover, the differential system

dvi(t) 2

dt Zik(t)Vk(7"ik(t)) (i 1,2) (2.12)
k=l

have a solution (v, v2) satisfying the condition

vi(t) > 0 for > to (i-- 1,2), (2.13)

where to is a sufficiently large positive number. Then

vi(t) > O for O < < to (i--1,2).

If instead of (2.13) the equalities

vi(t) O for _> to (i: 1,2)

are fulfilled, then

vi(t)---O (i 1,2).
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3. EXISTENCE THEOREMS

THEOREM 3.1 Let conditions (1.3)-(1.5) be fulfilled and let there exist

numbers ai > 0 (i l, 2) and Yo >_ 0 such that

"rl2(t) <_ a2 for 0 <_ <_ al, (3.1)

f(t,x,y)<-6(t,y) forO<t<a, O<x<r, Y>Yo, (3.2)

and

f2(t, x, y) _> [h(t) + [f (t, x, y)l]a(y) for 0 < < a2,

0_<x_<r, Y_>Yo,
(3.3)

where 6 [0, a] x [Yo, + [--R+ is a .function summable in the first
and nondecreasing in the second argument, while h" [0,az]---R+ and
:[Yo, +[]0, +c[ are summable and nondecreasing continuous

functions, respectively. Let, moreover, -i(t)= 7"21(t) (i 1,2),

’0

al

lim 6( t, y)dt > r, (3.4)

and - dy =+cx. (3.5)o(y)

Then problem (1.1), (1.2) has at least one solution.

Proof Conditions (1.4) and (3.1) imply a2 > a. Suppose a2 =ao,

a(y) o(yo) for 0 < y < Yo,

and

6(t,y)--O foral<t<ao, Y>Yo,
(3.6)

6(t,y)--O forO<t<ao, O<y<yo.

Moreover, without loss of generality we assume that the inequality

h(t) > o(yo) max{f2(t’x’Y)l
0 < x < r, O<_y<_yo)
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holds on [0, ao]. Then by virtue of (1.3) and (3.1)-(3.3) we have

712(t) < a0 for 0 < < at,

fl (t, x, y) < 6(t, y) for 0 < < a0, O<_x<_r, y>_O,
(3.7)

f2 (t, x, y) > [h(t) + Ill (t, x, y)I](y)
O<x<r, y>O.

for 0 < <_ ao,

(3.8)

On the other hand, according to (3.4)-(3.6) the functions 6 and w
satisfy the conditions of Lemma 2.3. Below under p0 we will mean the
number appearing in that lemma.
By virtue of Corollary 1.3 from [14] problem (1.1), (1.2a) has a

nonnegative solution (Ul, u2) for an arbitrarily fixed a E ]a0, +o[. By
Lemma 2.1, to complete the proof we have to show that u2 admits
estimate (2.1).

In view of (1.3)-(1.5) the functions ul and u2 are nonincreasing and
satisfy the inequalities

/’/l (t) __< Ul (0) __< r for 0 _< _< a, (3.9)
u2(’22(t)) _< u2(t) for 0 _< _< a.

If along with these conditions we take into account (3.6)-(3.8), then it
will become evident that the restriction of (ul, u2) on [0, a0] is a solution
of (2.8), (2.9). Hence in view of the choice of p0 we get estimate (2.1).

Remark 3.1 Condition (3.4) in Theorem 3.1 is essential and it cannot
be replaced by the condition

lim 6(t, y) dt r. (3.4’)

To convince ourselves that this is so, consider the case, where

-(ry/(l+y)) for0_<t<_l (3 10)fl (t, x, y) 0 for >

f2(t,x,y) -x(1 +y), 7"ik(t) =--t (i,k-- 1,2), (3.11)

and for system (1.1) consider the boundary value problem

ul(O) r, u(t) >O, u2(t) >O fort_>0. (3.12)
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On account of (3.10) and (3.11) inequalities (3.1)-(3.3), where
a=a_=l, yo=0, 6(t,y)=ry/(l+y), h(t)=r, w(y)=l+y, hold.
Consequently, in this case all the conditions of Theorem 3.1, except
(3.4), are fulfilled. Instead of (3.4) we have (3.4’). Let us now show
that nevertheless, problem (1.1), (3.12) has no solution. Assume the
contrary that this problem has a solution (u,u2). Then in view of
(3.10) and (3.11) we get

< r, (3.13)u2(t)
r- ul(l) r

+ U2(t)
dt

u(t) ut(l) fort>_l,

and

U2(1) tt2(t) Ul(l) (1 if- u2(s))ds >_ (t- 1)Ul(l) for t> 1.

