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§ 1. Formulation of the Main Resuls.

1.1. Statement of the problem and the main notation. Consider
the functional differential equation

(1.1) 2®(t) = (¢ — ) (b~ 1) £ () (2)
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406 1. KIGURADZE, B. PUZA

with the boundary conditions
(1.2) hi(z) =0 (i=1,...,n),

where f is the operator (h; (i = 1,...,n) are the operators) acting from
some subspace of the space of (n— 1)-times continuously differentiable vector
functions z :]a,b{— R™ into the space of integrable vector functions y :
[a,b] — R™ (into the space R™).

Problem (1.1), (1.2) is singular in the sense that for an arbitrary x the
right-hand side of equation (1.1) may have nonintegrable singularities at the
points a and b.

A survey of the literature on regular and singular boundary value prob-
lems of the type (1.1),(1.2) can be found respectively in [1] and [6]. In [6],
a sufficient condition for singular problem (1.1), (1.2) to have the Fredholm
property is found in the linear case, while in the nonlinear case the so-called
principle of a priori boundedness is proved (see Theorem 1.0 given below).

In this paper, based on the above-mentioned principle, Conti—Opial type
theorems are proved which are analogs of the Fredholm theorem for the non-
linear singular problem (1.1}, (1.2). Using the same theorems, effective suffi-
cient conditions for problem (1.1}, (1.2) to be solvalble and uniquely solvable
are derived when the boundary conditions (1.2) have the form

lmal () =¢y (i=1,...,n),
(13) S
il_r}%:v () =¢y (i=1,...,09),

where ¢, € R™ (i =1,...,n%), e € {1,...,n~ 1} (k =1,2) and
n + Mg = N.

Throughout the paper the following notations are used.

Rm] - OO,-E—OO[, Ry = [O,—I—-OO[.

R™ is the space of m-dimensional column vectors z = (x;)2, with the
components z; € R (¢ = 1,...,m) and the norm

ki3

2l =3 el

==l
Rt ={z=(z): m;e€ R (i=1,...,m)}.
R™*™ is the space of m Xm matrices X = (x4 )]}, With the components
Zx € R (i,k=1,...,m) and the norm

1Xl= 3 loal.

yhm=l
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fr= (&;"3);”3_“1 ER™and X = (mik);':?}cml = Rme’ then
7| = (l=:)iz; and [X| = (|zin]) k-

RTxm = {X = (xik)gzkml D X € Ry (’i, k=1,... ,m)}

r(X) is the spectral radius of the matrix X € R™*™,

Inequalities between matrices and vectors are understood component-
wise, i.e., for z = (2)21, ¥ = ()%, X = (@ak)They a0d ¥ = (yu) Ty we
have

Ly <y (i=1...,m)
and
X<Y e>py <y (Lk=1,...,m).

Cas'(Ja,b[; R™) is the Banach space of (n — 1)-times continuously dif-
ferentiable vector functions z :]a, [ — R™ having limits *

j — g2 pli—1) i — $)Bi i1} -
(1.4) %iﬂ(t aY*z\ (1), ltgrg(b () (P=1,...,n),

where
(1.5) aima+z—n—f—la+z—ni’ ﬁizﬁ-i-z—n—f-]ﬁ—’rz—n[
2 2
(i=1,...,n).

The norm of an arbitrary element z of this space is defined by the equality

k23
el y = sup { D= b= ] a <t < b}.

6’2;31 (la,b[; R™) is the space of z € Cl5'(Ja,b]; R™) for which z(*~}
is locally absolutely continuous on |a,b[, i.e., absolutely continuous on {a +
g, b — ¢} for arbitrarily small positive €.

L(la, b]; R™) and L(le, b); R™*™) are respectively the Banach spaces of
integrable vector functions y : [a,b] — RA™ and integrable matrix functions
Y :{a,b] - R™™ with the norms

ol = [ Tv@lds, 171, = [ 1Y@l

* A vector function is said to be continuously differentiable, integrable, nondecreasing,
etc., if its components are such.
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L(la,b]; RT) = {y € L(la,b; R™) : y(t) € R} fort € [a,}]}.

L([a, b]; R7*™) = {Y € L([a,b]; R™*™) : Y (t) € RP*™ for t € [a, b]}.

Each z € C35' (la, b[; R™) is supposed to be defined on [a, b] so that 2(a)
((z(b)) is the right (left) limit of this vector function at the point o (at the
point b).

