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1. STATEMENT OF THE MAIN RESULTS

1.1. Statement of the Problems

We study the boundary value problem

dui
dt

= fi (t, u1, u2) (i = 1, 2), (1.1)

ϕi (u1(a), u2(a), u1(b), u2(b)) = 0 (i = 1, 2), (1.2)

where the fi : [a, b]× R2 → R (i = 1, 2) are functions satisfying the local Carathéodory conditions
and the ϕi : R4 → R (i = 1, 2) are continuous functions satisfying one of the following two
inequalities in R4 :

(ϕ1 (x1, x2, x3, x4)− x1)x2 − (ϕ2 (x1, x2, x3, x4)− x3)x4 ≤ γ, (1.3)
(ϕ1 (x1, x2, x3, x4)− x1)x2 − (ϕ2 (x1, x2, x3, x4)− x4)x3 ≤ γ. (1.4)

Here γ = const ≥ 0.
We separately consider the case in which fi (t, x1, x2) ≡ fi (t, x3−i) (i = 1, 2) and either

ϕ1 (x1, x2, x3, x4) = x1 − µx4 + ψ1 (x2) ,
ϕ2 (x1, x2, x3, x4) ≡ x3 − µx2 − ψ2 (x4)

or
ϕ1 (x1, x2, x3, x4) = x1 − µx3 + ψ1 (x2) ,
ϕ2 (x1, x2, x3, x4) ≡ x4 − µx2 − ψ2 (x3) ,

that is, the case in which system (1.1) has the form

du1

dt
= f1 (t, u2) ,

du2

dt
= f2 (t, u1) , (1.5)

and the boundary conditions (1.2) have one of the following two forms:

u1(a) = µu2(b)− ψ1 (u2(a)) , u1(b) = µu2(a) + ψ2 (u2(b)) , (1.21)
u1(a) = µu1(b)− ψ1 (u2(a)) , u2(b) = µu2(a) + ψ2 (u1(b)) , (1.22)

where µ is an arbitrary real number and the ψi : R → R (i = 1, 2) are continuous functions such
that

xψ1(x) + yψ2(y) ≤ γ for (x, y) ∈ R2. (1.6)

This class of boundary conditions includes, for example, well-known two-point, periodic, and
antiperiodic boundary conditions

u1(a) = 0, u1(b) = 0, (1.23)
u1(a) = 0, u2(b) = 0, (1.24)
u1(a) = u1(b), u2(a) = u2(b), (1.25)
u1(a) = −u1(b), u2(a) = −u2(b). (1.26)
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There is a vast literature (e.g., see [1–17] and the bibliography therein) about boundary value
problems of the form (1.1), (1.2) [in particular, problems (1.1), (1.2k), k = 1, . . . , 6]. Nevertheless,
the case in which the right-hand sides of system (1.1) are rapidly growing functions of the phase
variables has been much less studied. The results given below deal with this case.

1.2. Problem (1.1), (1.2)

Throughout the paper, we use the following notation: R+ = [0,+∞[ ; M ([a, b]× R+) is the set
of functions ω : [a, b] × R+ → R+ integrable with respect to the first argument, continuous and
nondecreasing with respect to the second argument, and such that ω(t, 0) ≡ 0;

D0 (x0) = {(x1, x2, x3, x4) ∈ R4 : x1x3 > 0, |x1| ≥ x0, |x3| ≥ x0};

D (x0) = {(x1, x2, x3, x4) ∈ R4 : |x1|+ |x4| ≥ x0, x1x3 > 0}
∪ {(x1, x2, x3, x4) ∈ R4 : |x1|+ |x4| ≥ x0, x2x4 > 0}.

If ui0 : [a, b] → R (i = 1, 2) are continuous functions, then by Ur (u10, u20) we denote the set of
continuous vector functions (u1, u2) : [a, b] → R such that |u1(t)− u10(t)| + |u2(t)− u20(t)| < r
for a ≤ t ≤ b.

Along with problem (1.1), (1.2), we consider the perturbed problem

dui
dt

= fi (t, u1, u2) + ηi (t, u1, u2) (i = 1, 2), (1.7)

ϕi (u1(a), u2(a), u1(b), u2(b)) + ζi (u1(a), u2(a), u1(b), u2(b)) = 0 (i = 1, 2). (1.8)

Just as in [4], we introduce the following definition.