The latter inequality results in ul(l)=0. But this contradicts condition

(3.13).

Remark 3.2
the condition

Condition (3.5) in Theorem 3.1 cannot be replaced by

- ye dy
+c (3.5’)(Y)

no matter how small e > 0 would be. To convince ourselves that this is
so, consider the boundary value problem

u (t) -u:(t), u2(t
2 1+/2--u, (t)(1 + u2(t)) (3.14)

ul(0)-- 1, u(t)>_O, u2(t)>_0 fort>_0, (3.15)

which is obtained from (1.1), (1.2) in the case, where

(x,y) =x- l, r= 1, 7ik(t)---- (i,k= l,2),
2 y2 +/2ft(t,x,y) =-y, f2(t,x,y)=-x(1 +

In view of these equalities, inequalities (3.1)--(3.3), where a =a= 1,
6(t, y) y, h(t) 1, (y) (2/e)(l +y) +, are fulfilled. Consequently,
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for problem (3.14), (3.15) all the conditions of Theorem 3.1, except
(3.5), hold. Instead of (3.5) condition (3.5’) is fulfilled. Let us now
show that problem (3.14), (3.15) has no solution. Indeed, should this
problem have a solution (Ul, u2), the functions Ul and u. would satisfy
the conditions

lim ui(t) 0 (i 1,2) and

Thus

2u2(t)d2(t 4
(t)u (t)

[ + u(t)]+/ -,

and

foo+ du(t)
I1 + uZ(t)] ’+/2

u() dy 2

(1 + y)l+e/2 e

But this is impossible, since

u(O) dy foo+ dy 2

(1 + y)I+/2 <
(1 +y) +s/2 -’e

If we replace condition (3.3) in Theorem 3.1 by the condition

f2(t,x,y)>_-h(t)ca(y) for0<t<a2, O<x<r, y>yo, (3.3’)

then the requirement on the fulfillment of the identities rli(t)--r2i(t)
(i 1, 2) would be unnecessary. More precisely, the following theorem
is valid.

THEOREM 3.1’ Let conditions (1.3)-(1.5) befulfilled and let there exist
numbers ai > 0 (i l, 2) and Yo >_ 0 such that along with (3. l) and (3.2)
condition (3.3’) holds, where 6:[0, all [Yo, +cxz[-+R+ is a summable
in the first and nondecreasing in the second argument function satis-

fying inequality (3.4), h:[O, a2]-+R+ is a summable function, while
co D’o, + cxz[---]0, + o[ is a nondecreasing continuousfunction satisfying
condition (3.5). Then problem (1.1), (1.2) has at least one solution.
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The proof of this theorem is omitted, since it is analogous to that of
Theorem 3.1.

According to Remark 3.2, it is impossible, in general, to omit
conditions (3.3) and (3.5) from Theorem 3.1. However it appears that
these conditions can be replaced by a certain restriction imposed on
the function 7"22..More precisely, the following theorem is valid.

THEOREM 3.2 Let there exist numbers ai > 0 (i 1, 2) and yo >_ 0 such
that along with (1.3)-(1.5) conditions (3.1) and (3.2) are fulfilled, where
6:[0, a] 0, +x[R+ is a .function summable in the first, non-

decreasing in the second argument and satisfying inequality (3.4). Let,
moreover,

7"22 t) >_ a2 for > O.

Then problem (1.1), (1.2) has at least one solution.

Proof In view of (3.4) there exists pt E [Y0, +or[ such that

(3.16)

a’

6(t,p)dt > r. (3.17)

Put

z (t) max{If2(t,x,y)l" 0 < x <_ r, 0 < y <_ p },

Po P + f(t)dt.
(3.18)

By virtue of Corollary 1.4 from [14] and conditions (1.3), (1.5), for an
arbitrarily fixed a E ]a2, +[ problem (1.1), (1.2o) has a nonnegative
solution (u, u2), the functions u and u2 do not increase and u satisfies
condition (3.9). By Lemma 2.1, to complete the proof it is sufficient to
show that Zl2 admits estimate (2.1).