In the sequel it will always be assumed that m and n are any natural
numbers, —oo < a < b < 400,

(1.6) a€f0,n-1], geio,n-1],
whereas f %3 (la,b[; R™) — L([a,b]; B™) and h; : Ci5*(la, b[; R™) — R™
(¢ =1,...,n) are continuous operators.

By a soiution' of the functional differential equation (1.1) is un-
derstood a vector function z € 6’35‘(]@,6[;1%”") satisfying (1.1) almost ev-
erywhere on la,d[. A solution of (1.1} satisfying (1.2) is called a solution
of problem (1.1),(1.2).

1.2, A priori boundedness principle. Following [6], we introduce

DeriNITION 1.1, The pair (p, (&)%) of continuous operators
p: Crat(la, b[; Rm) x C2g(la,0; BR™) — L{[a,b; BR™) and (£)7,

vs (la, b[ R™) x C33' (]a b[ Rm) — R™ i3 said to be consistent if:

() the operators p(z,-) : Cig'(la,b[; R™) — L([a,b]; R™) and &(z,-) :

Ci5' (la,b; B™) — R™ are lmear for any fized z € Chg'(la,b[; R™) and

ie{l,...,n};

(ii) for any z and y € CZ45'(Ja,b[; R™) and for almost all t € [a,b] we
have inequalities

o, 9)(E) < 8t l2ll oo ol s S llea )l < ol

i=1

¥l
where 8 : Ry —» Ry is nondecreasing, 6(-,p) € L{{a,b]; R,.) for every p €
R, and 6(t,') : Ry — R, is nondecreasing for almost all t €a,b|;

(iii) there ezist a positive number v such that for any z € C25' (Ja, b; R™),
g € L{[a,b]; R™) and ¢; € R™ (i = 1,...,n), an arbitrary solution y of the
boundary value problem

y " (t) = (£~ a) (b — ) P (p(z, y) (1) + 4(2)),

(L.7) Llz,y)=¢ (i=1,...,n)

admits the estimate

n

(18) el oy < 7(22 Nl + lal)-

i=1
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In the paper [6] the following theorem is proved.
THEOREM 1.0. Let the conditions

19 sw{lf@ON: llelyy <p} < L(ab; Ry),

(110)  sup{llR@)O)]: lially <p}<+oo (i=1,...,m)

hold for every p € R,. Moreover, let there exist o positive number py and
a consistent pair (p, (6;)i) of continuous operators p : Cg;‘gl(]a, bl ; R™) x
Coit(e,bl; R™)  —  L(le,b; R™) and (&), : Cuz'(le,b;R™) x

Cai'(la,b[; R™) — R™ such that for any X €]0,1] an arbitrary solution
of the problem

(1.11) ™) = (t~a)™(0 ~ )P ((1 - Nale, 2)() + Af(2) (D),

admits the estimate

(1.13) lelgys < g0

Then problem (1.1), (1.2) is solvable.

1.3. Conti—Opial type theorems. Along with problem (1.1), (1.2) we
will have to consider the vector differential inequality

(1.14) |t — a)*(0 — O)°y™ () — po(®) ()] < 20 (¥)(2),
with the boundary conditions
(1.15) [Cos ()] < hoi(y) (E=1,...,n),

where py : Coj'(la,b; R™) — L([a,d]; R™) and 4y : Chp'(la,b[; B™) —
L(la,b]; R™) (i = 1,...,n) are linear operators; ¢o : Ch 5 (Ja,b[; R™) —
L({e,b]; RT') and hy; : Cg;c}l(]a, b(; R™) — RT are positively homogeneous
operators. A solution of problem (1.14),(1.15) will also be sought in the
class C77 (Ja, b; B™).

To formulate the main results of this paper we need

DEFINITION 1.2. An operator go : Cyy'(Ja, b[; ™) — L{[a, b; R™) (an
operator hg 02,51 la,b[; R™) — R™) is called positively homogeneous if the
equality

%o (Az)(t) = Ago(2) () (ho(Az) = Aho(z) )
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is fulfilled for all x € C;‘,g‘ la,b[; B™), A € Ry and almost all t €a, b].

