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Abstract

Nonimprovable conditions are established for the existence and uniqueness of an�-periodic solu-
tion of the nonautonomous differential systems

u′
i = pi1(t)u1 + pi2(t)u2 + qi(t) (i = 1,2)

and

u′
i = fi(t, u1, u2) (i = 1,2),

wherepik : R → R, qi : R → R (i, k = 1,2) are�-periodic functions, Lebesgue integrable on
[0,�], andfi : R × R2 → R (i = 1,2) are functions from the Carathéodory class such that

fi(t + �, x1, x2) ≡ fi(t, x1, x2) (i = 1,2).
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1. Formulation of the main results. Examples

Problems on the existence and uniqueness of a periodic solution of systems of nonau-
tonomous ordinary differential equations have long been attracting the attention of math-
ematicians and used as the subject of many studies (see, for example,[1–20] and the ref-
erences therein). And all the same these problems still remain topical for two-dimensional
linear and nonlinear differential systems

u′
i = pi1(t)u1 + pi2(t)u2 + qi(t) (i = 1,2) (1.1)

and

u′
i = fi(t, u1, u2) (i = 1,2). (1.2)

In this paper, an attempt is made to fill to a certain extent the gap existing in this area. More
exactly, new and, in a certain sense, optimal sufficient conditions are established for the
existence and uniqueness of a periodic solution of systems (1.1) and (1.2) with a period
�>0.

Throughout the paper the following notation is used.
Rm is them-dimensional real Eucledean space.
L� is the space of�-periodic and Lebesgue integrable on[0,�] functionsp : R → R

with the norm

‖p‖ =
∫ �

0
|p(t)| dt.

K�(R × Rm) is the space of functionsf : R × Rm → R, which are�-periodic in the
first argument and satisfy the local Carathéodory conditions. Consequently, the notation
f ∈ K�(R × Rm) means thatf (t, ·, . . . , ·) : Rm → R is continuous for anyt ∈ R,
f (·, x1, . . . , xm) ∈ L� for any(x1, . . . , xm) ∈ Rm and

max

{
|f (·, x1, . . . , xm)| :

m∑
i=1

|xi |��

}
∈ L� for any � ∈]0,+∞[.

For any functionp : R → R the notationp(t) /≡ 0 means thatp is different from zero
on the set of positive measure.

Everywhere in the sequel when we consider systems (1.1) and (1.2), it will be assumed
that

pik ∈ L�, qi ∈ L� (i, k = 1,2) (1.3)

and

fi ∈ K�(R × R2) (i = 1,2), (1.4)

respectively.
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1.1. Existence and uniqueness theorem for system (1.1)

Set

pi(t) = pi 3−i (t)exp

(∫ t

0
(p3−i 3−i (s) − pii(s))ds

)
(i = 1,2), (1.5)

� =
∫ �

0
|p1(s)| ds

∫ �

0
|p2(s)| ds, (1.6)

�i = exp

(
−

∫ �

0
pii(s)ds

)
(i = 1,2), (1.7)

�1 = min{1, �1�2}, �2 = max{1, �1�2}. (1.8)

Theorem 1.1. Letpi(t) /≡ 0 (i = 1,2),

(�1 − 1)(�2 − 1) /∈ ]��1, ��2[ (1.9)

and there exist� ∈ {−1,1} such that

�pi(t)�0 f or t ∈ R (i = 1,2). (1.10)

Then system(1.1)has a unique�-periodic solution.
If ∫ �

0
p11(s)ds

∫ �

0
p22(s)ds�0, (1.11)

then by virtue of (1.7) we have(�1−1)(�2−1)�0 and therefore condition (1.9) is fulfilled.
Thus Theorem 1.1 gives rise to

Corollary 1.1. Let pi(t) /≡ 0 and for some� ∈ {−1,1} conditions(1.10)and (1.11)be
fulfilled. Then system(1.1)has a unique�-periodic solution.

Example 1.1. For arbitrarily givenε ∈ ]0,1[ , choose�>0 such that

(exp(��) − 1)2 <(1 + ε)�2�2.