Definition 1.1. Problem (1.1), (1.2) is said to be well posed if it has a unique solution (u10, u20)
and if, for arbitrary numbers r > 0 and ε ∈ ]0, r[ and an arbitrary function ω ∈ M ([a, b]× R+),
there exists a positive number δ such that, for arbitrary Carathéodory functions ηi : [a, b]×R2 → R
(i = 1, 2) and arbitrary continuous functions ζi : R4 → R (i = 1, 2) satisfying the conditions

2∑
k=1

∣∣∣∣∣∣
t∫

a

ηk (s, x1, x2) ds

∣∣∣∣∣∣ ≤ δ,
2∑

k=1

|ηk (t, x1, x2)− ηk (t, y1, y2)| ≤ ω (t, |x1 − y1|+ |x2 − y2|) for a ≤ t ≤ b,

2∑
k=1

|xk − uk0(t)| ≤ r,
2∑

k=1

|yk − uk0(t)| ≤ r,

2∑
k=1

|ζk (x1, x2, x3, x4)| ≤ δ for
2∑

k=1

(|xk − uk0(a)|+ |x2+k − uk0(b)|) ≤ r,

problem (1.1), (1.2) has at least one solution (u1, u2) ∈ Ur (u10, u20) and the inequality

2∑
k=1

|uk(t)− uk0(t)| < ε, a ≤ t ≤ b,

holds for every such solution.

Theorem 1.1. Let functions ϕ1 and ϕ2 satisfy condition (1.3) or condition (1.4), where
γ = const ≥ 0. Moreover, suppose that there exist functions hi ∈ M ([a, b]× R+) (i = 1, 2),
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integrable functions h0i : [a, b]→ R+ (i = 1, 2) and h : [a, b]→ R+, and constants ` ≥ 0, δ > 0, and
x0 > 0 such that

fi (t, x1, x2)x3−i ≥ hi (t, |x3−i|)− h0i(t) for a ≤ t ≤ b, (x1, x2) ∈ R2 (i = 1, 2), (1.9)
|fi (t, x1, x2)| ≤ `h3−i (t, |xi|) + h(t) for a < t < b, xi ∈ R, |x3−i| ≤ δ (i = 1, 2), (1.10)

and at least one of the following three conditions is satisfied :
b∫
a

hi (s, x0) ds > γ +

b∫
a

(h01(s) + h02(s)) ds, i = 1, 2; (1.11)

b∫
a

h1 (s, x0) ds > γ +

b∫
a

(h01(s) + h02(s)) ds and

2∑
k=1

|ϕk (x1, x2, x3, x4)| > 0 for (x1, x2, x3, x4) ∈ D0 (x0) ;

(1.12)

2∑
k=1

|ϕk (x1, x2, x3, x4)| > 0 for (x1, x2, x3, x4) ∈ D (x0) . (1.13)

Then problem (1.1), (1.2) is solvable.

We consider problems (1.1), (1.21) and (1.1), (1.22) for the case in which conditions (1.12) and
(1.13) are replaced by the conditions

b∫
a

h1 (s, x0) ds > γ +

b∫
a

(h01(s) + h02(s)) ds, µ = 0, |ψ1(x)| ≤ x0 for x ∈ R, (1.121)

b∫
a

h1 (s, x0) ds > γ +

b∫
a

(h01(s) + h02(s)) ds, µ ≤ 0, |ψ1(x)| ≤ x0 for x ∈ R, (1.122)

µ ≤ 0, |ψ1(x)|+ |ψ2(x)| ≤ x0 for x ∈ R. (1.13′)

Theorem 1.1 readily implies the following assertion.

Corollary 1.1. Suppose that there exist functions hi ∈ M ([a, b]× R+) (i = 1, 2), integrable
functions h0i : [a, b] → R+ (i = 1, 2) and h : [a, b] → R+, and constants ` ≥ 0, γ ≥ 0, δ > 0, and
x0 > 0 such that conditions (1.6), (1.9), and (1.10), as well as one of conditions (1.11) and (1.121)
[respectively, one of conditions (1.11), (1.122), and (1.13′)], are satisfied. Then problem (1.1), (1.21)
[respectively, problem (1.1), (1.22)] is solvable.