DEFINITION 1.3. A positively homogeneous operator p : C,’;‘,};l (la, b]; B™)
— L{[a,b]; R™) (a positively homogeneous operator £ : Cr'(Ja,b[; R™) —
R™) is called strongly bounded (bounded) if there ewists a function ( €
L([a, b; Ry) (a positive number (y) such that the inequality

P@@ < CEllelly (N@I < Glal,)

holds for all z € C4'(la,b]; R™) and almost all t €]a, b].

DEFINITION 1.4. Let p : C3g'(la,8[; R™) x Ch5'(Ja,b[; R™) —
Lo g(la, b[; R™) be continuous operators. We say that the pair (po, (£o;)i=;) of
operators po : C25'(Ja, b ; R™)— Lo p(Ja, b ; B™), (foi)iy : Cag (o, b[; B™) —
R™ belongs to the set £, _, if there exists o sequence xy € C ' (Ja, b[; R™)
(k=1,2,...) such that the equalities

. [ t
lim [ plar,v)(s)ds = [ pow)(s) ds,
kligloofé(fﬂk,y) =Li(y) (i=1,...,n)

hold for every y € Ca5'(la,b[; R™) and ¢ € [a,b].

DEFINITION 1.5. Let o : Cpg'(la,b[; B™) — L([a,b}; YY) and ho; :
C:,};l la,b[; R™) = RT (i = 1,...,n) be any positively homogeneous opera-
tors. We say that the pair (p, (&)%) of continuous operators p
Crsta b B™) x Cigla b R™) = Lila iR, (),
Co ' (Ja, b ; B™) Cg,};i(]a, b[; R™) — R™ belong to the Opial class
Onptbaon i

(i) the operators p(z,-) : Cag (la,b; R™) — L([a,b); B™) and &(z,-) :

ns(la,b;R™) — R™ (i = 1,...,n) are linear for any fized x €
2:&1 (la, b ; B™);
(ii) there ezist ¢ € L(la,b]; R}) and {o € Ry such that the inequalities

lipz, ») @l < C(t)ilyllcz.ﬁu (2, m)ll < Coliyllcw (i=1,...,n)

hold for any x and y € Ci3'(Ja,b]; R™) and for almost all t € [a,b];

(iit) for every (po, (Loi)iy) € Epp....s, problem (1.14),(1.15) has only a
trivial solution.

THEOREM 1.1. Let there exist a positively homogeneous, continuous,
strongly bounded operator gy : CZ,}}I la,b[; R™) — L([a,b); RT), positively
homogeneous, continuous, bounded operators hg; : g;,l(]a, b[; R™) — R}
(i =1,...,n), and o pair of operators

(1.16) (, (4)2ey) € Ot

qo3ho1,-hom
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such that for any z € Cl5'(Ja,b[; R™) and almost allt € [a, ] the inequalities

(1.17)  [f(z)(®) — p(z, 2} < qo(z)(t) + alt, ||~’I?||C:;91 );
(1'18) lhﬂ(x) - gi(a:ax)! < hoi(z) + h(“x”(,:?) (i=1,... ?n)

hold, where q : {a,b] x Ry — RT is an integrable in the first argument and
nondecreasing in the second argument vector function, and h: B, — R is
a nondecreasing vector function. Letf, moreover,

(1.19) lim (”h T f|| ,puds)

p-r+0o

Then problem (1.1), (1.2) is solvable.

In the case n = 1 and o = § = 0, from this theorem follows Theorem 1.1
in [5] which itself is a generalization of the Conti theorem (j2], Theorem 2)
and the Opial theorem ([7], Theorem 1).

COROLLARY 1.1. Let there exist a strongly bounded linear operator py :
1(]a, b;R™) -~ L{la,b; Rm), bounded linear operators fy
79 Ya,b[; R™) — R™ (i = 1,...,n), positively homogeneous continuous,
strongly bounded operator qo C (] ,00; R™) — L(la, b]; RT) and positively
homogeneous, continuous, bounded operators hgy; : 3}?(}&,1‘)[;1‘2’“) — R7
(i =1,...,n) such that for any x € C25'(Ja,b[; R™) and almost all t € [a,b]
the inequalities

|f(@)(t) ~ po(z)(B)] < qo(2)(2) + a2, ||-'Eilcn_ ),
|hi(z) — Loil@)| < hoilz) + h(||$”c:;31)

hold, where ¢ : [a,b] x Ry — RT is an integrable in the first argument and
nondecreasing in the second argument vector function, and h: By — R is a
nondecreasing vector function. If, moreover, problem (1.14}), (1.15) has only
e trivial solution and condition (1.19} is fulfilled, then problem (1.1} (1.2) ¢s
solvable.