Consider the homogeneous system

u′
i = pi1(t)u1 + pi2(t)u2 (i = 1,2), (1.10)

wherep11(t) ≡ p22(t) ≡ −�, p12(t) ≡ p21(t) ≡ �. Then, by (1.6)–(1.8), we have

� = �2�2, �i = exp(��) (i = 1,2), �1 = 1, �2 = exp(2��).
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Therefore,

(�1 − 1)(�2 − 1) /∈ ]�(�1 + ε), ��2[, (1.12)∫ �

0
p11(s)ds

∫ �

0
p22(s)ds < ε (1.13)

and inequalities (1.10), where� = 1, are fulfilled.

On the other hand, system (1.10) has a nontrivial�-periodic solution(u1, u2) with the
componentsui(t) ≡ 1 (i = 1,2). Therefore, the nonhomogeneous system (1.1) either has
no �-periodic solution or has an infinite set of such solutions. The constructed example
shows that in Theorem 1.1 (in Corollary 1.1), condition (1.9) (condition (1.11)) cannot be
replaced by condition (1.12) (by condition (1.13)) no matter how smallε >0 is.

1.2. Existence and uniqueness theorems for system (1.2)

Denote byM� the set of functionsh : R × R → R such that

h(t, x)�h(t, y) for t ∈ R, x >y >0,

h(t, x)�h(t, y) for t ∈ R, y <x <0,

h(·, x) ∈ L� for any x ∈ R and inf{h(·, x) : x �= 0} ∈ L�.

Theorem 1.2. Let there exist a number� ∈ {−1,1} and functionshik ∈ M� (i, k = 1,2)
such that

lim
x→+∞

∫ �

0
h1k(t, x)dt >0, lim

x→−∞

∫ �

0
h1k(t, x)dt >0 (k = 1,2) (1.14)

and onR × R2 the inequalities

h1i (t, x3−i )��fi(t, x1, x2) sgnx3−i �h2i (t, x) (i = 1,2) (1.15)

hold. Then system(1.1)has at least one�-periodic solution.

The particular cases of (1.2) are the systems

u′
i = fi(t, u3−i ) (i = 1,2), (1.16)

u′
i =

mi∑
k=1

pik(t)|u3−i |�ik sgnu3−i + qi(t) (i = 1,2), (1.17)

where

fi ∈ K�(R × R) (i = 1,2)

and

�ik >0, pik ∈ L�, qi ∈ L� (k = 1, . . . , mi; i = 1,2).
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Theorem 1.3. Let there exist a number� ∈ {−1,1} and sets of positive measureIk ⊂ R

(k = 1,2) such that

�fk(t, x)��fk(t, x) f or t ∈ R, x�y (k = 1,2), (1.18)

fk(t, x) �= fk(t, y) f or t ∈ Ik, x �= y (k = 1,2). (1.19)

Then system(1.16)has at most one�-periodic solution and for such a solution to exist it is
necessary and sufficient that

lim
x→+∞

∫ �

0
�fk(t, x)dt >0, lim

x→−∞

∫ �

0
�fk(t, x)dt <0 (k = 1,2). (1.20)

Corollary 1.2. Letpik(t) /≡ 0(k=1, . . . , mi ; i=1,2)and thereexist anumber� ∈ {−1,1}
such that

�pik(t)�0 f or t ∈ R (k = 1, . . . , mi; i = 1,2). (1.21)

Then system(1.17)has one and only one�-periodic solution.

Remark 1.1. From Theorem 1.3 it follows that condition (1.14) in Theorem 1.2 is nonim-
provable since it cannot be replaced by the condition

lim
x→+∞

∫ �

0
h1k(t, x)dt�0, lim

x→−∞

∫ �

0
h1k(t, x)dt�0 (k = 1,2).

Example 1.2. Let

f1(t, x) =
{
x − 1 for x <1 + u0(t),

u′
0(t) for 1�x − u′

0(t)�4,
x − 4 for x >4 − u′

0(t),

f2(t, x) = x − u0(t),

whereu0 : R → R is a continuously differentiable�-periodic function such that|u′
0(t)|�1

for t ∈ R. Then system (1.16) has an infinite set of�-periodic solutions since for arbitrary
c ∈ R the vector function(u1, u2) with the componentsu1(t) = u0(t), u2(t) = c is its
solution. On the other hand, the functionsf1 andf2 satisfy all the conditions of Theorem
1.3 except (1.19).

The constructed example shows that condition (1.19) in Theorem 1.3 is the essential one
and cannot be ignored.

