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Abstract

Nonimprovable conditions are established for the existence and uniqueness-pgiodic solu-
tion of the nonautonomous differential systems

up = pin(uy + pip(uz +q;(t) (i =1,2)
and
up = filt,ug,up) (i=1,2),

wherep;r : R — R, q; : R — R (i, k =1, 2) arew-periodic functions, Lebesgue integrable on
[0, w],andf; : R x R? > R (i =1, 2) are functions from the Carathéodory class such that

fit + w,x1,x2) = fi(t,x1,x2) (=1,2).
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1. Formulation of the main results. Examples

Problems on the existence and uniqueness of a periodic solution of systems of nonau-
tonomous ordinary differential equations have long been attracting the attention of math-
ematicians and used as the subject of many studies (see, for exftra@] and the ref-
erences therein). And all the same these problems still remain topical for two-dimensional
linear and nonlinear differential systems

up = pin(Du1+ pi2(uz + qi(t) (i =1,2) (1.1)
and
Wy = fi(t,u,u2) (i=1,2). (1.2)

In this paper, an attempt is made to fill to a certain extent the gap existing in this area. More
exactly, new and, in a certain sense, optimal sufficient conditions are established for the
existence and uniqueness of a periodic solution of systems (1.1) and (1.2) with a period
o> 0.

Throughout the paper the following notation is used.

R™ is them-dimensional real Eucledean space.

L, is the space ofo-periodic and Lebesgue integrable @) w] functionsp : R — R
with the norm

Il =/ [p(t)|dr.
0

K, (R x R™) is the space of functiong : R x R™ — R, which arew-periodic in the
first argument and satisfy the local Carathéodory conditions. Consequently, the notation
f € Ky(R x R™) means thatf(z,-,...,-) : R™ — R is continuous for any € R,
f(C,x1,...,x,) € Ly forany(xy, ..., x,) € R™ and

m
max{|f(-,x1, o X)) Z lxi|<py¢ €Ly foranyp €]0, +ool.
i=1

For any functionp : R — R the notationp(z) = 0 means thap is different from zero
on the set of positive measure.

Everywhere in the sequel when we consider systems (1.1) and (1.2), it will be assumed
that

pik € L(l)v CIi € LCO (lv k = 15 2) (13)

and

fi € Ko(Rx R?) (i=12), (1.4)

respectively.
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1.1. Existence and uniqueness theorem for system (1.1)

Set
pi(t) = pi3-i(t) exp(/ot(m—i 3-i(s) = pii(s)) dS> (i=12), (1.5)
e= [Cimoiss [ iparias (L.6)
Ai = exp(— /Ow pii (s) ds) (i=1,2), a.7)
wy =min{l, 2142},  pp, = max{l, 112} (1.8)

Theorem 1.1. Letp;(r) £0 (i =1, 2),

(la—D2—1) ¢1euy, Luyl (1.9)
and there exist € {—1, 1} such that

opi()=0 forteR (i=12). (1.10)

Then systerfil.1) has a uniquen-periodic solution
If

w [0)
/o P11(S)dS/0 p22(s) ds <O, (1.11)

then by virtue of (1.7) we hawgl; — 1) (12 — 1) <0 and therefore condition (1.9) is fulfilled.
Thus Theorem 1.1 gives rise to

Corollary 1.1. Let p;(¢) # 0 and for somer € {—1, 1} conditions(1.10)and (1.11) be
fulfilled. Then systerfl.1) has a uniqueo-periodic solution.

Example 1.1. For arbitrarily givere € ]0, 1[, choose) > 0 such that

(expdm) — 1)% < (1 + £)6%w?.
Consider the homogeneous system

u; = pit(Hur + piz(Huz (i =1,2), (1.19)
wherep11(t) = p22(t) = —9, p12(t) = p21(t) = 6. Then, by (1.6)—(1.8), we have

0=5%0?, Ji=expldw) (i=1,2), =1 u=exp2in).
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Therefore,
/0 paa(s) dS/O p22(s)ds <e (1.13)

and inequalities (1.10), where= 1, are fulfilled.