THEOREM 1.2. Let there exist a positively homogeneous, continuous,
strongly bounded operator go : Chg'(Ja,b[; R™) — L([a bl; RTY), positively
homogeneous, continuous, bounded operators ho; : Oz (] b; R™) — RT
(i=1,...,n), and a pair of operators

(1.20) (0, (£)y) € 0200

qo yh'Ol }-"}hem
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such that for any z, T € C';""’},l la,b]; B™) and for almost all t € [a,b] the
inequalities

(1.21)  |f(@)®) ~ F@)() - plz,F, 2 — ) (B)] < gl — F)(D),
(1.22) Ih,,(iE) - hz(?f) - E@(.‘E,T,.’L‘ - fC_)[ < hgz(iﬁ — ) (i=1,... ,ln)

hold. Then problem (1.1),(1.2) is uniquely solvable.

COROLLARY 1.2. Let there exist a strongly bounded linear operator py :

w5 (e, b; R™) —  L(la,b); R™), bounded linear operators lo;

C&El(]a, b; R™) — R™ (i = 1,...,n), positively homogeneous continuous,
strongly bounded operator qq : C23' (la, b; R™) — L{{a, b}; RT) and positively
homogeneous, continuous, bounded operators ho; : Chz (la,b[; R™) — RT
(i = 1,...,n) such that for any z, T € Chy'(la,b[; R™) and for almost all
t € [a,b] the inequalities

|f(2)(t) = F(Z)(£) — po(z — T)(¢)| < qo(® ~ F)(2),
[ha(:ﬂ) — hz(f) s Eoz(.’B - Tf)l < hgz(ﬂi —_ ".'17") (Z e 1, vy n)

hold. If, moreover, problem (1.14), (1.15) has only a trivial solution, then
problem (1.1), (1.2) is uniquely solvable.

1.4. Theorems on the solvability and unique solvability of prob-
lem (1.1), (1.3). In this subsection, besides of the above-introduced, we
will use also the following notation:

no = min{ns, ng},  taglt) = (= )1 (b - )P,

For an arbitrary linear operator p : C([a,b}; R™) — L(]a,b]; R™), by
P(tia,sFm) it will be understood a matrix function satisfying the equality

(1.23) (g ac)(t) = plugsFm)(t)c for t € [a,b], c€ R™.

DEFINITION 1.6. A linear operator p : C(la, b]; R™) — L([a,b]; R™) is
called positive if

p(®) € L((a, b BT) for @ € C(la,B]; R}).

THEOREM 1.3. Let o € [ny — 1,n3], B € [n1 — 1,n1] and let there exist
a positive linear operator p : C([a,b); R™) — L([a, bl; R™) such that for any
z € Co5'(la,b[; R™) and for almost all t € [a,b] the inequality

@)@ < (o) + gt 1zl i)
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holds, where q : [a,b] X By — R is an integrable in the first argument and
nondecreasing in the second argument vector function such that

.1 b
lim, [ llats, o)l ds = 0.

p—r400

If, moreover,

(1.24) T(pr(ua,gEm)(s) ds) < ng(ny — D(ng — Db — a)"?,

then problem (1.1), (1.3) is solvable.

THEOREM 1.4. Let a € [ng — 1,ng], B € [ny — 1,ny) and let there exist
a positive linear operator p : C([a,b]; R™) — L([a,b}; R™) such that for any
z,y € Chg (la,b[; R™) and for almost all t € [a,b] the inequality

[F (@)@ - F@ @) < pllz - y))(2)

holds. If, moreover, condition (1.24) is fulfilled, then problem (1.1), (1.3) is
uniguely solvable.

