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,(n)(t) = (t- a)-"(b- w/3 f(x)(t), hi(x) = 0 (i = 1, ... 'n). 

Here a and fJ E [O,n -1], f is the operator (hi (i = 1, ... ,n) are the operators) acting 
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§ 1. Formulation of the Main Results. 

1.1. Statement of the problem and the main notation. Consider 
the functional differential equation 

(1.1) x(n)(t) = (t- at"(b- W 13 f(x)(t) 
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with the boundary conditions 

(1.2) h;(x) = 0 (i = 1, ... , n), 

where f is the operator (h; (i = 1, ... , n) are the operators) acting from 
some subspace of the space of ( n -1 )-times continuously differentiable vector 
functions x : ]a, b[-+ R!" into the space of integrable vector functions y : 
[a, b] -+ R!" (into the space Rm). 

Problem {1.1), (1.2) is singular in the sense that for an arbitrary x the 
right-hand side of equation (1.1) may have nonintegrable singularities at the 
points a and b. 

A survey of the literature on regular and singular boundary value prob
lems of the type (1.1), (1.2) can be found respectively in [1] and [6]. In [6], 
a sufficient condition for singular problem {1.1), (1.2) to have the Fredholm 
property is found in the linear case, while in the nonlinear case the so-called 
principle of a priori boundedness is proved (see Theorem 1.0 given below). 

In this paper, based on the above-mentioned principle, Conti-Opial type 
theorems are proved which are analogs of the Fredholm theorem for the non
linear singular problem (1.1), (1.2). Using the same theorems, effective suffi
cient conditions for problem {1.1), (1.2) to be solvalble and uniquely solvable 
are derived when the boundary conditions (1.2) have the form 

ll·rr;,x<i-IJ(t) = c1,· (" -1 n) ~w •-, ... ,!, 
~~x(i-Il(t) = ou (i = 1, ... , n2), 

(1.3) 

where Cki E Rm (i = 1, ... ,nk), nk E {1, ... ,n-1} (k = 1,2) and 

n1 +~ = n. 

Throughout the paper the following notations are used. 
R =] - oo, +oo[, R+ = [0, +oo[. 
Rm is the space of m-dimensional column vectors x = (x;)f=1 with the 

components x; E R ( i = 1, ... , m) and the norm 
m 

JJxll = L Jx;J. 
i=l 

R'j' = {x = (x;)f:1 : X; E R+ (i = 1, ... ,m)}. 
Jl!"Xm is the space of m x m matrices X = (x;k)f.'k=I with the components 

X;k E R (i,k = 1, ... ,m) and the norm 
m 

IIXJJ = L Jx;kl· 
i,k=l 
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R~xm ={X= (x;k)?,'k=l : Xik E R+ (i, k = 1, ... , m)}. 
r(X) is the spectral radius of the matrix X E wxm. 
Inequalities between matrices and vectors are understood component

wise, i.e., for x = (x;)z;1 , y = (y;)::;1, X= (x;k)?.'k=l andY= (Y;k)?,'k=l we 
have 

x ::; y <==} x; ::; Y; (i = 1, ... , m) 

and 

X::; Y <==} x;k::; Yik (i,k = l, ... ,m). 

C~,pl(]a, b[; W) is the Banach space of (n- 1)-times continuously dif
ferentiable vector functions x :]a, b[--+ Rm having limits • 

(1.4) lim(t- a)"'x(i-ll(t), lim(b- t)i1'x(i-ll(t) (i = 1, ... , n), 
t-+a t-+b 

where 

(1.5) a+ i - n + Ia + i - nl 
a;= 2 , 

{J.-.B+i-n+ 
• - 2 

(i=1, ... ,n). 

The norm of an arbitrary element x of this space is defined by the equality 

c~,pl(]a,b[;Rm) is the space of X E C~:pl(]a,b[;Rm) for which xCn-l) 
is locally absolutely continuous on ]a, b[, i.e., absolutely continuous on [a + 
c:, b- c:J for arbitrarily small positive c:. 

L([a, b]; Rm) and L([a, b]; Rmxm) are respectively the Banach spaces of 
integrable vector functions y : [a, b] --+ Rm and integrable matrix functions 
Y : [a, b] --+ Rmxm with the norms 

llviiL = t llv(t)ll dt, IIYIIL = t IIY(t)ll dt. 

' A vector function is said to be continuously differentiable, integrable, nondecreasing, 
etc., if its components are such. 
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L([a, b]; Jq-) = {y E L([a, b]; Rm) : y(t) E R:(: fortE [a, b]}. 
L([a, b]; R:(:xm) = {Y E L([a, b]; Rmxm) : Y(t) E R:(:xm fortE (a, b]}. 
Each X E c~;,i/(]a, b[; Rm) is supposed to be defined on [a, b] so that x(a) 

((x(b)) is the right (left) limit of this vector function at the point a (at the 
point b). 