On the other hand, system.{3) has a nontriviato-periodic solution(u1, u2) with the
components; (r) = 1 (i = 1, 2). Therefore, the nonhomogeneous system (1.1) either has
no w-periodic solution or has an infinite set of such solutions. The constructed example
shows that in Theorem 1.1 (in Corollary 1.1), condition (1.9) (condition (1.11)) cannot be
replaced by condition (1.12) (by condition (1.13)) no matter how smalD is.

1.2. Existence and uniqueness theorems for system (1.2)

Denote byM,, the set of functiong : R x R — R such that

h(t,x)>h(t,y) forte R, x>y>0,
h(t,x)<h(t,y) forreR, y<x<0,
h(-,x) € L, foranyx e R and infla(-,x):x #0} € L.

Theorem 1.2. Let there exist a number € {—1, 1} and functionsi;; € M, (i, k =1, 2)
such that

()

w
lim / h(t, x)dr >0, lim hu(t,x)dr>0 (k=12 (1.14)
0 X—>—0Q

X—>+00 0
and onR x R? the inequalities
hai(t, x3-i) < fi(t, x1, x2) SQnxg—; <hoi(t, x) (i=1,2) (1.15)

hold. Then systeifl.1) has at least one»-periodic solution.

The particular cases of (1.2) are the systems

uf = fi(t,uz—;) (=12, (1.16)
mi
W= pi(luzi " sgnuz_; +qi(t) (i =12), (1.17)
k=1
where

fie Kp(RxR) (i=12)
and

Aik>0, pix €Ly, qgi€Ly, (k=1 ...,m;; i=12).
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Theorem 1.3. Let there exist a number € {—1, 1} and sets of positive measuke C R
(k =1, 2) such that

ofi(t,x)=>o0fk(t,x) forteR, x>y (k=1,2), (1.18)

Je@, x) # fit,y) fortely, x#y (k=12). (1.19)

Then syster(iL.16)has at most one-periodic solution and for such a solution to exist it is
necessary and sufficient that

w w

lim f o fr(t, x)dt >0, lim / ofrt,x)dt <0 (k=1 2). (1.20)
X—+00 0 X—>—=00 Jo

Corollary 1.2. Letp;r(t) #0(k=1, ..., m;;i=1, 2) andthere existanumbere {—1, 1}

such that

opixt)=0 forteR (k=1 ...,m;; i=12). (1.22)

Then syster(il.17)has one and only on@-periodic solution.

Remark 1.1. From Theorem 1.3 it follows that condition (1.14) in Theorem 1.2 is nonim-
provable since it cannot be replaced by the condition

(&)

(0]
lim / hy(t, x)dr >0, lim / hy(t,x)de >0 (k=1,2).
x—+00 Jg x——00 Jg
Example 1.2. Let
x—1 forx <1+ ug(t),
fit, x) = {u{,(r) for 1<x — ug(t) <4,
x—4 forx>4—uy@),
fa(t, x) = x —uo(t),

whereug : R — R is acontinuously differentiable-periodic function such thai(r)| <1
fort € R. Then system (1.16) has an infinite setwperiodic solutions since for arbitrary
¢ € R the vector function(u1, up) with the components(¢) = uo(t), uz(t) = c is its
solution. On the other hand, the functiofisand f> satisfy all the conditions of Theorem
1.3 except (1.19).

The constructed example shows that condition (1.19) in Theorem 1.3 is the essential one
and cannot be ignored.

2. Auxiliary propositions
2.1. Lemmas omw-periodic solutions of system (1.1)

Let % be the fundamental matrix of the differential systenig), satisfying the initial
condition

U0)=E,
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whereE is the unit 2x 2 matrix. Then, by virtue of (1.3),
Ut + w)=U0Uw) forteR (2.1)

and system (1g) does not have a nontriviab-periodic solution if and only if the matrix
U (w) — E is nondegenerate. If this condition is fulfilled, we assume that

g11(t,s) gua(t,s)\ _ Dl 11
<gzl(t,s) gzz(t,s))_?l(t)(% (@) = B U (). 2.2)

It is clear that for arbitrarily fixed € R the vector functionggy; (-, s), g2:(-, 5)) (i =1, 2)
are solutions of system (1.1). On the other hand, taking into account (2.1), from (2.2) we
find

gik(t +w,s +w) = gik(t,s), gi(t,t+w)=1+gi1),
giz-it,t+w) =gzt 1) (,k=12).