2. Auxiliary propositions

2.1. Lemmas on�-periodic solutions of system (1.1)

Let U be the fundamental matrix of the differential system (1.10), satisfying the initial
condition

U(0) = E,
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whereE is the unit 2× 2 matrix. Then, by virtue of (1.3),

U(t + �) = U(t)U(�) for t ∈ R (2.1)

and system (1.10) does not have a nontrivial�-periodic solution if and only if the matrix
U(�) − E is nondegenerate. If this condition is fulfilled, we assume that(

g11(t, s) g12(t, s)

g21(t, s) g22(t, s)

)
= U(t)(U−1(�) − E)−1U−1(s). (2.2)

It is clear that for arbitrarily fixeds ∈ R the vector functions(g1i (·, s), g2i (·, s)) (i = 1,2)
are solutions of system (1.1). On the other hand, taking into account (2.1), from (2.2) we
find

gik(t + �, s + �) ≡ gik(t, s), gii(t, t + �) ≡ 1 + gii(t, t),

gi 3−i (t, t + �) ≡ gi 3−i (t, t) (i, k = 1,2).

These identities immediately imply that the vector function(u1, u2) with the components

ui(t) =
∫ t+�

t

[gi1(t, s)q1(s) + gi2(t, s)q2(s)] ds for t ∈ R (i = 1,2) (2.3)

is an�-periodic solution of system (1.1).
Therefore the following statement is true.

Lemma 2.1. System(1.1)has a unique�-periodic solution if and only if the corresponding
homogeneous system(1.10) does not have a nontrivial�-periodic solution. In that case,
the components of the�-periodic solution of system(1.1)admit representation(2.3),where
gik (i, k = 1,2) are the functions defined from equality(2.2).

Let (u1, u2) be an arbitrary�-periodic solution of system (1.10) and

vi(t) = exp

(
−

∫ t

0
pii(s)ds

)
ui(t) (i = 1,2).

Then(v1, v2) is a solution of the system

v′
i = pi(t)v3−i (i = 1,2), (2.4)

satisfying the conditions

vi(t + �) = �ivi(t) for t ∈ R (i = 1,2), (2.5)

wherepi and�i (i=1,2) are the functions and numbers given by equalities (1.5) and (1.7).
It also clearly follows that if(v1, v2) is a solution of problem (2.4), (2.5) and

ui(t) = exp

(∫ t

0
pii(s)ds

)
vi(t) (i = 1,2),

then(u1, u2) is an�-periodic solution of system (1.10). Hence Lemma 2.1 gives rise to
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Lemma 2.2. System(1.1) has a unique�-periodic solution if and only if problem(2.4),
(2.5)has only a trivial solution.

To prove Theorem 1.1, along with Lemma 2.2 we need also the following:

Lemma 2.3. Let

pi(t) /≡ 0, �ipi(t)�0 f or t ∈ R (i = 1,2), (2.6)

where�i ∈ {−1,1},and problem(2.4), (2.5)have a nontrivial solution(v1, v2).Then either
v1 andv2 are functions with alternating sign on each interval of length� or

�i (�i − 1)v1(t)v2(t)>0 f or t ∈ R (i = 1,2). (2.7)

Proof. First we note that, in view of conditions (1.3) and notations (1.5), (1.7), we have

p1(t + �) = �1

�2
p1(t), p2(t + �) = �2

�1
p2(t) for t ∈ R.

If along with this we take into account condition (2.6), then the validity of the following
inequalities:

�i

∫ t+�

t

pi(s)ds >0 for t ∈ R (i = 1,2) (2.8)

becomes evident.
First it will be shown that if for somek ∈ {1,2} the functionvk has at least one zero, then

v3−k is a function with alternating sign. Let us assume the contrary. Then it can be assumed
without loss of generality that

v3−k(t)�0 for t ∈ R. (2.9)

On the other hand, by (2.5), we have

vk(t0 + �) = vk(t0) = 0, v3−k(t0)>0

for somet0. Using the latter conditions, from (2.4) we find∫ t0+�

t0

pk(s)v3−k(s)ds = 0.