In the sequel it will always be assumed that m and n are any natural 
numbers, -oo < a < b < +oo, 

(1.6) a E (O,n -1], f3 E (O,n -1], 

whereas f: C~,i(]a, b[; R"') -t L([a, b]; Rm) and h; : c~;j/(]a, b[; R"') -t Rm 
( i = 1, ... , n) are continuous operators. 

By a solution of the functional differential equation (1.1) is un
derstood a vector function x E C~,i(]a, b[; Rm) satisfying (1.1) almost ev
erywhere on ]a, b[. A solution of (1.1) satisfying (1.2) is called a solution 
of problem (1.1), (1.2). 

1.2. A priori boundedness principle. Following [6], we introduce 
DEFINITION 1.1. The pair (p, (£;)f=1) of continuous operators 

p : C~.i(]a,b[;R"') x C~,i(]a,b[;Rm) -t L([a,b];Rm) and (£;)f=1 : 

cn-l(]a b[. Rm) X cn-l(]a b[. Rm) -t Rmn is said to be consistent i1· a,/3 , ' a,{3 ' ' 'J· 
(i) the operators p(x, ·) : C~,i(]a, b[; R"') -t L([a, b]; Rm) and £;(x, ·) : 

c~:J/(]a, b[; Rm) -t Rm are linear for any fixed X E c~.//(]a, b[; Rm) and 
iE{1, ... ,n}; · 

(ii) for any x and y E C~,i(]a, b[; Rm) and for almost all t E [a, b] we 
have inequalities 

n 

liP( X, Y) (t) II ::; 6( t, llxll
0
n-,) IIYII

0
n-ll L ll£;(x, Y) II ::; 6o(llxll0n-1) IIYII

0
n-1' 

o:,/3 o:,{3 i=l o:,P o:,f3 

where 60 : R+ -t R+ is nondecreasing, 6(·, p) E L([a, b]; R+) for every p E 
R+, and 6 ( t, ·) : R+ -t R+ is nondecreasing for almost all t E ]a, b[; 

(iii) there exist a positive number 'Y such that for any x E C~.i(Ja, b[; Rm), 
q E L([a, b]; Rm) and e; E R"' (i = 1, ... , n), an arbitrary solution y of the 
boundary value problem 

y(n)(t) = (t- a)-"(b- t)-f3(p(x, y)(t) + q(t)), 
(1.7) 

£;(x,y) = e; (i = 1, .. . ,n) 

admits the estimate 
n 

(1.8) IIYII
0

n-1 ::; 'Y(L IJc;JJ + JJqiiL). 
a,P i=l 
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In the paper [6] the following theorem is proved. 
THEOREM 1.0. Let the conditions 

(1.9) 

(1.10) 

sup {llf(x)(-)11: 

sup { llhi(x)(·)ll : 

llxll0-1 ~ p} ~ L([a, b]; R+), 
o,~ 

llxlln-1 ~ P} < +oo (i = 1, ... , n) 
Ca,/3 

hold for every p E R+· Moreover, let there exist a positive number p0 and 
a consistent pair (p, (Ci)f=1) of continuous operators p : C~J/(]a, b[; Rm) x 
C~J/(]a, b[; Rm) -+ L([a, b]; Rm) and (£i)r=1 : C~ji1 (]a, b[; Rm) x 
C~,~1 (]a, b[; Rm) -+ Rmn such that for any .X E ]0, 1[ an arbitrary solution 
of the problem 

(1.11) x(n)(t) = (t- a)-"(b- ttfi((1- .X)p(x,x)(t) + Af(x)(t)), 

(1.12) Ci(x, x) = A(eii(x, x) - hi(x)) (i = 1, ... , n) 

admits the estimate 

(1.13) 

Then problem (1.1), (1.2) is solvable. 

1.3. Conti-Opial type theorems. Along with problem (1.1), (1.2) we 
will have to consider the vector differential inequality 

(1.14) l(t- a)"(b- t)liy(n)(t)- Po(Y)(t)l ~ Qo(Y)(t), 

with the boundary conditions 

(1.15) ICoi(Y)I ~ hoi(Y) (i = 1, ... , n), 

where p0 C~.~1 (]a,b[;Rm) -+ L([a,b];Rm) and foi : C~,i(Ja,b[;~) -+ 
L([a,b];Rm) (i = 1, ... ,n) are linear operators; q0 : C~.~1 (Ja,b[;Rm) -+ 
L([a, b]; R'f') and hoi : C~,i(Ja, b[; Rm) -+ R'f' are positively homogeneous 
operators. A solution of problem (1.14), (1.15) will also be sought in the 
class C~J/(]a, b[; Rm). 