First show that

u2(a2)<Pl. (3.19)

Assume the contrary that u2(a2) >_ p. Then in view of (3.1), (3.2) and
(3.9) we get

uz(7"12(t)) >_ u2(a2) >_ pl for 0 <_ <_ a



ON THE KNESER PROBLEM 465

and

al

fo
al

r > ul (0) ul (a) u’ (s)ds > 6(s, u2(12(s))) ds >

fo
a’

> (s, pt)ds,

which contradicts inequality (3.17). So the validity of estimate (3.19) is
proved. Hence according to (3.16) follows

U2(T22(t)) < Pl for _> O.

If along with this we take into account conditions (3.9), (3.19) and
equalities (3.18), then we obtain

a2

u2(0) u2(a2) f2(t, Ul(r21(t)),u2(r22(t)))dt <

fOa2

< + f;(t)ctt po.

COROLLARY 3.1 Let conditions (1.3)- (1.5) and

r22(t) > lira sup r2(s) for > 0 (3.20)
s---*0

be fulfilled. Let, moreover, there ex&t ao E ]0, + cx[ and a nondecreasing
function 6" R+R+ such that

f(t,x,y)<-(y) forO<t<ao, O<x<r, y>_O (3.21)

and

lim 6(y)= +x. (3.22)
y--*-t-o

Then problem (1.1), (1.2) has at least one solution.

Proof By virtue of (3.20) and (3.21) there exist a E]0, a0] and
a2 [a, +[ such that the functions 2,f and -22 satisfy inequalities
(3.1), (3.2) and (3.16), where 6(t,y)=(y) and y0=0. On the other
hand, according to (3.22) the function satisfies condition (3.4).
Therefore all the conditions of Theorem 3.2 are fulfilled, m
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THEOREM 3.3 Let conditions (1.3)-(1.5) be fulfilled and let for some

ao E ]0, 1] the inequalities

"rl2(t)<_tc for O <_ <_ao, (3.23)

and

fl (t, x, y) < lty’ for 0 <_ < ao, 0 <_ x <_ r, y >_ O, (3.24)

f2(t,x,y) >_ h(t)(l + for O<_t<_ao, O<_x<_r, y>O

(3.25)

hold, where 0 < c _< 1,/3 > 1, > 0, A > 0, "2 )-- 0, and h" [0, ao]R+
is a measurable function satisfying the condition

a[’r22(t)]-((l+)Az/(aA’))h(t)dt < + x. (3.26)

Then problem (1.1), (1.2) has at least one sohttion.

Proof Suppose

-(t) min(a0, ’22(t)).

Then in view of (3.26) condition (2.1 l) holds.
Let Po be the positive constant appearing in Lemma 2.4. By virtue of

Corollary 1.5 from [14] and conditions (1.3), (1.5), for an arbitrarily
fixed a E]a,+[ problem (1.1), (l.2a) has a nonnegative solution
(ul, u2), the functions u and u2 do not increase and u satisfies (3.9). If
along with this fact we take into account conditions (3.23)-(3.25),
then it will become evident that the restriction of (u, u2) on [0,a0] is
a nonnegative solution of problem (2.10), (2.9). Hence in view of the
choice of Po we obtain (2.1). By Lemma 2.1, estimate (2.1) guarantees
the solvability of problem (1.1), (1.2), since po does not depend on a.

THEOREM 3.4 If conditions (1.3), (1.4) and (1.6) are fulfilled, then
problem (1.1), (1.2) has at least one solution.

Proof First of all note that (1.5) follows from (1.6).
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According to Theorem 1.2 from [14], for any a > 0 problem (1.1),
(1.2a) has a nonnegative solution (ul, u2). On the other hand, by virtue
of (1.6) it is clear that

u:(0) _< r.

By Lemma 2.1, this estimate guarantees the solvability of (1.1), (1.2).

As is obvious from the proofs of Theorems 3.1 3.4, if there hold the
conditions of one of these theorems, then all the conditions of Lemma
2.1 are fulfilled. If along with this fact we take into consideration
Lemma 2.2, then it becomes evident the validity of the following
theorem.