As an example, we consider the differential equation with a deviating
argument

(1.25) u™(#) = (¢t — a)"%(b — £) 77 folt, u(r(1))),

where fp : [a,b] x R™ — R™ is a vector function from the Carathéodory
class, and 7 : [, b] — [a,b] is a measurable function.
Theorems 1.4 and 1.5 imply, respectively, the following statements.
COROLLARY 1.3. Let a € [na—1,n9], B € [n; —1,11] and let there exist
a matriz and a vector functions P € L(le,b]; RT*™) and q € L([a, b]; RT)
such that the inequality

|fo(t, 2)| < P(t)lal + a(t)

holds in [a,b] x R™. If, moreover,

b
(1.26) r([[(s) = P2~ ()" PP(s) ds ) <
< ng(m - 1)'(?’1,2 - 1)!(13 - G)nml,
then problem (1.25), (1.3} is solvable.
COROLLARY 1.4. Let o € [ny — 1,me), 8 € [n1 — 1,n4] and let there

exist o matriz function P € L{[a,b]; RT*™) such that for any z, y € R™ and
t €la, b, the inequality

|fo(t,2) = folt, )| < P(@)|z -y
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holds. If, moreover, condition {1.26) is fulfilled, then problem (1.25), (1.3} ¢s
uniquely solvable.

§ 2. Auxiliary Propositions.

2.1. Lemma on sequences of elements from the set £ , .

LeMMA 2.1. Let conditions (i) and (ii) of Definition 1.5 be fulfilled and
let

(21) (Pk: (Ekz')?zl) (S 82?:&,"-: - (k = 1, 2, ‘e .).

Then there exist (po, (bo)iei) € Epi,.p, 00d @ subsequence Dk, (Lrki)ey)
(k = 1,2,...) of the sequence (py, (€rs)ie1) (B = 1,2,...) such that for any
y € Ci5'(la, bf; R™), we have

22 tim [ ow)E) - p@)©) d =0 wniformly on [a,1],
(2.3) k}iffmgkké(y) =Ly(y) (i=1,...,n)

Proof. By virtue of condition (ii) of Definition 1.5 and condition (2.1},
there exist ¢ € L({a, b]; R;) and (o € R;. such that for any y € C35' (la, b]; R™)
the inequalities

(24) Ikl < COlllgpy (B =1,2,..),
(2.5) 2@ < Gllyl oy (=100 0m5 k=120
=1 o

are fulfilled.
Let

&) = oy [ - O RO & (k=12,..)

In view of conditions (2.4) and (2.5), # : Co5 (la, b; R™) — C" ([, b]; R™)
and £y; : Cog'(Je,b[; R™) — R™ (i = 1,...,n) are linear bounded operators
for every natural k.

Let {y1,42, ...} be a set, everywhere dense in C33'(Ja, b[; R™). Accord-
ing to the Arzelli-Ascoli lemma and conditions (2.4) and (2.5), from the
sequence ({zx, (bki)%1))72 we can choose a subsequence ({zix, (£ixi)Ty))isy
such that the sequences (z1:(¥1))533 and (£ (y1))3S (6= 1,...,n) would be
converging by the norms of the spaces C"({a, b]; B™) and R™, respectively.
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Similarly, from the sequence ((z1g, (£1r:)%1 )5S we can choose a subsequence
((z2k, (£ors)?;))A2S such that the sequences (z%(yg) Fo0 and (foki(y2) )i
(¢ =1,...,n) would be converging. If we continue this process endlessly, then
we get the system of sequences ((2x, (€iki)20))i3 (5 = 1,2,...) such that
for any natural j; and jo > j1, (218, (Ljzks)o1))72] is a subsequence of the
sequence (2, (£j,ki)ie1))3S3, and sequences (2;,r(y5,)) 423 and (€5,5:(Y5,))4S3
(¢ =1,...,n) are converging. Consider the sequence ((zkk, (G2 )i, Tt
is obwous that for every natural j sequences (zu(y;))iS3 and (fers(y;))iSS
(¢ =1,...,n) are converging. Thus, by virtue of the Banach-Steinhaus theo-
rem ([4] Chapter VII, § 1, Theorem 3), there exist linear bounded operators

: On (] b[; R™) — C" Y([a,b]; R™) and &y : C25'(Ja, b[; R™) — R™

(z = 1, ) such that for every y € Cg;,l la, b[; R™) equalities (2.3} and
(2.6) Jm [z (y) — 20 (y)liopr = 0

are satisfied. On the basis of the last equality and condition (2.4), we find

AW =0, 1400 - £PWEN = | [ mw)i©d <

< iyl [g g)de for a<s<t<b

c“"
and
— [ - t
A @ =0, 1 @)O A < lollyy [ 66
for a<s<t<bh.