To formulate the main results of this paper we need 
DEFINITION 1.2. An operator Qo : C~;;/(Ja, b[; Rm) -+ L([a, b); Rm) (an 

operator ho : C~J/(]a, b[; ~) -+ ~) is called positively homogeneous if the 
equality 

Qo(.Xx)(t) = .Xqo(x)(t) ( ho(.Xx) = .Xho(x)) 
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is fulfilled for all x E C~,pi(]a, b[; .R"'), A E R+ and almost all t E ]a, b[. 
DEFINITION 1.3. A positively homogeneous operatorp: 0~,"{/(]a, b[; Rm) 

--+ L([a,b];Rm) (a positively homogeneous operator e: C~;;J1 (]a,b[;Rm) --+ 
R"') is called strongly bounded (bounded) if there exists a function ( E 

L([a, b]; R+) (a positive number (0) such that the inequality 

llp(x)(t)ll :::; ((t)llxll
0

n-1 ( ll£(x)ll :::; (ollxll
0

n-1) 
c,P a,~ 

holds for all x E C~,pi(]a, b[; Rm) and almost all t E ]a, b[. 
DEFINITION 1.4. Let p : C~i(]a, b[; Rm0 ) X C~i(Ja, b[; Rm) --+ 

La,!l(]a, b[; Rm) be continuous operators. We say that the pair (po, (£oi)f=1) of 
operatorspo: C~i(]a,b[;R"')--+La,!l(]a,b[;R"'), (£oi)f=1 : C~,pi(]a,b[;Rm)--+ 
Rmn belongs to the set e;:J, ... ,£. if there exists a sequence Xk E C~i (]a, b[ j Rmo) 
(k = 1, 2, ... ) such that the equalities 

lim ft p(xk, y)(s) ds = ft Po(y)(s) ds, 
k--'too Ja Ja 

lim {!i(Xk, y) = fo;(y) (i = 1, ... , n) 
k-++oo 

hold for every y E ~:;3 1 (]a, b[ ; Rm) and t E [a, b]. 
DEFINITION 1.5. Let qo : 0~,"{/(]a, b[; Rm) --+ L([a, b]; R+) and ho; : 

C~,pi(]a, b[; Rm) --+ R+ (i = 1, ... , n) be any positively homogeneous opera
tors. We say that the pair (p, (£i)f=1) of continuous operators p : 
C~.~1 (]a, b[; Rm0 ) x C~~1 (]a, b[; Rm) --+ L([a, b]; Rm), (£;)f=1 

c~:;;1 (]a, b[ j Rm0 ) X c~;;;i(]a, b[ j Rm) --+ R"' belong to the Opial class 
omo;a,iJ z'f· 

Qo;hol , ... ,hom ' 
(i) the operators p(x,·): C~;;J1 (]a,b[;Rm)--+ L([a,b];Rm) and ei(x,·): 

C~:;J1 (]a, b[ j Rm) --+ Rm (i = 1, ... 'n) are linear for any fixed X E 

C~:;J1 (]a, b[; Rmo); 
(ii) there exist ( E L([a, b]; R+) and (0 E R+ such that the inequalities 

llp(x,y)(t)ll:::; ((t)IIYII
0
n-" ll£i(x,y)ll:::; (oiiYII

0
.-1 (i = 1, ... ,n) 

a~ a~ 

hold for any x andy E C~i(]a, b[; Rm) and for almost all t E [a, b]; 
(iii) for every (Po, (£oi)f=1) E e;!2, ... ,£. problem (1.14), (1.15) has only a 

trivial solution. 
THEOREM 1.1. Let there exist a positively homogeneous, continuous, 

strongly bounded operator q0 : C~i(]a, b[; R"') --+ L([a, b]; R+), positively 
homogeneous, continuous, bounded operators hoi : c~.i(]a, b[ j R"') --+ R+ 
(i = 1, ... , n), and a pair of operators 

(1.16) ( (e)n ) E om;a,/l p, z ~=1 Qo;hol , ... ,hom 
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such that for any x E c~;;/(]a, b[; R:") and almost all t E [a, b] the inequalities 

(1.17) lf(x)(t)- p(x,x)(t)l:::; qo(x)(t) + q(t, llxll
0
._1), 
a,P 

(1.18) lh;(x)- £;(x, x)l:::; ho;(x) + h(llxll
0
._1 ) (i = 1, ... , n) 
a,P 

hold, where q : [a, b] x R+ -+ R+ is an integrable in the first argument and 
nondecreasing in the second argument vector function, and h : R+ -+ R+ is 
a nondecreasing vector Junction. Let, moreover, 

(1.19) lim (llh(p)ll + 1 {bllq(s,p)llds) =0. 
p-->+oo p p Ja 

Then problem (1.1), (1.2) is solvable. 

In the case n = 1 and a= j3 = 0, from this theorem follows Theorem 1.1 
in [5] which itself is a generalization of the Conti theorem ([2], Theorem 2) 
and the Opial theorem ([7], Theorem 1). 