THEOREr 3.5 Let all the conditions of one of Theorems 3.1- 3.3, 3.1’
(Theorem 3.4) be fulfilled and let, moreover,

f t; p)dt < + cxz for p>O 2

where

f](t; p) max{lf2(t,x,y)l" 0 < x < r, 0 < y < p}.

Then problem (1.1), (1.2) has at least one solution (Ul, U2) satisfying
condition (2.7).

Remark 3.3 If the conditions of Theorem 3.5 are fulfilled, then
problem (1.1), (1.2) may have also a solution which doesn’t satisfy
(2.7). Indeed, for the problem

u(t) -exp(-t)u2(t), u2(t) 0,

u(0)-- 1, u(t)_>0, u2(t)_>0 fort>_O

all the conditions of Theorem 3.5 hold, but neverthelessfor any c E [0, 1]
this problem has a solution (ul, u2) with the components

u(t)=l-c+cexp(-t), u2(t)=c.



468 I. KIGURADZE AND N. PARTSVANIA

4. BEHAVIOUR OF SOLUTIONS OF PROBLEM
(1.1), (1.2) AS t+

THEOREM 4.1
inequalities

Let conditions (1.3) and (1.5) be .fulfilled and let the

f,.(t,x,y) < -6i(t,x,y) (i= 1,2) (4.1)

hold on the set R+[0, r]R+, where 6i: R+ [O, r] R +--+R +
(i 1,2) are locally summable in the first and nondecreasing in the last
two arguments functions satisfying

Z 6i(t,x,y)dt.=+o forO<x<r, y>_O, x+y>O.
i=1

(4.2)

Then every solution (u, u2) ofproblem (1.1), (1.2) satisfies the condition

lira ui(t) 0 (i 1,2). (4.3)

Proof In view of (1.3) and (1.5) the functions ut and U2 do not
increase and

O<ul(t)<_r fort_>0. (4.4)

Suppose

lim ui(t) r/i (i 1,2).

Then on account of (4.1) and (4.4) we find

-uri(t) >_ 6i(t, r/i, 2) for > 0 (i 1,2)

and

i 6i(t, rll, 2)dt < u (0) + u2(O) < + ,
which, by virtue of (4.2), results in r/I =r/2 =0. Consequently, equali-
ties (4.3) hold. B
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Remark 4.1 From the proof of Theorem 4.1 it is clear that if instead
of (4.2) the condition

2

f0+Z i(t, O,y)dt q-cx3

i=1

for y>0

( fo+ 6i(t,x, O)dt +c
i=1

for 0 < x < r)
is fulfilled, then an arbitrary solution (ul, u2) of problem (1.1), (1.2)
would be satisfy the condition

lim u2(t)=0 (tm+cUl(t):0)
instead of (4.3).

THEOREM 4.2
inequalities

Let conditions (1.3) and (1.5) be fulfilled and let the

f(t,x,y) < 61(t,y), f2(t,x,y) <_ 62(t,x) (4.5)

hoM on R+[O,r]R+, where 61: R+ R+R+ and 2 R+ x
[O,r]R+are locally summable in the first and nondecreasing in the
second argument. Let, moreover, either

+
i(t, x)dt q-cx for 0 < x <_ r (i 1,2) (4.6)

or there ex&t k { 1,2} such that

o
6k t, x)dt < +

3- t, f(s, x)ds dt +oo for 0 < x r.
r3-kk(t)

(4.7)

Then an arbitrary solution (ul, u2) of problem (1.1), (1.2) satisfies
condition (4.3).

Proof If (4.6) holds, then the validity of (4.3) follows from Theorem
4.1.
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Consider the case where condition (4.7) is fulfilled for some
k E 1,2}. Then

+x)

63-k t, x)dt for 0 < x <_ r. (4.8)

On the other hand, due to (1.3) and (1.5) the functions ut and 12 do not
increase and ul satisfies (4.4). By virtue of (4.4) and (4.5) we have

and

i(t, U3-i(7"i3-i(t))) Uti(t) for > 0 (i 1,2) (4.9)

.0+ ’i(S, bl3_i(7"i3_i(S)))ds ui(O) < % x3

(4.8) and (4.10) imply

(i 1,2). (4.10)

lim u;(t) =0.