Hence on account of (2.6) and (2.9) it follows thatpk(t)v3−k(t) = 0 for almost allt ∈
[t0, t0 + �]. Therefore,

vk(t) =
∫ t

t0

pk(s)v3−k(s)ds = 0,

v3−k(t) = v3−k(t0) +
∫ t

t0

p3−k(s)vk(s)ds = v3−k(t0) for t ∈ [t0, t0 + �]
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and

v3−k(t0)

∫ t0+�

t0

pk(s)ds = 0,

which contradicts condition (2.8). The contradiction obtained proves the sign alternation
property ofv3−k. Hence, sincek ∈ {1,2} is arbitrary, it follows that eitherv1 andv2 are
functions with alternating sign or

vi(t)vi(s)>0 for s, t ∈ R (i = 1,2). (2.10)

In case inequalities (2.10) are fulfilled, by (2.5), (2.6) and (2.8) we find from (2.4) that

�i (�i − 1)vi(t)v3−i (t)

= �i

∫ t+�

t

pi(s)(v3−i (t)v3−i (s))ds >0 for t ∈ R (i = 1,2).

Therefore inequalities (2.7) are fulfilled.�

2.2. Lemma on the existence of a periodic solution of system (1.2)

Lemma 2.4. Let there exist functionspik ∈ L� (i, k=1,2) and a positive number�0 such
that system(1.10) does not have a nontrivial�-periodic solution and for each� ∈ ]0,1[
an arbitrary�-periodic solution of the differential system

u′
i = (1 − �)(pi1(t)u1 + pi2(t)u2) + �fi(t, u1, u2) (i = 1,2) (2.11)

admits the estimate
n∑

i=1

|ui(t)|<�0 for t ∈ R. (2.12)

Then system(1.1)has at least one�-periodic solution.

Proof. Let B� be the Banach space of�-periodic continuous vector functions(u1, u2) :
R → R2 with the norm

‖(u1, u2)‖ = max{|u1(t)| + |u2(t)| : t ∈ R},
and� : [0,+∞[→ [0,+∞[ be the function given by the equality

�(s) =
{1 for 0�s��0,

2 − s/�0 for �0 <s <2�0,

0 for s��0.

(2.13)

For an arbitrary(u1, u2) ∈ B� we assume that

qi(u1, u2)(t) = �(‖(u1, u2)‖)[fi(t, u1(t), u2(t))

− pi1(t)u1(t) − pi2(t)u2(t)] (i = 1,2). (2.14)
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By virtue of condition (1.4)

qi : B� → L� (i = 1,2)

are continuous operators satisfying, for arbitraryt ∈ R and(u1, u2) ∈ R2, the inequalities

|qi(u1, u2)(t)|� q̃i (t) (i = 1,2), (2.15)

where

q̃i (t) = 2�0

2∑
k=1

|pik(t)| + max{|fi(t, x1, x2)| : |x1| + |x2|�2�0}

andq̃i ∈ L� (i = 1,2).
Let us first of all show that an arbitrary�-periodic solution(u1, u2) of the system of

functional differential equations

u′
i = pi1(t)u1 + pi2(t)u2 + qi(u1, u2)(t) (i = 1,2) (2.16)

is a solution of system (1.1). Assume the contrary. Then either the inequality

‖(u1, u2)‖>2�0 (2.17)

or

�0�‖(u1, u2)‖�2�0 (2.18)

is fulfilled by virtue of equalities (2.13) and (2.14).
Inequality (2.17) cannot take place since in that case(u1, u2) would be a solution of

system (1.10) by virtue of equalities (2.13) and (2.14). But this system does not have a
nontrivial �-periodic solution. It remains to consider the case where condition (2.18) is
fulfilled. Then(u1, u2) is a solution of system (2.11), where

� = �(‖(u1, u2)‖) ∈ ]0,1[ .
Hence by the condition of the lemma it follows that‖(u1, u2)‖<�0, which contradicts
inequality (2.18). The obtained contradiction proves that(u1, u2) admits estimate (2.12)
and thus is a solution of system (1.1).

By the facts proved above, to complete the proof of the lemma, it suffices to establish
that system (2.16) has at least one�-periodic solution.

LetU be the fundamental matrix of system (1.10), satisfying the initial conditionU(0)=
E, andgik : R2 → R (i, k = 1,2) be the functions given by the matrix equality (2.2).
Following Lemma 2.1, system (2.16) has at least one�-periodic solution if the operator
equation

(u1(t), u2(t)) = (g1(u1, u2)(t), g2(u1, u2)(t)), (2.19)

where

gi(u1, u2)(t)

=
∫ t+�

t

[gi1(t, s)q1(u1, u2)(s) + gi2(t, s)q2(u1, u2)(s)] ds (i = 1,2) (2.20)

has at least one solution in the spaceB�.
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Assume that

ui0(t) =
∫ t+�

t

[|gi1(t, s)|̃q1(s) + |gi2(t, s)|̃q2(s)] ds (i = 1,2),

B0
� = {(u1, u2) ∈ B� : |u1(t)|�u10(t), |u2(t)|�u20(t) for t ∈ R} .