COROLLARY 1.1. Let there exist a strongly bounded linear operator p0 : 

C~,"~/(]a, b[; Rm) -+ L([a, bj; Rm), bounded linear operators £0; : 

C~,i(]a, b[; Rm) -+ Rm (i = 1, ... , n), positively homogeneous continuous, 
strongly bounded operator q0 : C~,i(Ja, b[; Rm)-+ L([a, b]; R+) and positively 
homogeneous, continuous, bounded operators ho; : C~;t/(Ja, b[; R:") -+ R+ 
(i = 1, ... , n) such that for any x E C~.Ji1 (]a, b[; Rm) and almost all t E [a, b] 
the inequalities 

lf(x)(t)- Po(x)(t)l:::; qo(x)(t) + q(t, llxll
0
._,), 
a,p 

lh;(x)- £o;(x)l:::; ho;(x) + h(llxllcn-1) 
a,P 

hold, where q : [a, b] x R+ -+ R+ is an integrable in the first argument and 
nondecreasing in the second argument vector function, and h : R+ -+ R+ is a 
nondecreasing vector function. If, moreover, problem (1.14), (1.15) has only 
a trivial solution and condition (1.19) is fulfilled, then problem (1.1) (1.2) is 
solvable. 

THEOREM 1.2. Let there exist a positively homogeneous, continuous, 
strongly bounded operator q0 : C~,i(Ja, b[; Rm) -+ L([a, bj; R+), positively 
homogeneous, continuous, bounded operators h0; : C~i (]a, b[ ; Rm) -+ R+ 
(i = 1, ... , n), and a pair of operators 

(1.20) 
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such that for any x, x E c;;pi(]a, b[; Rm) and for almost all t E [a, b] the 
inequalities 

(1.21) 1/(x)(t)- f(x)(t)- p(x, x,x- x)(t)i:::; qo(x- x)(t), 

(1.22) lh;(x) - h;(x) - f;(x, x, x- x)l :::; ho;(x- x) (i = 1, ... , n) 

hold. Then problem (1.1), (1.2) is uniquely solvable. 
COROLLARY 1.2. Let there exist a strongly bounded linear operator p0 : 

c;,f/(]a, b[; Rm) -t L([a, b]; Rm), bounded linear operators £0; : 

c;;;/ (]a, b[ ; W) -t Rm ( i = 1, ... , n), positively homogeneous continuous, 
strongly bounded operator q0 : c;,i(]a, b[; Rm) -t L([a, b]; R'j') and positively 
homogeneous, continuous, bounded operators ho; : c;;pi(]a, b[; Rm) -t R'j' 
(i = 1, ... , n) such that for any x, x E c;,f/(]a, b[; Rm) and for almost all 
t E [a, b] the inequalities 

lf(x)(t)- f(x)(t)- Po(x- x)(t)i:::; qo(x- x)(t), 

lh;(x)- h;(x)- fo;(x- x)l:::; ho;(x- x) (i = 1, ... , n) 

hold. If, moreover, problem (1.14), (1.15) has only a trivial solution, then 
problem (1.1), (1.2) is uniquely solvable. 

1.4. Theorems on the solvability and unique solvability of prob
lem (1.1), (1.3). In this subsection, besides of the above-introduced, we 
will use also the following notation: 

no= min{n1, n2}, Ua,!l(t) = (t- a)n-1-a(b- t)n-1-il. 

For an arbitrary linear operator p : C([a, b]; Rm) -t L([a, b]; Rm), by 
p( ua,f3Em) it will be understood a matrix function satisfying the equality 

(1.23) p(ua,!lc)(t) = p(ua,/lEm)(t)c for t E [a, b], c E Rm. 

DEFINITION 1.6. A linear operator p : C([a, b]; Rm) -t L([a, b]; Rm) is 
called positive if 

p(x) E L([a, b]; R'j') for x E C([a, b]; R'j'). 

THEOREM 1.3. Let a E [n2 - 1, n2], fJ E [n1 - 1, nt] and let there exist 
a positive linear operator p : C([a, b]; W) -t L([a, b]; W) such that for any 
X E c;,f/(]a, b[; Rm) and for almost all t E [a, b] the inequality 

lf(x)(t)l :::; P(lxl)(t) + q(t, llxll 0n-l) 
Q,p 
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holds, where q : [a, b] x R+ -+ R'f is an integrable in the first argument and 
nondecreasing in the second argument vector function such that 

11b lim - llq(s, p)ll ds = 0. 
p->+oo p a 

Ij, moreover, 

(1.24) r( l p(ua,/lEm)(s) ds) < n0 (n1 - 1)!(n2 - 1)!(b- at-1, 

then problem (1.1), (1.3) is solvable. 
THEOREM 1.4. Let a E [n2 - 1, n2], (3 E [n1 - 1, n1] and let there exist 

a positive linear operator p : C([a, b]; Rm) -+ L([a, b]; ~) such that for any 
x, y E C~i(]a,b[;Rm) and for almost alit E [a,b] the inequality 

lf(x)(t)- f(y)(t)l :::; p(lx- Yi)(t) 

holds. If, moreover, condition (1.24) is fulfilled, then problem (1.1), (1.3) is 
uniquely solvable. 

As an example, we consider the differential equation with a deviating 
argument 

(1.25) u(n)(t) = (t- a)-"'(b- ft!l fo(t, u(T(t))), 

where fo : [a, b] x Rm -+ Rm is a vector function from the Caratheodory 
class, and T : [a, b] -+ [a, b] is a measurable function. 