Therefore to complete the proof, it remains to show that

lim u3_k(t) 0. (4.11)

Assume the contrary that (4.11) is violated. Then there exists r0 E ]0, r[
such that

U3-k(t)>_O for t_>O.

On account of this inequality from (4.9) and (4.10) we find

and

uk(t) >_ 6k(s, rlo)ds for t>0

3- t, Sk(s, lo)ds dt < + ,
kk(t)

which contradicts (4.7). The contradiction obtained proves the validity
of the theorem, m
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5. UNIQUENESS THEOREMS

TrEOREM 5.1 Let along with (1.3)-(1.5) the condition

qo(x,y)<qo(2,y) for O < x < Yc < r, O < y < (5.1)

be fulfilled and let the functions f,. (i 1,2) with respect to the last two

arguments have partial derivatives satisfying the local Carathbodory
conditions. Let, moreover, there exist locally summable functions lik:
R+ R+ (i, k 1,2) and 1o: R + --. R+ such that

o

+
12k(t)dt < + (k 1,2), (5.2)

f+ fl
+

112 (t) 12 (s)ds dt < +
2(t) (5.3)

111 (t) l12(S)
2(s)

12 ()d + l (s) ds dt < +

mes{lo(t) > O ER+} > 0, (5.4)

and the inequalities

-lil(t) <
Ofi(t,x,y) < 0, -lo.(t) <

Ofi(t,x,y) < 0 (i-- 1,2), (5.5)Ox Oy

Oft(t,x,y) < lo(t) (5.6)Oy

arefulfilled on R+ [0, r] R+. Then problem (1.1), (1.2), (2.7) has one
and only one solution.

Proof By virtue of (1.3), (5.4)-(5.6) the inequalities

f(t,x,y) < lo(t)y,
[f2(t,x,y)l < 12(t)r + 122(t)y < (12(t)r + 122(t))(1 +y)

(5.7)

hold on R+ [0, r] R+, and there exists a > 0 such that

al

lo(t)dt > O.
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Consequently, all the conditions of Theorem 3.1 , i.e., conditions (3.1),
(3.2), (3.3’), (3.4) and (3.5) are fulfilled, where a2=max{7lz(t)"
O<t<al}, 6(t,y)=lo(t)y and w(y)=l+y. On the other hand,
according to (5.2)

f (t; p)dt < [rl21 (t) + p122(t)]dt < + oo for p > O,

where

f*(t;p) max{[fz(t,x,y)[ 0 < x < r, O < y < p}.

Hence by Theorem 3.5 follows the solvability of problem (1.1), (1.2),
(2.7). To complete the proof, it remains to show that this problem has
no more than one solution.

First of all note that in view of (5.2) and (5.3) the inequalities

+
(.8)122 dt < -It(t) h2(s) 121()dc + lil(s) ds dt+

(s)

71+o f+oo+ /12(t) /21(s)ds dt < (5.9)
(t) 4

are fulfilled for some t* > O.
Let (u,/22) and (ill, .2) be arbitrary solutions of problem (1.1), (1.2),

(2.7). Put

vi(t) i(r) ui(t) (i 1,2).

Then the vector function (vt, v2) is a solution of system (2.12) satisfying
the conditions

and

(u, (0)+ v, (0), u2(0) + 2(0)) o(u(0), u(0))

lim r2 (t) O, (5.11)



ON THE KNESER PROBLEM 473

where

il(t)= lii
[fi(t’tl(’cil (t) )’u2(’ri2(t) )-fi(t’ul (’ril(t))’u2(’ri2(t)))]/vl (’rn (t)) forvl (’ril t))O
t) for vl ’il t) =O’

(’ril (t)),2(’ri2(t)))-fi(t,l (7il (t)),u2(’ri2(t)))]/v2(’ri2(t)) for v2(’ri2(t))0)i2(t) li2(t) forv2(’ri2(t)):O"

On the other hand, by virtue of (5.5),

0 <_ lik(t) <_ lik(t) for >_ 0 (i,k 1,2) (5.12)

and the functions i’R+ --. R+(i,k 1,2) are locally summable.
Due to (5.11), from (2.12) we have

v2(t) [21(S)’1 (T21 (S)) %- )22(S)V2(T22(S))]ds. (5.13)