Obviously,ui0 ∈ L� (i = 1,2) andB0
� is the closed convex set ofB�. On the other hand,

if, along with the continuity of the operatorsqi : B� → L� (i=1,2), we take into account
inequalities (2.15) and apply the Arzella–Ascoli lemma, then from representation (2.20) we
conclude that(g1, g2) : B� → B� is a continuous operator that transformsB0

� into its
compact subset. Hence, by Schauder’s theorem it follows that the operator equation (2.19)
has a solution(u1, u2) ∈ B0

�. �

2.3. Lemma on an a priori estimate

Let � ∈ {−1,1}, �1 be a positive number,h0i ∈ L� (i = 1,2) be nonnegative functions
andh : R × [0,+∞[→ [0,+∞[ be a nondecreasing with respect to the second argument
function such thath(·,�) ∈ L� for any � ∈ [0,+∞[. We will consider the system of
differential inequalities

�u′
i (t)u3−i (t)� − h0i (t)|u3−i (t)| (i = 1,2), (2.211)

|u′
i (t)|�h(t, |u3−i (t)|) (i = 1,2) (2.212)

with the additional conditions

min{|ui(t)| : t ∈ R}<�1 (i = 1,2). (2.22)

We call an�-periodic vector function(u1, u2) : R → R2 an �-periodic solution of
system (2.211), (2.212) if it is absolutely continuous and satisfies, almost everywhere onR,
inequalities (2.211) and (2.212).

Lemma 2.5. There exists a positive number�0 such that an arbitrary�-periodic solution
(u1, u2) of system(2.211), (2.212), satisfying conditions(2.22),admits estimate(2.12).

Proof. By inequalities (2.211) we have

|u′
i (t)u3−i (t)| = |�u′

i (t)u3−i (t) + h0i (t)|u3−i (t)| − h0i (t)|u3−i (t)||
� |�u′

i (t)u3−i (t) + h0i (t)|u3−i (t)|| + h0i (t)|u3−i (t)|
= �u′

i (t)u3−i (t) + 2h0i (t)|u3−i (t)| (i = 1,2).

Therefore,

|u′
1(t)u2(t)| + |u′

2(t)u1(t)|��(u1(t)u2(t))
′ + 2(h01(t)|u2(t)| + h02(t)|u1(t)|).
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By integrating both parts of the latter inequality from 0 to� and taking into account the
�-periodicity of the functionsu1 andu2 we obtain∫ �

0
(|u′

1(t)u2(t)| + |u′
2(t)u1(t)|)dt

�2
∫ �

0
(h01(t)|u2(t)| + h02(t)|u1(t)|)dt. (2.23)

Set

�2 = 1 + 2(1 + �1)

∫ �

0
(h01(t) + h02(t))dt (2.24)

and

Ik = {t ∈ [0,�] : |u3−k(t)|>�2} (k = 1,2).

Then by inequalities (1.212) we have

�2

∫ �

0
|u′

k(t)| dt = �2

∫
[0,�]\Ik

|u′
k(t)| dt + �2

∫
Ik

|u′
k(t)| dt

��2

∫
[0,�]\Ik

h(t,�2)dt +
∫
Ik

|u′
k(t)u3−k(t)| dt (k = 1,2).

If along with these inequalities we take into account (2.23), then we find

�2

∫ �

0
(|u′

1(t)| + |u′
2(t)|)dt

��2

∫ �

0
h(t,�2)dt + 2

∫ �

0
(h01(t)|u2(t)| + h02(t)|u1(t)|)dt. (2.25)

By (2.22) we have

|ui(t)|��1 +
∫ �

0
|u′

i (t)| dt for t ∈ R (i = 1,2). (2.26)

Using these estimates and notation (2.24), from (2.25) we obtain

�2

∫ �

0
(|u′

1(t)| + |u′
2(t)|)dt

<�2

∫ �

0
h(t,�2)dt + �2 + (�2 − 1)

∫ �

0
(|u′

1(t)| + |u′
2(t)|)dt

and, therefore,∫ �

0
(|u′

1(t)| + |u′
2(t)|)dt <�2

∫ �

0
h(t,�2)dt + �2.