Hence it is clear that z(“ 1)(y) : [a,b] — R™ is absolutely continuous and

27) A0 = [ olw)(s) ds,

where po(y) () = = )(y)( t) and

Io()(®l < ¢yl for almost al ¢ € [a, ],

(2.6) and (2.7) result in (2.2). On the other hand, due to conditions (2.1)-

(2.3) and Definition 1.4, it is evident that (po, (fo,)i1) € £58 4. O

2.2. Lemma on an a prmri estimate.
LEMMA 2.2. Let go : G35 (la, b[; R™) — L([a, b}; RT) be a positively ho-
mogeneous, continuous, stmngly bounded operator, ho; ij,}l(]a, bj; B™) —
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R? (i = 1,...,n) be positively homogeneous, continuous, bounded opera-
tors, and (p, (!? Ye,) be a pair of operators satisfying condition (1.16). Then
there ezists a positive number p* such that no matter how are (po, (boi);) €
&ty @ € L{la,b]; RY) and hy € R, an arbitrary solution z of the
problem

(2.8) (£ — a)*(6 — £)°z™ () — po(z) ()] < 90 (2)(t) + 0 (),
(29) _ Ifgz(x)i < hﬁz(ﬂi) + hy (Z =1,.. .,n)

admits the estimate

(2.10) Hzll oy < A1l + llnll.)-

Proof. We assume the contrary that the lemma is not true. Then for
any natural &, there exist

Ay (Bri)is) € E, o 0r Gik € L(la, B RT), hyp € RY

and a solution x of the problem

211) |t — a)*(b — /5 (8) — (@) ()] < qo(ak)(®) + qua(?),

(2.12) Iek.z(mk)l < hgz‘(l‘k) + hix (2 =1,..., n)
such that
(2.13) 1|$kﬂcn? > k(|| hakl| + llguell.)-

In view of condition (ii) of Definition 1.5, condition (2.1) and the strongly
boundedness of the operator gg, there exist { € L([a, b]; R,) and {; € R, such
that for any y € C5'(la, b[; B™), along with (2.4) and (2.5), the inequality

(2.14) e << (t)ilyllcg.;

is fulfilled.
By Lemma 2.1, without loss of generality we can assume that for any
Y E C’g'”_@l (Ja, bl; R™) the equalities

(2.15) hm f or(y)(€) dE f Po(y) (&) d¢ uniformly on [a, b],
(2.16) kmlﬁlcoﬂm(y) Loily) (z--l,...,n)
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are satisfied, where

(2.17) (Po; (bo:)ie1) € Eppy,... -
Suppose
yk(t) = ”%“;g?%(t)a
T (0) = laell 0y que(®), ok = ol P
Then
(2.18) ”y’““c;;; =1 (k=12,...).

On the other hand, in view of inequalities (2.4) and (2.11)~(2.14), we have

(219)  |(t~ a)*(b— )5 (1) — Pelye) O] < o (ye) (2) + T (2),

(2.20) ks ()| < hos(y) + B (G=1,...,7),
(221) Il < £

(222) sl < 1.

and

@2) POl < - 00— 1700 + lasdl).

By Lemma 2.1 from [6] and conditions (1.6}, (2.18), (2.21) and (2.23),
without loss of generality the sequence (3:){2] can be assumed to be con-
verging by the norm of the space G’Ej (Ja, bf; R™) to some vector function

y € Cog' (Jo, bl; B™).
(2.18)-(2.20) imply

(2:24) Iolly =1
o) — 1 0s) - [[(€ - )0 - P mulw) () de] <
< [[€- )0 - 9@ + Ity — ) O)] + G(6)) de

for a<s<t<h,
(2.26) [ri{w)l < Roilyr) + ey — ve)] + hak (i=1,...,n).

(2.25)
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On the other hand, due to (2.15), it is evident that

lim f t(g —a)" (b — &) Ppi(y)(€) dE = [ t(& —a)" (b — &) Ppoly)(£) d¢

k— 400
for a<s<t<hb

If together with this condition we take into account conditions (2.4) and
(2.21) and pass to the limit in inequality (2.25) as k — +o0, then we get

Y I(E) =y (s) - fs (€ - a) (b - &) Ppoly)(€) de] <

< [(e- -9 u)(E) d for a<s<t<b

Hence it immediately follows that y is a solution of the differential inequality
(L19).