Theorems 1.4 and 1.5 imply, respectively, the following statements. 
COROLLARY 1.3. Let a E [n2 -1, n2], (3 E [n1 -1, n1] and let there exist 

a matrix and a vector functions P E L([a, b]; R'fxm) and q E L([a, b]; R'f) 
such that the inequality 

lfo(t,x)l:::; P(t)lxl + q(t) 

holds in [a, b] x Rm. If, moreover, 

(1.26) r ( l (T(s) - a)n-1-"'(b- T(s))n-!-flp(s) ds) < 

< no(n1 - 1)!(n2- 1)!(b- a)n-1, 

then problem (1.25), (1.3) is solvable. 
COROLLARY 1.4. Let a E [n2 - 1, n2], (3 E [n1 - 1, nl] and let there 

exist a matrix function P E L([a, b]; R'fxm) such that for any x, y E Rm and 
t E ]a, b[, the inequality 

lfo(t,x)- fo(t,y)l:::; P(t)lx Yl 
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holds. If, moreover, condition (1.26) is fulfilled, then problem (1.25), (1.3) is 
uniquely solvable. 

§ 2. Auxiliary Propositions. 

2.1. Lemma on sequences of elements from the set e;;2, ... ,e.· 
LEMMA 2.1. Let conditions (i) and (ii) of Definition 1.5 be fulfilled and 

let 

(2.1) 

Then there exist (po, (£oi)r=1) E e;;2,, ... ,e. and a subsequence (pkk, (£kki)f=l) 
(k = 1, 2, ... ) of the sequence (pk, (£ki)f=1) (k = 1, 2, ... ) such that for any 
y E C~,f/(]a,b[;R"'), we have . 

(2.2) 

(2.3) 

lim ft (pkk(Y)(c;)- Po(Y)(c;)) de;= 0 uniformly on [a, b], 
k-)o+oo la 

lim £kki(Y) = foi(Y) (i = 1, ... , n). 
k-)o+oo 

Proof By virtue of condition (ii) of Definition 1.5 and condition (2.1), 
there exist ( E L([a, b]; R+) and ( 0 E R+ such that for any yEC~,/j1 (]a, b[; Rm) 
the inequalities 

(2.4) IIPk(Y)(t)ll::::; ((t)IIYII ... , (k = 1, 2, ... ), 
-·--· oa,(j 

n 

L ll£ki(Y)II ::0 (oiiYII
0 
... , (i = 1, ... , n; k = 1, 2, ... ) 

i=l a,{J 

(2.5) 

are fulfilled. 
Let 

In view of conditions (2.4) and (2.5), Zk: C~,i(]a, b[ j Rm) --+ cn-l([a, b]; Rm) 
and £ki : C~,i(]a, b[; Rm) --+ Rm (i = 1, ... , n) are linear bounded operators 
for every natural k. 

Let {y11 y2, .. • } be a set, everywhere dense in c~;pi(]a, b[; Rm). Accord
ing to the Arzella-Ascoli lemma and conditions (2.4) and (2.5), from the 
sequence ((zk, (£ki)f=1))t~ we can choose a subsequence ((z1k, (£1ki)f=1))t~ 
such that the sequences (zlk(yl))t~ and (£1ki(yl))t~ (i = 1, ... , n) would be 
converging by the norms of the spaces cn-1([a, b]; Rm) and R"', respectively. 
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Similarly, from the sequence ((zlk, (f!lk;)i= 1 ))I~ we can choose a subsequence 
((z2k, (e2ki)i=1))t~ such that the sequences (z2k(Y2))I~ and (1!2ki(Y2))I~ 
( i = 1, ... , n) would be converging. If we continue this process endlessly, then 
we get the system of sequences ((zjk, (l!jki)i= 1 ))I~ (j = 1, 2, ... ) such that 
for any natural j1 and h ;:::: j1, ((zhk, (ehki)i=1))I~ is a subsequence of the 
sequence ((zilk• (eilki)~1 ))t~, and sequences (zhk(Yh))I~ and (f!hki(Yh))I~ 
(i = 1, ... , n) are converging. Consider the sequence ((zkk, (ekki)i=1 ))I~· It 
is obvious that for every natural j sequences (zkk(Yj))I~ and (f!kki(Yi))I~ 
( i = 1, ... , n) are converging. Thus, by virtue of the Banach-Steinhaus theo
rem ([4], Chapter VII, § 1, Theorem 3), there exist linear bounded operators 
z0 : C~;j/(]a, b[; Rm) --+ cn-1([a, b]; Rm) and €0; : C~;p1 (]a, b[; Rm) --+ ~ 
(i = 1, ... , n) such that for every y E C~;p1 (Ja, b[; Rm) equalities (2.3) and 

(2.6) lim 1/zkk(Y)- zo(Y)IIo•-1 = 0 
k-t+oo a,/3 

are satisfied. On the basis of the last equality and condition (2.4), we find 

Zk~-l)(y)(a) = 0, 1/zi~-l)(y)(t)- zr~-l)(y)(s)ll =Ill Pkk(y)(~) d~ll::; 
::> IIYI/

0
n-1 t ((~) d~ for a < s < t < b 
a,(J 8 

and 

Zbn-l)(a) = 0, llzbn-l)(y)(t)- z~n-l)(y)(s)il::; IIYIIan-1 rt ((~) d~ 
0 ,{3 is 

for a ::; s < t ::; b. 