Example 1.1. Let m be a positive integer, let p0 ∈ R, and let p : [a, b] → ]0,+∞[ be an
integrable function. Then the differential system

du1

dt
=

1
(1 + |u2|)2u2 + p0

1
1 + |u2|

,
du2

dt
= p(t)u2m−1

1 (1.14)

satisfies conditions (1.9) and (1.10), where h1(t, x) = (1 + x)−2x2, h2(t, x) = p(t)x2m, h10(t) = |p0|,
h20(t) = 0, ` = 0, δ = 1, and h(t) = 1 + |p0| + p(t). Therefore, to satisfy inequality (1.11) with
γ = 0 for some sufficiently large x0, it is necessary and sufficient that |p0| < 1. This, together
with Corollary 1.1, implies that if |p0| < 1, then problems (1.14), (1.23) and (1.14), (1.25) are
solvable. On the other hand, if |p0| ≥ 1, then the first component of an arbitrary solution of
system (1.14) is an increasing function and hence problems (1.14), (1.23) and (1.14), (1.25) have no
solutions.

This example shows that the conditions imposed in Theorem 1.1 and the corollary on the
functions hi and hi0 (i = 1, 2) are in a sense optimal.
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Theorem 1.2. If the assumptions of Theorem 1.1 are satisfied, then the unique solvability of
problem (1.1), (1.2) guarantees its well-posedness.

1.3. Problems (1.5), (1.21) and (1.5), (1.22)

If fi (t, x1, x2) ≡ fi (t, x3−i) (i = 1, 2), then condition (1.9) acquires the form

fi(t, x)x ≥ hi(t, |x|) − h0i(t) for a ≤ t ≤ b, x ∈ R (i = 1, 2). (1.15)

As to condition (1.10), it is necessarily satisfied for ` = 0, δ = 1, and

h(t) = max{|f1(t, x)|+ |f2(t, x)| : |x| ≤ 1}.

Therefore, Corollary 1.1 and Theorem 1.2 imply the following assertion.

Theorem 1.3. Suppose that there exist functions hi ∈ M ([a, b]× R+) (i = 1, 2), integrable
functions h0i : [a, b] → R+ (i = 1, 2) and h : [a, b] → R+, and constants γ ≥ 0 and x0 > 0 such
that, along with conditions (1.6) and (1.15), one of conditions (1.11) and (1.121) [respectively, one of
conditions (1.11), (1.122), and (1.13′)] is satisfied. Moreover, let fi (i = 1, 2) be increasing functions
of the second argument, and let ψi (i = 1, 2) be nonincreasing functions of the second argument.
Then problem (1.5), (1.21) [respectively, problem (1.5), (1.22)] is well posed.

The Emden–Fowler system

dui
dt

=
mi∑
k=1

pik(t) |u3−i|λik sgnu3−i + qi(t) (i = 1, 2), (1.16)

where λik = const > 0 and pik and qi : [a, b]→ R (i = 1, 2; k = 1, . . . ,mi) are integrable functions,
is a special case of system (1.5).

Corollary 1.2. Let

pik(t) ≥ 0,
mi∑
j=1

pij(t) > 0 for a ≤ t ≤ b (i = 1, 2; k = 1, . . . ,mi) , (1.17)

b∫
a

[
mi∑
k=1

pik(s)

]−1/λi

|qi(s)|1+1/λi ds < +∞ (i = 1, 2), (1.18)

where λi = min {λik : k = 1, . . . ,mi}. Furthermore, let ψ1 and ψ2 be nondecreasing functions
satisfying condition (1.6) with γ = const ≥ 0. Then problems (1.16), (1.21) and (1.16), (1.22) are
well posed.

In particular, it follows from Corollary 1.2 that if conditions (1.17) and (1.18) are satisfied, then
problems (1.16), (1.2k) (k = 3, 4, 5, 6) are well posed.