If now we pass to the limit in inequalities (2.26) as £ — oo, then in
view of conditions (2.5) and (2.22) we get inequality (1.15). Therefore y is a
solution of problem (1.14), (1.15). Thus y(t) = 0, since by conditions (1.16)
and (2.17) the above-mentioned problem has only a trivial solution. But this
contradicts (2.23). The contradiction obtained proves the lemma. O

2.3. Lemma on the estimate of the Green function of two-point
boundary value problem. We consider the boundary value problem

(2.27) . u™ () = 0,
(2.28) w Na)=0 (i=1,...,m), «¥ VB =0 (i=1,...,ny),
where n > 2, ny € {1,...,n — 1} and ny = n — ny. Suppose

ng = min{ny, ny}, Ues(t) = (t —a)* " 1%(b — t)*"1P,

LEMMA 2.3. Leta € [ng — 1,7,] and B € [ny — 1,n1]. Then the Green
function g of problem (2.27), (2.28) admits the estimate

(2.29) 0<(=1)"glt,5) <
< (b —a)l™
= np{ny — 1)!(ny

gy U g(t)(s — a)2(b— s)? for a < s,t <b.

Proof. By V. V. Ostroumov [8] (see also Lemma 9.6 in the monograph
[3] by U. Elias) is shown that

(2.30) 0< (~1)g(t,5) <

b—a 1-n _— et rnt -
= no(nl(—— 1)!)(n2 ~ 1)! (t—a) (b—1) (s —a) (b — sy go(t, ),
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where
go(t, 8) = min{(t — a)(b - s), (s —a)(b — 1)}
Let on =a—mng-+1, By = —ny+ 1. Then for s < ¢ we have
go(t, ) = (5 = a)(b— &) < (t— @)\ (b— )" (s — @)™ (b — ).
If t < s, then
golt,8) = (E—a)(b—s) < (t—a)" (b — )P (s — 0)® (b~ ).
Thus estimate (2.30) results in estimate (2.29). O
§ 3. Proof of the Main Results.

Proof of Theorem 1.1. First we note that conditions (1.16)~(1.18) yield
conditions (1.9) and (1.10). On the other hand, by Lemma 2.2 there exists
a positive number +y such that for any « € CL5 (Ja,b; R™), ¢ € L([a,b; R™)
and ¢; € R™ (i = 1,...,n), an arbitrary solution y of the boundary value
problem (1.7) admits estimate (1.8). Therefore the pair (p, (;)%.,) is consis-
tent.

By virtue of Theorem 1.0, it is sufficient to show the existence of a pos-
itive number py such that for any A €10, 1] an arbitrary solution of problem
(1.11), (1.12) would admit estimate (1.13).

Let p* be the number appearing in Lemma 2.2. Due to condition (1.19),
there exists pg > 0 such that

b
(3.1) p"’(llh(p)li +fa lla(s, o)1 dS) <p for p> p.
Let z be a solution of problem (1.11}, (1.12) for some A €]0, 1]. Set

(3.2) po = llz| ..
@B

p

and (1.18), we have

z, z)(t)] = Al f(2)(t) ~ plz, 2)(t)| <
< go(z)(t) + q(t, pz)

Then, in view of conditions (1.17
)—p

|(t — a)*(b — )Pz (¢

_——

and

1i(, 2)} = Mhi(z) — £i(2, )| < hoi(z) + hips) G=1,...,n).
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Therefore, « is a solution of problem (2.8), (2.9), where
po(¥)(t) = p@,9)(t): oily) = bi(z,y) forany y € CG5'(la, b[; B™),
q (t) == Q(ta pz:): hy = h(Pm):

and, moreover, (po, (fo;)}y) € &5, 4. By Lemma 2.2, = admits estimate
(2.10), ie.,

pe < (IGe)1 + [ e, po)l ).

Hence, by virtue of condition (3.1) and notation (3.2), we get (1.13). O
Proof of Theorem 1.2. Suppose

ﬁ(m’ y)(t) = p(mi O}y)(t)i ?Z'("‘U‘-‘ y) = Eﬁ(mT .07 y) (%' = 1) M ‘172')? ‘l
g(t) = |f(0)(#)|, h=max{|h:(0)],...,[Ra(0)[}.

Then conditions (1.20)-(1.22) yield the conditions
(ﬁ: (zé)?zl) € Om,a,ﬁ

gosho1,..sfion?

£ (2)(t) = Bz, 2) ()} < qo(=)(F) + ¢(?)

and
lhi(z) — Li(z,2)} < hgi(z) +h (i=1,...,n).