Hence it is clear that zbn-l)(y): [a, b]--+ Rm is absolutely continuous and 

(2.7) Zbn-l)(y)(t) = l Po(y)(s) ds, 

where Po(Y)(t) = Zbn)(y)(t) and 

IIPo(y)(t)ll ::> ((t)IIYII
0
._1 for almost all t E [a,b]. 
a,~ 

(2.6) and (2.7) result in (2.2). On the other hand, due to conditions (2.1)
(2.3) and Definition 1.4, it is evident that (Po, (f!o,)i=1) E c;t,, ... ,£.· D 

2.2. Lemma on an a priori estimate. 
LEMMA 2.2. Let q0 : C~;pi(]a, b[; ~) --+ L([a, b]; R';:) be a positively ho

mogeneous, continuous, strongly bounded operator, ho; : C~,pi(]a, b[; Rm) --+ 
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R:f ( i = 1, ... , n) be positively homogeneous, continuous, bounded opera
tors, and (p, (£;)f=1) be a pair of operators satisfying condition (1.16). Then 
there exists a positive number p* such that no. matter how are (po, (£o;)f=1) E 

e~e, ... ,en' ql E L([a, b]; R:f) and h1 E R+, an arbitrary solution x of the 
problem 

(2.8) l(t- a)"'(b- t)11x<nl(t)- Po(x)(t)i ::0 qo(x)(t) + q1(t), 
(2.9) l£o;(x)l :::; ho;(x) + h1 (i = 1, ... , n) 

admits the estimate 

(2.10) 

Proof We assume the contrary that the lemma is not true. Then for 
any natural k, there exist 

qlk E L([a,b];R+), h1k E R+ 

and a solution Xk of the problem 

(2.11) l(t- a)"'(b- t) 11x~n)(t)- Pk(xk)(t)i ::0 qo(xk)(t) + qlk(t), 

(2.12) lfk;(xk)l ::0 ho;(xk) + h1k (i = 1, ... , n) 

such that 

(2.13) 

In view of condition (ii) of Definition 1.5, condition (2.1) and the strongly 
boundedness of the operator q0 , there exist ( E L([a, b]; R+) and (o E R+ such 
that for any y E C~,";/(]a, b[; R"'), along with (2.4) and (2.5), the inequality 

(2.14) 

is fulfilled. 
By Lemma 2.1, without loss of generality we can assume that for any 

y E C~,j/(]a, b[; Rm) the equalities 

(2.15) 

(2.16) 

lim {t Pk(y)(~) ~ = {t Po(Y)(~) d~ uniformly on [a, b], 
k-++oo la Ja 

lim fk;(y) = fo;(y) (i = 1, ... , n) 
k-t+oo 
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are satisfied, where 

(2.17) 

Suppose 

Yk(t) = lixk/1~~- 1 Xk(t), 
a,P 

Qlk(t) = llxkll~~- 1 qlk(t), h1k = llxkll~~- 1 h1k· 
01,(3 a,/3 

Then 

(2.18) 11Ykll
0

n-1 = 1 (k = 1, 2, • • .). 
a,p 

On the other hand, in view of inequalities (2.4) and (2.11)-(2.14), we have 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

and 

i(t- a)"(b- t)13Ykn)(t)- Pk(Yk)(t)i ~ qo(Yk)(t) + Qlk(t), 

l£k;(Yk)l ~ ho;(Yk)+h!k (i= 1, ... ,n), 

llii1kiiL < ~ > 

- 1 
llhlkll < k' 

By Lemma 2.1 from [6] and conditions (1.6), (2.18), (2.21) and (2.23), 
without loss of generality the sequence (Yk)t,;;'i, can be assumed to be con
verging by the norm of the space C~;pi(]a, b[; Rm) to some vector function 
y E C~,'j/(]a, b[; Rm). 

(2.18)-(2.20) imply 

(2.24) IIYII
0

n-1 = 1, 
a,P 

(2.25) jYin-l)(t)- Ykn-l)(s)- J.\~- a)-"(b- ~)-ilPk(Y)(~) d~l ~ 

~ l (~- a)-"(b- ~)-13 (qo(Yk)(~) + iPk(Y- Yk)(~)l + Qlk(~)) ~ 
for a < s < t < b, 

(2.26) l£k;(y)l ~ ho;(Yk) + l£k;(y- Yk)i + h1k (i = 1, ... , n). 
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On the other hand, due to (2.15), it is evident that 

lim r (~- a)-"(b- ~)-f3Pk(Y)(~) d~ = {t (~- a)-"'(b- ~)-13po(y)(~) ~ 
k-).+ools Js 

for a < s < t < b. 