These identities immediately imply that the vector functien, #2) with the components

+w
u;(r) =/ [gi1(7, $)g1(s) + gi2(t, s)q2(s)]ds forre R (i=1,2) (2.3)
t

is anw-periodic solution of system (1.1).
Therefore the following statement is true.

Lemma 2.1. Systen{l.1)has a uniqueo-periodic solution if and only if the corresponding
homogeneous systefh 1p) does not have a nontriviab-periodic solution. In that case
the components of the-periodic solution of systed.1)admit representatio(2.3),where
gik (i, k =1, 2) are the functions defined from equal{B:2).

Let (u1, u2) be an arbitrarys-periodic solution of system (Igland

t
v (1) = exp(—/ Pii(s)ds> ui(t) (=12).
0
Then(vq, v2) is a solution of the system
v, =pi(Hva—; (i=12), (2.4)
satisfying the conditions
vi(t +w)=v(t) forteR (i=12), (2.5)

wherep; and4; (i =1, 2) are the functions and numbers given by equalities (1.5) and (1.7).
It also clearly follows that ifv1, v2) is a solution of problem (2.4), (2.5) and

t
ui(t) = exp(/ pii(s) dS> vi(t) (=12,
0

then(uz, up) is anw-periodic solution of system (1gL Hence Lemma 2.1 gives rise to
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Lemma 2.2. Systen(1.1) has a uniquen-periodic solution if and only if probler(2.4),
(2.5) has only a trivial solution

To prove Theorem 1.1, along with Lemma 2.2 we need also the following:

Lemma 2.3. Let
pi(t) #0, 0ipi(t)=0 forteR (i=12), (2.6)

whereg; € {—1, 1}, and problen(2.4), (2.5)have a nontrivial solutiorvy, v2). Then either
v1 and vz are functions with alternating sign on each interval of lengtlor

i(Ai — Dvi(®)v2(t) >0 fortre R (i=1,2). 2.7)

Proof. First we note that, in view of conditions (1.3) and notations (1.5), (1.7), we have

/1 /2
pit + w) = = pi(t), p2(t+w)=—=p2(t) forteR.
2 i
If along with this we take into account condition (2.6), then the validity of the following
inequalities:

4w
o; / pi(s)ds>0 forreR (i=1,2) (2.8)
t

becomes evident.

First it will be shown that if for somé € {1, 2} the functiorv; has at least one zero, then
v3_¢ IS a function with alternating sign. Let us assume the contrary. Then it can be assumed
without loss of generality that

v3_;(t)=>0 forr e R. (2.9)
On the other hand, by (2.5), we have

Ve (fo + @) = v (o) =0, v3—x(70) >0
for somerg. Using the latter conditions, from (2.4) we find

to+w
/ Pr(s)vz—(s)ds =0.
1

0

Hence on account of (2.6) and (2.9) it follows that(r)vs_(t) = O for almost allr €
[to, to + w]. Therefore,

t
vk(l)=/ Pr(s)va_i(s)ds =0,
1

0
t

vak(t) = va_s(fo) + / 3 k($)oe(s)ds = v3_g (1) for 1 € [10, 1o+ ]

o
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and
to+w
v3— (to) / pr(s)ds =0,
1o

which contradicts condition (2.8). The contradiction obtained proves the sign alternation
property ofvs_x. Hence, sinc& e {1, 2} is arbitrary, it follows that eithep; andv, are
functions with alternating sign or

vi(Hvi(s)>0 fors,re R (i=12). (2.10)
In case inequalities (2.10) are fulfilled, by (2.5), (2.6) and (2.8) we find from (2.4) that
0i (4 — Dvi(H)va—i (1)
t+w
= 0; / pi(s)(va—i(H)vz—i(s))ds >0 forre R (i=1,2).
1