2. AUXILIARY ASSERTIONS

2.1. Lemmas on A Priori Estimates

Suppose that δ is a positive constant, ` ≥ 0,

νδ(x) =
{ 0 if x > δ

1 if 0 ≤ x ≤ δ,
DIFFERENTIAL EQUATIONS Vol. 40 No. 6 2004
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h̃i ∈ M ([a, b]× R+) (i = 1, 2), and h0i : [a, b] → R+ (i = 1, 2) and h̃ : [a, b] → R+ are integrable
functions. Consider the system of differential inequalities

u′i(t)u3−i(t) ≥ h̃i (t, |u3−i(t)|)− h0i(t) (i = 1, 2), (2.1)

|u′i(t)| νδ (|u3−i(t)|) ≤ `h̃3−i (t, |ui(t)|) + h̃(t) (i = 1, 2). (2.2)

A solution of this system is understood as a vector function (u1, u2) with absolutely continuous
components ui : [a, b]→ R (i = 1, 2) that satisfies the differential inequalities (2.1) and (2.2) almost
everywhere on [a, b].

Lemma 2.1. Let γ and x0 be some nonnegative constants. Then an arbitrary solution (u1, u2)
of system (2.1), (2.2) satisfying the conditions

u1(b)u2(b)− u1(a)u2(a) ≤ γ, (2.3)
min {|ui(t)| : a ≤ t ≤ b} ≤ x0 (i = 1, 2), (2.4)

admits the estimates
|ui(t)| ≤ % for a ≤ t ≤ b (i = 1, 2), (2.5)

where

% = x0 +
(
`+

1
δ

)
γ +

(
`+

2
δ

) b∫
a

(h01(s) + h02(s)) ds+

b∫
a

h̃(s)ds. (2.6)

Proof. By inequalities (2.1) and (2.3), we have

u′i(t)u3−i(t) = |u′i(t)u3−i(t) + h0i(t)| − h0i(t) ≥ |u′i(t)u3−i(t)| − 2h0i(t) (i = 1, 2),
b∫

a

[u′1(s)u2(s) + u1(s)u′2(s)] ds = u1(b)u2(b)− u1(a)u2(a) ≤ γ.

Therefore,

b∫
a

[
h̃1 (s, |u2(s)|) + h̃2 (s, |u2(s)|)

]
ds ≤ γ +

b∫
a

(h01(s) + h02(s)) ds, (2.7)

b∫
a

[|u′1(s)u2(s)|+ |u1(s)u′2(s)|] ds ≤ γ + 2

b∫
a

(h01(s) + h02(s)) ds. (2.8)

Let Ik = {t ∈ [a, b] : |u3−k(t)| ≤ δ} (k = 1, 2). Then, with regard to condition (2.4), we obtain

|ui(t)| ≤ x0 +

b∫
a

|u′i(s)| ds

≤ x0 +
∫
Ii

|u′i(s)| ds+
1
δ

∫
[a,b]\Ii

|u′i(s)u3−i(s)| ds for a ≤ t ≤ b (i = 1, 2).

On the other hand, ∫
Ii

|u′i(s)| ds ≤
∫
Ii

[
`h̃3−i (s, |ui(s)|) + h̃(s)

]
ds

≤
b∫

a

[
`h̃3−i (s, |ui(s)|) + h̃(s)

]
ds (i = 1, 2)
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by (2.2). If we now use conditions (2.7) and (2.8), then it becomes clear that the estimate (2.5) is
valid, where % is the number given by (2.6). The proof of the lemma is complete.

Lemma 2.2. Suppose that there exist numbers γ ≥ 0 and x0 > 0 such that

b∫
a

h̃1 (s, x0) ds > γ +

b∫
a

(h01(s) + h02(s)) ds. (2.9)

Then an arbitrary solution (u1, u2) of system (2.1), (2.2) satisfying condition (2.3) and the inequality

min {|u1(t)| : a ≤ t ≤ b} ≤ x0 (2.10)

admits the estimate (2.5), where % is the number given by (2.6).

Proof. Let (u1, u2) be an arbitrary solution of system (2.1), (2.2) satisfying conditions (2.3) and
(2.10). Then, as shown above, inequality (2.7) is valid. Now we set µ0 = min {|u2(t)| : a ≤ t ≤ b}
and obtain

b∫
a

h̃1 (s, µ0) ds ≤ γ + 2

b∫
a

(h01(s) + h02(s)) ds

from (2.7). This, together with (2.9), implies that µ0 ≤ x0. Consequently, inequality (2.4) is valid.
Now an application of Lemma 2.1 makes Lemma 2.2 obvious.

The following assertion can be proved in a similar way.