By virtue of this inequality, from (2.26) follows estimate (2.12), where

�0 = 2�1 + �2

∫ �

0
h(t,�2)dt + �2

is the positive constant not depending on(u1, u2). �
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3. Proofs of the main results

Proof of Theorem 1.1.Assume the contrary that the theorem is not true. Then by Lemma
2.2 problem (2.4), (2.5) has a nontrivial solution(v1, v2). In that case, by condition (1.10)
and Lemma 2.3 either

�(�i − 1)v1(t)v2(t)>0 for t ∈ R (i = 1,2) (3.1)

or v1 andv2 are functions with alternating sign on each interval of length�.
Let inequality (3.1) be fulfilled. Then

(�1 − 1)(�2 − 1)>0.

Assume for simplicity that

�1>1, �2 >1, (3.2)

since the case with�1<1 and�2 <1 is considered similarly.
By virtue of (1.10), (3.1) and (3.2),|u1| and|u2| are nondecreasing functions,

|vi(0)|< |vi(�)| (i = 1,2)

and

(�1 − 1)|v1(0)| =
∫ �

0
|p1(s)| |v2(s)| ds, (�2 − 1)|v2(0)| =

∫ �

0
|p2(s)| |v1(s)| ds.

Hence by the conditionspi(t) /≡ 0 (i = 1,2) and notation (1.6) we find

(�1 − 1)(�2 − 1)|v1(0)v2(0)|<�|v1(�)v2(�)| = �1�2�|v1(0)v2(0)|,
(�1 − 1)(�2 − 1)|v1(0)v2(0)|>�|v1(0)v2(0)|.

Therefore(�1−1)(�2−1) ∈ ]�, ��1�2[ , which contradicts condition (1.9). We have thereby
proved thatv1 andv2 are functions with alternating sign.

Let t0 ∈ [0,�] be such thatv1(t0)v2(t0) = 0. Then

v1(t0 + �)v2(t0 + �) = 0.

On the other hand,

�(v1(t)v2(t))
′ = |p1(t)|v2

2(t) + |p2(t)|v2
1(t)�0 for t0 < t < t0 + �.

Therefore,

v1(t)v2(t) = 0 for t ∈ [t0, t0 + �].
Sincev1 and v2 are functions with alternating sign, this implies that there existss0 ∈
[t0, t0 + �] such that

vi(s0) = 0 (i = 1,2). (3.3)

But this is impossible since problem (2.4), (3.3) has only a trivial solution. The contradiction
obtained proves the theorem.�
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Proof of Theorem 1.2. First we note that by virtue of the conditionshik ∈ M� (i, k=1,2)
from inequalities (1.15) follow the inequalities

�fi(t, x1, x2)x3−i � − h0i (t)|x3−i | (i = 1,2), (3.4)

|fi(t, x1, x2)|�h(t, |x3−i |) − |x3−i |, (3.5)

whereh0i (t) = − inf {h1i (t, x) : x �= 0}, h0i ∈ L� (i = 1,2) and

h(t,�) =
2∑

i=1

[h2i (t,�) + h2i (t,−�) + 2h0i (t)] + ��0 for ��0.

Moreover,h does not decrease with respect to the second argument andh(·,�) ∈ L� for
any� ∈ ]0,+∞[ . On the other hand, in view of (1.14) there exists a positive number�1
such that∫ �

0
h1k(t, x)dt >0 for |x| = �1 (k = 1,2). (3.6)

By Lemma 2.5, there exists a positive number�0 such that an arbitrary�-periodic solution
of system (2.211), (2.212), satisfying conditions (2.22), admits estimate (2.12).

According to Corollary 1.1, the differential system

u′
i = �u3−i (i = 1,2)

does not have a nontrivial�-periodic solution. By virtue of this fact and Lemma 2.4, to
prove Theorem 1.2 it suffices to establish that for each� ∈ ]0,1[ an arbitrary�-periodic
solution(u1, u2) of the differential system

u′
i = (1 − �)�u3−i + �fi(t, u1, u2) (i = 1,2) (3.7)

admits estimate (2.12).
First we show thatu1 andu2 satisfy inequalities (2.22). Assume the contrary that for

somei ∈ {1,2} the inequality

�0ui(t)��1 for t ∈ R, where�0 = sgnui(0)

holds. If along with this we take into account condition (1.15), then from (3.7) we find

�0�u′
3−i (t)> �h1i (t, ui(t))��h1i (t,�0�1).