If together with this condition we take into account conditions (2.4) and 
(2.21) and pass to the limit in inequality (2.25) as k -+ +oo, then we get 

ly(n-1l(t)- y(n-1l(s) -l (~- a)-"'(b- o-13po(Y)(~) d~~ ::0 

::0 { (~- a)-"'(b- ~)-13qo(Y)(~) d~ for a< s < t <b. 

Hence it immediately follows that y is a solution of the differential inequality 
(1.14). 

If now we pass to the limit in inequalities (2.26) as k -+ +oo, then in 
view of conditions (2.5) and (2.22) we get inequality (1.15). Therefore y is a 
solution of problem (1.14), (1.15). Thus y(t) = 0, since by conditions (1.16) 
and (2.17) the above-mentioned problem has only a trivial solution. But this 
contradicts (2.23). The contradiction obtained proves the lemma. D 

2.3. Lemma on the estimate of the Green function of two-point 
boundary value problem. We consider the boundary value problem 

(2.27) u(n)(t) = 0, 

(2.28) u(i-ll(a) = 0 (i = 1, ... , n1), u(i-1l(b) = 0 (i = 1, ... , n2 ), 

where n 2: 2, n1 E {1, ... , n- 1} and~= n- n1. Suppose 

no= min{n1, n2}, Ua,f3(t) = (t- a)n-1-"'(b- t)n-1-!3. 

LEMMA 2.3. Let a E [n2- 1, n2] and fJ E [n1 - 1, n1]. Then the Green 
function g of problem (2.27), (2.28) admits the estimate 

(2.29) 0:::; ( -l)n'g(t, s) :::; 
(b- a)1-n "' f3 

:::; no(n
1 

_ 1)!(~ _ 1)! Ua,/3(t)(s- a) (b- s) for a:::; s, t:::; b. 

Proof By V. V. Ostroumov [8] (see also Lemma 9.6 in the monograph 
[3] by U. Elias) is shown that 

(2.30) 0:::; (-l)n'g(t,s):::; 
(b )1-n :::; -a (t- at•-1(b- t)n'-1(s- at'-1(b- s)n'-1go(t, s), 

no(n1- 1)l(n2- 1)! 
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where 

9o(t, s) =min {(t- a)(b- s), (s- a)(b- t)}. 

Let a1 =a- n2 + 1, /31 = f3- n1 + 1. Then for s $; t we have 

9o(t, 8) = (8- a)(b- t) $; (t- a)1-"' (b- t)l-fh (8- a)"' (b- 8)111
• 

If t $; 8, then 

9o(t, 8) = ( t - a) (b - 8) $; ( t - a)1-"' (b - t)l-fh ( 8 - a)"' (b - 8 )111
• 

Thus estimate (2.30) results in estimate (2.29). D 

§ 3. Proof of the Main Results. 

Proof of Theorem 1.1. First we note that conditions (1.16)-(1.18) yield 
conditions (1.9) and (1.10). On the other hand, by Lemma 2.2 there exists 
a positive number 'Y such that for any X E c~;,;/(Ja, b[; Rm), q E L([a, b]; Rm) 
and e; E Rm (i = 1, ... ,n), an arbitrary solution y of the boundary value 
problem (1.7) admits estimate (1.8). Therefore the pair (p, (t';)j;,1) is consis
tent. 

By virtue of Theorem 1.0, it is sufficient to show the existence of a pos
itive number p0 such that for any A E ]0, 1[ an arbitrary solution of problem 
(1.11), (1.12) would admit estimate (1.13). 

Let p* be the number appearing in Lemma 2.2. Due to condition (1.19), 
there exists Po > 0 such that 

(3.1) p* (flh(p)fl + lJJq(8, p)JI d8) < P for P >Po· 

Let x be a solution of problem (1.11), (1.12) for some A E ]0, 1[. Set 

(3.2) 

Then, in view of conditions (1.17) and (1.18), we have 

and 

J(t- a)"'(b- t) 13x(n)(t)- p(x,x)(t)l = Ajf(x)(t)- p(x,x)(t)l $; 

$; qo(x)(t) + q(t, Px) 

jt';(x,x)l = Ajh;(x) -t';(x,x)l $; ho;(x) +h(px) (i = 1, ... ,n). 
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Therefore, xis a solution of problem (2.8), (2.9), where 

Po(y)(t) = p(x, y)(t), fo;(y) = f;(x, y) for any y E C~;{l{]a, b[; Rm), 
ql(t) = q(t, p,), hi= h(p,), 

and, moreover, (po, (Eo;)f=1) E &J;:t., ... ,£.· By Lemma 2.2, x admits estimate 
(2.10), i.e., 

Px:::; p*(i!h(px)ll + li!q(t,p,)i!dt). 

Hence, by virtue of condition (3.1) and notation (3.2), we get (1.13). D 

Proof of Theorem 1.2. Suppose 

p(x, y)(t) = p(x, 0, y)(t), l;(x, y) = f;(x, 0, y) (i = 1, ... , n), 
q(t) = lf(O)(t)l, h =max {lhi(O)I, ... , lhn(O)I}. 