These conditions, by Theorem 1.1, guarantee the solvability of problem (1.1},
(1.2). It remains to show that this problem has at most one solution.
Let = and % be arbitrary solutions of problem (1.1), (1.2). Suppose

oy ==(8) - (),
pﬂ(y)(t) - p(m,&:‘, 'y)(t): EOi(y) = eﬂ:(‘(‘c‘)?ﬁ? y) (Z = 17 v ,?’L)-

Then, due to conditions (1.21), (1.22), the vector function y is a solution of
problem (1.14),(1.15). On the other hand, by (1.20) this problem has only
a trivial solution. Thus y(¢) = 0, and consequently, z(t) = Z(¢). O

Corollary 1.1 (Corollary 1.2) follows from Theorem 1.1 {Theorem 1.2)
in the case where p(z,y}t) = po(¥)(t), Lilz,y) = Culy) (@ = 1,...,n)
(p(x, 2, y)(t) = po(¥) (D), &i(2, T, 9) = Lui(y) (= 1,...,m)).

Proof of Theorems 1.3 and 1.4. In view of conditions a € [ns — 1,n5),
B € [ny — 1,n4] and equalities (1.5), the existence of limits (1.4) implies the
existence of the limits

boi(2) E im0 () (i=1,...,m), eow(a;)‘iéfmx@—*)(t) (i=1,...,n).



CONTI-OPIAL TYPE EXISTENCE AND UNIQUENESS THEOREMS 421

Moreover, it is evident that £o; : Ch'(la,b[; R™) — R™ (i = 1,...,n) are
linear bounded operators.
By Theorems 1.1 and 1.2, to prove Theorems 1.3 and 1.4 it is sufficient to

show that if po(y)(t) = 0, wo(y)(t) = p(ly])() and hei(y) = 0 (6 = 1,...,m),
then problem (1.14), (1.15) has only a trivial solution. However, in the case
under consideration this problem has the form

(3.3) (¢ - a)*(0 = )y ()] < p(lu) (@),
(3.4) lmy* D) =0(i=1,...,m), myﬁﬂ(t) =0(i=1,...,n9).

Let y € 5‘2:[31 (ja, b[; R™) be a solution of problem (3.3), (3.4). Then

(3.5) v0 = [ o6,y ds,

where g is the Green function of problem (2.27), (2.28), admitting, by Lem-
ma 2.3, estimate (2.29).
According to inequalities (2.29) and (3.3), from (3.5) we find

—a 1-n
(3.6) (ua,ﬁ(t))_lly(t” < no(nl(li‘ 1)!)(n2 - /jpﬂy{)(s) ds for a <t <b.

Let y(t) = (45())7.s. Suppose
3 = 500 {Jgs () fuag(®): 6 <E<B} (G=1,..,m), p= (o)l
Then
[y(t)] < uap(t)p for a <t <b.

If together with this estimate we take into account the positiveness of the
operator p and identity (1.23), then we get

p(ly1)(5) < p(ttap p)(8) < p(ta,pFn)(s)p for almost all s € [a, b].
On account of this inequality, from (3.6) we obtain
(uays() Hy(E)] < Ap for a <t < b,

where

(b—a)t™"
ng(ny — 1)(ng ~ 1)!

A= f ’ p(tta s E)(s) ds.
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Hence, in view of the definition of p, it is obvious that

L (3.7) - (B~ A)p < 0.
On the other, due to (1.24) we have
r{4) < 1.

According to this inequality and the nonnegativeness of the matrix A, the
matrix (B, —A)~! is nonnegative. If now we multiply both sides of inequality
(3.7) by (Em — A)™*, then we obtain p <0, 1. e, p=0and y(t) = 0. O

Proof of Corollaries 1.3 and 1.4. Equation (1.25) is obtained from equa-
tion (1.1) in the case, where

FH2)(@) = folt, z(r(2))).
Suppose

p(z)(t) = P(t) z(r(2))-
Then

P(ta,pEm)(t) = Uap(7(8))P(2) = (r(t) — )" 717(b ~ 7(1))" "' ~PP(t).

Thus inequality (1.26) implies inequality {(1.24). If now we apply Theorem 1.3
(Theorem 1.4), then the validity of Corollary 1.3 (Corollary 1.4} becomes
evident. O
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