Lemma 2.3. Suppose that there exist numbers γ ≥ 0 and x0 > 0 such that

b∫
a

h̃i (s, x0) ds > γ +

b∫
a

(h01(s) + h02(s)) ds (i = 1, 2). (2.11)

Then an arbitrary solution (u1, u2) of system (2.1), (2.2) satisfying condition (2.3) admits the
estimate (2.5), where % is the number given by (2.6).

2.2. Lemmas on the Solvability and Well-Posedness of Problem (1.1), (1.2)

For an arbitrary positive number r, we set

χr(x) =

{
1 if 0 ≤ x ≤ r

2− x/r if r < x < 2r
0 if x ≥ 2r.

(2.12)

Along with (1.1), (1.2), we consider the auxiliary linear and nonlinear problems

u′i =
2∑

k=1

pik(t)uk (i = 1, 2), (2.13)

2∑
k=1

(αikuk(a) + βikuk(b)) = 0 (i = 1, 2), (2.14)

u′i =
2∑

k=1

pik(t)uk + qi% (t, u1, u2) (i = 1, 2), (2.15)

2∑
k=1

(αikuk(a) + βikuk(b)) = ∆i% (u1(a), u2(a), u1(b), u2(b)) (i = 1, 2), (2.16)
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where

qi% (t, x1, x2) = χ2% (|x1|+ |x2|)
[
fi (t, x1, x2)−

2∑
k=1

pik(t)xk

]
(i = 1, 2), (2.17)

∆i%(x1, x2, x3, x4) = χ4%

(
4∑

k=1

|xk|
)[

2∑
k=1

(αikxk+ βikxk+2)− ϕi(x1, x2, x3, x4)

]
(i = 1, 2). (2.18)

Lemma 2.4. Suppose that there exist integrable functions pik : [a, b] → R (i, k = 1, 2) and
constants αik ∈ R, βik ∈ R (i, k = 1, 2), and % ∈ ]0,+∞[ such that problem (2.13), (2.14) has
only the trivial solution and an arbitrary solution (u1, u2) of problem (2.15), (2.16) admits the
estimate (2.5). Then problem (2.15), (2.16) is solvable, and each solution is simultaneously a
solution of problem (1.1), (1.2).

Proof. By virtue of notation (2.12), (2.17), and (2.18), it is clear that there exists an integrable
function q∗% : [a, b]→ ]0,+∞[ and a positive constant ∆∗% such that the inequalities

|qi% (t, x1, x2)| ≤ q∗%(t), |∆i% (x1, x2, x3, x4)| ≤ ∆∗% (i = 1, 2) (2.19)

are valid on [a, b]× R2 and in R4, respectively.
It follows from the Conti theorem [13] (see also [4, Corollary 2.1]) that condition (2.19) and

the unique solvability of the homogeneous problem (2.13), (2.14) guarantee the solvability of prob-
lem (2.15), (2.16).

Let (u1, u2) be an arbitrary solution of problem (2.15), (2.16). Then, by one of the assumptions
of the lemma, the estimate (2.5) is valid, and consequently,

χ2% (|u1(t)|+ |u2(t)|) ≡ 1, χ4%(|u1(a)|+ |u2(a)|+ |u1(b)|+ |u2(b)|) = 1.

By using relations (2.17) and (2.18), we find that (u1, u2) is a solution of problem (1.1), (1.2).
The proof of the lemma is complete.

Lemma 2.5. Suppose that there exist integrable functions pik : [a, b] → R (i, k = 1, 2) and
constants αik ∈ R, βik ∈ R (i, k = 1, 2), and %0 > 0 such that problem (2.13), (2.14) has only the
trivial solution and, for each % ≥ %0, an arbitrary solution (u1, u2) of problem (2.15), (2.16) admits
the estimates (2.5). Then the unique solvability of problem (1.1), (1.2) implies its well-posedness.

Proof. Problem (1.1), (1.2) is solvable, since all assumptions of Lemma 2.4 are valid. Our aim
is to show that if this problem has a unique solution (u10, u20), then it is well posed.

By Lemma 2.4, for each % ≥ %0, the vector function (u10, u20) is also the unique solution of
problem (2.15), (2.16). By Definition 3.1 in [4], this means that (u10, u20) is a strongly isolated
solution of problem (1.1), (1.2) in arbitrary radius. Now it follows by Theorem 3.1 in [4] that
problem (1.1), (1.2) is well posed. The proof of the lemma is complete.