Then conditions (1.20)-(1.22) yield the conditions 

'"' (£ ·)n ) E 0 m,a,/J \P' 2 z=l qo;hob···,hon' 

lf(x)(t)- p(x, x)(t)i :::; qo(x)(t) + q(t) 

and 

lh;(x)- R;(x, x)l :::; ho;(x) + h (i = 1, ... , n). 

These conditions, by Theorem 1.1, guarantee the solvability of problem (1.1), 
(1.2). It remains to show that this problem has at most one solution. 

Let x and x be arbitrary solutions of problem (1.1), (1.2). Suppose 

y(t) = x(t)- x(t), 
Po(Y)(t) = p(x,x,y)(t), fo;(y) = f;(x,x,y) (i = 1, ... ,n). 

Then, due to conditions (1.21), (1.22), the vector function y is a solution of 
problem (1.14), (1.15). On the other hand, by (1.20) this problem has only 
a trivial solution. Thus y(t) = 0, and consequently, x(t) - x(t). D 

Corollary 1.1 (Corollary 1.2) follows from Theorem 1.1 (Theorem 1.2) 
in the case where p(x, y)(t) = Po(Y)(t), f;(x, y) = fo;(y) (i = 1, ... , n) 
(p(x, x, y)(t) - Po(Y)(t), f;(x, x, y) = fo;(y) (i = 1, ... , n)). 

Proof of Theorems 1.3 and 1.4. In view of conditions a E [n2 - 1, n2], 
(J E [n1 - 1, n 1] and equalities (1.5), the existence of limits (1.4) implies the 
existence of the limits 

n ( )defl. {i-ll(t) ("-1 ) n ( )<M1· {i-Il(t) ("-1 ) .r.oiX -Imx Z- , ... ,n1 , .r.on1+ix -Imx z- , ... ,n2. 
t->a t-4-b 
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Moreover, it is evident that £0; : C~;pi{]a, b[; Rm) --> Rm (i = 1, ... , n) are 
linear bounded operators. 

By Theorems 1.1 and 1.2, to prove Theorems 1.3 and 1.4 it is sufficient to 
show that if Po(y)(t) = 0, qo(y)(t) = p(lyi)(t) and ho;(y) = 0 (i = 1, ... , n), 
then problem (1.14), (1.15) has only a trivial solution. However, in the case 
under consideration this problem has the form 

(3.3) 

(3.4) 

(t- a)"(b- t)Piy(n)(t)i :<:: p(lyl)(t), 
limy(i-I)(t) = 0 (i = 1, ... , n1), limy(i-I)(t) = 0 (i = 1, ... , n2). 
t~a t4b 

Let y E C~,"i/(]a, b[; Rm) be a solution of problem (3.3), (3.4). Then 

(3.5) y(t) = l g(t, s)y(n)(s) ds, 

where g is the Green function of problem (2.27), (2.28), admitting, by Lem
ma 2.3, estimate (2.29). 

According to inequalities (2.29) and (3.3), from (3.5) we find 

(b-a)l-n b 

(3.6) (u",p(t))-1ly(t)1:::; no(n
1

_ 1)!(n
2 

_ 1)! L p(iyi)(s)ds for a:::; t:::; b. 

Let y(t) = (Yi(t))j;1• Suppose 

Pi= sup {iyj(t)i/u<>,p(t): a< t < b} (j = 1, ... , m), p = (pi)'J'=I· 

Then 

ly(t)l :::; u<>,p(t)p for a:::; t:::; b. 

If together with this estimate we take into account the positiveness of the 
operator p and identity (1.23), then we get 

p(IYI)(s):::; p(u<>,PP)(s):::; p(u<>,PEm)(s)p for almost all s E [a,b]. 

On account of this inequality, from (3.6) we obtain 

where 

(b _ a)l-n b 

A= ( 
1
)!( _ 

1
)1 { p(u<>,PEm)(s) ds. no n1 . n2 . la 
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Hence, in view of the definition of p, it is obvious that 

(3.7) (Em- A)p::; 0. 

On the other, due to (1.24) we have 

r(A) < 1. 

According to this inequality and the nonnegativeness of the matrix A, the 
matrix (Em- A) - 1 is nonnegative. If now we multiply both sides of inequality 
(3.7) by (Em- A)-1, then we obtain p:::; 0, i. e., p = 0 and y(t) = 0. D 

Proof of Corollaries 1.3 and 1.4. Equation (1.25) is obtained from equa
tion (1.1) in the case, where 

f(x)(t) = fo(t, x(T(t))). 

Suppose 

p(x)(t) = P(t) x(T(t)). 

Then 

p(ua,{3Em)(t) = Ua,f3(T(t))P(t) = (T(t)- a)n-1-"'(b- T(t))n-1-(JP(t). 

Thus inequality (1.26) implies inequality (1.24). If now we apply Theorem 1.3 
(Theorem 1.4), then the validity of Corollary 1.3 (Corollary 1.4) becomes 
evident. D 
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