If we now suppose

v*(t) sup([vz(s)[ s > t},

then on account of (5.2), (5.8) and (5.12), from (5.13) we get

cxz

v*(t) <_ [-t2(s)lv(.(s))l + )2(s)lv_(2.())l]ds <_

< (s)lv(21())d + v*(t) 2()d

v* t*] (s)lv (l (s))lds + (t) for

2 /21 (s) (rl (s))ds for t*, (5.14)

and

v_(t) >_ -t: (s)vt (:t (s))d-

2 12z(s)ds 21 (s)lv (-2 (s))[ds >_

f
-I-cx

> 12 (s)[vl (’r:z (s)) Ivl (’2 (s))llds for >_ t*.
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There are two possibilities" either

vl(l) 0 for > t* (5.16)

or there exists to E [t*, +[ such that

v(0) =0. (5.7)

Let inequality (5.16) hold. Then without loss of generality it can be
assumed that

vl(t)>O for t>_t*.

Thus from (5.15) we have

v2(t)>_O for t>_t*.

By Lemma 2.5 and condition (5.1), the last two inequalities result in

v, (o) > 0, v2(0) >_ 0

and

(u,(O) + v(0),u:(0) + v2(0)) > (u,(O),u2(O)),

which contradicts (5.10). The contradiction obtained proves that
equality (5.17) holds for some toE[t*, +c[.
From (2.12) and (5.17) we have

ft
Tll(t)

v’ (t) --l(t)v(t) l(t)

--ll(t)v(t) + q(t)

V’ (s)ds -l2( t)v2 (’_ t)

and

/ot(fs )v,(t)= exp ll()d q(slds,

where

rll (t)
q(t) 11 (t) [11 (s)l"l (TII (s)) + 12(s)v2(’rl2(S))]ds-

12(t)V2(7-12(t)).
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Suppose

v0 sup(lv (t)l _> to}.

Then by virtue of (5.12) and (5.14) we find

Iq(t)] < 2Vo6 (t) /11 (s) + 112(s) /21 ()d ds +
dt 2(s)

+ 2vo/.(t) l (s)ds for >_ to.

If along with this inequality we take into account (5.9) and the fact
that the function 1 is nonnegative, then from (5.18) we obtain

+
vo(t) < Iq(t)[dt <_ - vo.

Hence it is clear that Vo--0 and, consequently, v(t)= 0 for >_ to. Thus
(5.14) implies v2(t)=0 for _> to. If we now apply Lemma 2.5, then
it will become evident that vi(t)=O (i= 1,2), i.e., ui(t) fti(t) (i- 1,2).

The example in Remark 3.3 shows that if all the conditions of
Theorem 5.1 are fulfilled, then problem (1.1), (1.2) may have an
infinite set of solutions which do not satisfy condition (2.7). To
guarantee the uniqueness of a solution of problem (1.1), (1.2) it is
sufficient to replace condition (5.4) by the condition

+
lo(t)dt +. (5.19)

More precisely, the following theorem is valid.

THEOREM 5.2 Let conditions (1.3)- (1.5) and (5.1) be fulfilled and let
the functions ft (i= 1,2) with respect to the last two arguments have
partial derivatives satisfying the local Carathbodory conditions and
inequalities (5.5) and (5.6) on R+ x [0, r] x R+, where li:R+R+
(i, k 1,2) and lo R+R+ are locally summable functions satisfying
conditions (5.2), (5.3) and (5.19). Then problem (1.1), (1.2) has one and
only one solution.
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Proof As is shown when proving Theorem 5.1, the function f
satisfies (5.7). However, by virtue of Remark 4.1 from the fulfilment
of (5.7) and (5.19) follows that an arbitrary solution (u, u2) of prob-
lem (1.1), (1.2) satisfies condition (2.7). Consequently, in this case
problems (1.1), (1.2) and (1.1), (1.2), (2.7) are equivalent. On the
other hand, the fulfilment of the conditions of Theorem 5.2 guarantees
the fulfilment of the conditions of Theorem 5.1, and thus problem
(1.1), (1.2), (2.7) has one and only one solution. Therefore problem
(1.1), (1.2) is uniquely solvable. B
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