3. PROOF OF THE MAIN RESULTS

Proof of Theorem 1.1. We carry out the proof only for the case in which condition (1.3) is
satisfied; the case of condition (1.4) can be treated in a similar way. Furthermore, without loss of
generality, we assume that x0 > 1.

First, suppose that the functions hi (i = 1, 2) satisfy conditions (1.11) and set

pi(t) = 1 + hi (t, x0) (i = 1, 2), h̃(t) = (p1(t) + p2(t)) δ + h(t), (3.1)
qi% (t, x1, x2) = χ2% (|x1|+ |x2|) [fi (t, x1, x2)− pi(t)x3−i] (i = 1, 2), (3.2)

∆i% (x1, x2, x3, x4) = χ4%

(
4∑
k=1

|xk|
)

[x2i−1 − ϕi (x1, x2, x3, x4)] (i = 1, 2), (3.3)
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where % and χr are the number and the function given by (2.6) and (2.12), respectively. Then the
linear homogeneous problem

dui
dt

= pi(t)u3−i (i = 1, 2), u1(a) = 0, u1(b) = 0,

has only the trivial solution, since pi(t) > 0 for a ≤ t ≤ b (i = 1, 2). By Lemma 2.4, to prove
the solvability of problem (1.1), (1.2), it suffices to show that an arbitrary solution (u1, u2) of the
problem

dui
dt

= pi(t)u3−i + qi% (t, u1, u2) (i = 1, 2), (3.4)

u1(a) = ∆1% (u1(a), u2(a), u1(b), u2(b)) , u1(b) = ∆2% (u1(a), u2(a), u1(b), u2(b)) , (3.5)

admits the estimates (2.5).
Let λ(t) = χ2% (|u1(t)|+ |u2(t)|), λ0 = χ4% (|u1(a)|+ |u2(a)|+ |u1(b)| + |u2(b)|), and

h̃i(t, x) = (1− λ(t))hi (t, x0) x+ λ(t)hi(t, x) (i = 1, 2). (3.6)

With regard to (3.2) and (3.3), from (3.4) and (3.5), we obtain

u′i(t) = (1− λ(t))pi(t)u3−i(t) + λ(t)fi (t, u1(t), u2(t)) (i = 1, 2),
u1(a) = λ0 (u1(a)− ϕ1 (u1(a), u2(a), u1(b), u2(b))) ,
u1(b) = λ0 (u1(b)− ϕ2 (u1(a), u2(a), u1(b), u2(b))) .

This, together with conditions (1.3), (1.9), (1.10), (3.1), and (3.6), shows that the vector function
(u1, u2) is a solution of the system of differential inequalities (2.1), (2.2) supplemented by condi-
tion (2.3). On the other hand, by (3.6), inequalities (1.11) lead to (2.11), since x0 > 1. Therefore,
all assumptions of Lemma 2.3 are satisfied, which guarantees the validity of the estimates (2.5).
This completes the proof of the solvability of problem (1.1), (1.2).

Let us proceed to the case in which condition (1.12) or (1.13) is satisfied. Without loss of
generality, we assume that x0 > δ. Let h̃(t) = h(t), and let % be the number given by (2.6). We set
ζ%(x) = 0 for |x| ≤ %, ζ%(x) = (|x| − %) sgn x for |x| > %, and

f̃i (t, x1, x2) = fi (t, x1, x2) + ζ% (x3−i) , h̃i(t, x) = hi(t, x) + ζ%(x)x (i = 1, 2) (3.7)

and consider the differential system

dui
dt

= f̃i (t, u1, u2) (i = 1, 2). (3.8)

By (1.9) and (1.10), from (3.7), we obtain

f̃i (t, x1, x2) x3−i ≥ h̃i (t, |x3−i|)− h0i(t) for a ≤ t ≤ b, (x1, x2) ∈ R2 (i = 1, 2), (3.9)∣∣∣f̃i(t, x1, x2)
∣∣∣ ≤ `h̃3−i(t, |xi|) + h̃(t) for a ≤ t ≤ b, xi ∈ R, |x3−i| ≤ δ (i = 1, 2). (3.10)