Therefore,

0 = �0�
∫ �

0
u′

3−i (t)dt > �
∫ �

0
h1i (t,�0�1)dt,

which is impossible in view of condition (3.6).The obtained contradiction proves the validity
of inequality (2.22). On the other hand, due to conditions (3.4) and (3.5), from (3.7) it follows
that(u1, u2) is a solution of the system of differential inequalities (2.211), (2.212). Hence,
taking into account how the number�0 is chosen, we have estimate (2.12).�



254 I. Kiguradze, S. Mukhigulashvili / Nonlinear Analysis 60 (2005) 241–256

Proof of Theorem 1.3. Let (u1, u2) and(u1, u2) be arbitrary�-periodic solutions of sys-
tem (1.16). Set

vi(t) = ui(t) − ui(t) (i = 1,2),

I0k = {t ∈ [0,�] : v3−k(t) �= 0} (k = 1,2).

Then

v′
k(t) = 0 for almost allt ∈ [0,�]\I0k (k = 1,2), (3.8)

v′
k(t) �= 0 for almost allt ∈ I0k ∩ Ik (k = 1,2). (3.9)

On the other hand, in view of condition (1.18), for almost allt ∈ [0,�] we have

�v′
k(t)v3−k(t)

= [fk(t, u3−k(t)) − fk(t, u3−k(t))](u3−k(t)−u3−i (t))�0 (k = 1,2).

Therefore,

�(v1(t)v2(t))
′ = |v′

1(t)v2(t)| + |v′
2(t)v2(t)|.

Integrating this identity from 0 to�, we find∫ �

0
(|v′

1(t)v2(t)| + |v′
2(t)v2(t)|)dt = 0.

Thus,∫
I0k

|v′
k(t)| dt = 0 (k = 1,2)

and, consequently,

v′
k(t) = 0 for almost allt ∈ I0k (k = 1,2).

Hence, due to (3.8) and (3.9), follows

v′
k(t) = 0 for almost allt ∈ R (k = 1,2) (3.10)

and

mes(I0k ∩ Ik) = 0 (k = 1,2).

However, mesIk >0 (k = 1,2). Thus there existtk ∈ I3−k (k = 1,2) such that

vk(tk) = 0 (k = 1,2).

By virtue of these conditions, (3.10) results invk(t) = 0 (k = 1,2), and consequently,
uk(t) ≡ uk(t) (k = 1,2). Thus we have proved that system (1.16) has at most one solution.

Now we prove that for the existence of an�-periodic solution of system (1.16) it is
necessary inequalities (1.20) to be fulfilled. Indeed, if this system has an�-periodic solution
(u1, u2), then∫ �

0
fk(t, u3−k(t))dt = 0 (k = 1,2).
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Hence, by virtue of conditions (1.18) and (1.19), follows∫ �

0
�fk(t,�)dt >0,

∫ �

0
�fk(t,−�)dt <0 (k = 1,2),

where�= 1+ max{|u1(t)|+ |u2(t)| : t ∈ R}. If now we apply again condition (1.18), then
the validity of inequalities (1.20) becomes evident.

To complete the proof it remains to show that if along with (1.18) and (1.19) condition
(1.20) holds, then system (1.16) has an�-periodic solution. Indeed, system (1.16) is obtained
from system (1.2) in the case, where

fi(t, x1, x2) ≡ fi(t, x3−i ) (i = 1,2).

In that case onR × R2 inequalities (1.15) are satisfied, where

h1i (t, x) ≡ h2i (t, x) ≡ �fi(t, x) sgnx (i = 1,2).

On the other hand, in view of (1.18) and (1.20) it is obvious thathik ∈ M� (i, k = 1,2)
and the functionsh1k (k = 1,2) satisfy inequalities (1.20). Therefore all the conditions
of Theorem 1.2 are fulfilled, which guarantees the existence of an�-periodic solution of
system (1.16). �

To convince ourselves of the validity of Corollary 1.2, it suffices to note that according to
inequalities (1.21) andpik(t) /≡ 0 (k = 1, . . . , mi ; i = 1,2), the functionsf1 andf2, given
by the equalities

fi(t, x) =
mi∑
k=1

pik(t)|x|�ik sgnx + qi(t) (i = 1,2),

satisfy conditions (1.18)–(1.20).
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