On the other hand, obviously,

b∫
a

h̃i (s, x̃0) ds > γ +

b∫
a

(h01(s) + h02(s)) ds (i = 1, 2), (3.11)

where x̃0 = % + 1 + (b − a)−1
∫ b
a

(h01(s) + h02(s)) ds (i = 1, 2). However, as was proved above,
conditions (1.3) and (3.9)–(3.11) ensure the solvability of problem (3.8), (1.2).
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Let (u1, u2) be an arbitrary solution of problem (3.8), (1.2). Then, by conditions (3.9) and
(3.10), the vector function (u1, u2) is also a solution of the system of differential inequalities (2.1),
(2.2) supplemented by condition (2.3). On the other hand, it follows from conditions (1.2) and
(1.12) [respectively, (1.2) and (1.13)] that inequalities (2.9) and (2.10) [respectively, (2.4)] are
valid. Consequently, all assumptions of Lemma 2.2 (respectively, Lemma 2.1) are valid, which
guarantees the validity of the estimates (2.5). These estimates, together with notation (3.7), imply
that (u1, u2) is a solution of problem (1.1), (1.2). The proof of the theorem is complete.

Theorem 1.2 can be proved by analogy with Theorem 1.1. The only difference is that Lemma 2.5
is used instead of Lemma 2.4.

Proof of Theorem 1.3. As was mentioned above (see Subsection 1.3), if the assumptions
of Theorem 1.3 are valid for problem (1.5), (1.21) or problem (1.5), (1.22), then the assumptions of
Theorem 1.1 are also valid. Thus, by Theorem 1.2, to prove Theorem 1.3, it suffices to show
that if the fi (i = 1, 2) are increasing functions of the second argument and the ψi (i = 1, 2) are
nonincreasing functions of the second argument, then problem (1.5), (1.21), as well as problem (1.5),
(1.22), has at most one solution.

Suppose the contrary: problem (1.5), (1.21) [respectively, problem (1.5), (1.22)] has two distinct
solutions (u1, u2) and (v1, v2). We set wi(t) = ui(t)− vi(t) (i = 1, 2). Then

(w1(t)w2(t))′ = ∆(t), w1(b)w2(b)− w1(a)w2(a) = ∆0, (3.12)

where ∆(t) = (f1 (t, v2(t) +w2(t))− f1 (t, v2(t)))w2(t) + (f2 (t, v1(t) + w1(t))− f2 (t, v1(t)))w1(t)
and

∆0 = (ψ1 (v2(a) + w2(a))− ψ1 (v2(a)))w2(a) + (ψ2 (v2(b) + w2(b))− ψ2 (v2(b)))w2(b)(
∆0 = (ψ1 (v2(a) + w2(a))− ψ1 (v2(a)))w2(a) + (ψ2 (v1(b) + w1(b))− ψ2 (v1(b)))w1(b)

)
.

Moreover, ∆(t) ≥ 0 for a ≤ t ≤ b,
∫ b
a

∆(t)dt > 0, and ∆0 ≤ 0. Therefore, from (3.12), we obtain
0 ≥ ∆0 =

∫ b
a

∆(t)dt > 0. The contradiction thus obtained completes the proof of the theorem.

Proof of Corollary 1.2. System (1.16) is obtained from system (1.5) if

fi(t, x) =
mi∑
k=1

pik(t)|x|λik sgnx+ qi(t) (i = 1, 2). (3.13)

This, together with condition (1.17), implies that f1 and f2 are increasing functions of the second
argument. On the other hand, if we set p0i(t) =

∑mi
k=1 pik(t) (i = 1, 2), then, by the Young inequality

and conditions (1.17) and (3.13), we obtain the inequalities

fi(t, x)x ≥ p0i(t)|x|λi+1 − |qi(t)||x|

≥ 1
2
p0i(t)|x|λi+1 − (2p0i(t))

−1/λi |qi(t)|1+1/λi for a ≤ t ≤ b, |x| ≥ 1 (i = 1, 2).

Consequently, inequalities (1.15) are valid, where

hi(t, x) = (1/2)p0i(t)|x|λi+1, h0i(t) = |qi(t)|+ (2p0i(t))
−1/λi |qi(t)|1/λi (i = 1, 2);

moreover, by condition (1.18), the h0i (i = 1, 2) are integrable functions. On the other hand,
since the p0i (i = 1, 2) are positive, it follows that inequalities (1.11) are valid for some sufficiently
large x0. If we now use Theorem 1.3, then the validity of Corollary 1.2 becomes obvious.
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