Therefore inequalities (2.7) are fulfilled [

2.2. Lemma on the existence of a periodic solution of system (1.2)

Lemma 2.4. Let there exist functiong;x € L, (i, k=1, 2) and a positive number, such
that system(1.1p) does not have a nontriviab-periodic solution and for each < 10, 1]
an arbitrary w-periodic solution of the differential system

up = (1 — A (pin(us + pi2(uz) + Afi(t, ur, uz) (=12 (2.11)
admits the estimate

Z lui(t)| < pg forteR. (2.12)

i=1

Then syster(il.1) has at least one»-periodic solution

Proof. Let B, be the Banach space efperiodic continuous vector functiornis, u2) :
R — R? with the norm

(g, u2) |l = maxius(®)] + luz2(t)] = 1 € R},

ando : [0, +oo[ — [0, +ool be the function given by the equality

1 for 0<s < po,
0(s)=132—s/pg for pg<s<2p, (2.13)
0 for s > pg.

For an arbitrary(u1, u2) € By, we assume that

qi(ug, u2) (1) = 0|l (u, u2) DLfi (¢, ur(t), u2(t))
— pin(Mu1(t) — pi2(Du20)] (1 =1,2). (2.14)
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By virtue of condition (1.4)
qgi By > Ly (=12

are continuous operators satisfying, for arbitragy R and(u1, u2) € R?, the inequalities

lgi (w1, u2) (O <G (1) (1 =1,2), (2.15)
where
2
i (1) =2pg Y Ipi(®)] + max| fi(z, x1, x2)]| : |x1] + |x2| < 2p0)
k=1

andg; € Ly, i=1,2).
Let us first of all show that an arbitraky-periodic solution(u1, u2) of the system of
functional differential equations

uj = pir(ur + pi2(Ouz + gi(uy, u2)(1) (i =1,2) (2.16)
is a solution of system (1.1). Assume the contrary. Then either the inequality

| (u1, u2)|l > 2pg (2.17)
or

Po< I, u2)1 <2p (2.18)

is fulfilled by virtue of equalities (2.13) and (2.14).

Inequality (2.17) cannot take place since in that cageuy) would be a solution of
system (1.3) by virtue of equalities (2.13) and (2.14). But this system does not have a
nontrivial w-periodic solution. It remains to consider the case where condition (2.18) is
fulfilled. Then(u1, uy) is a solution of system (2.11), where

4= 0(ll(uz, uz)|) €10, 1[.

Hence by the condition of the lemma it follows thet1, u2)|| < pg, Which contradicts
inequality (2.18). The obtained contradiction proves tfat u2) admits estimate (2.12)
and thus is a solution of system (1.1).

By the facts proved above, to complete the proof of the lemma, it suffices to establish
that system (2.16) has at least angeriodic solution.

Let% be the fundamental matrix of system (d),Isatisfying the initial conditiof (0) =
E, andgi; : R?> — R (i, k = 1, 2) be the functions given by the matrix equality (2.2).
Following Lemma 2.1, system (2.16) has at least enperiodic solution if the operator
equation

(ua(r), u2(1)) = (g1(u1, u2)(t), g2(u1, u2)(1)), (2.19)
where
gi(uy, u)(t)

t+w
=/ [gi1(t, $)q1(u1, u2)(s) + gi2(t, $)g2(uz, u2)(s)]ds (i =1,2) (2.20)
t

has at least one solution in the spa;g
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Assume that

1+
uio(r) =/ [lgir(t, )Ig1(s) + 1gia(t, $)|g2(s)1ds (i =1,2),
t

B2 = {(u1,u2) € By, : lua(t)| Suio(t), lu2(1)| <uzo(t) for ¢ € R}.

Obviously,u;o € L, (i =1, 2) andBS, is the closed convex set &,. On the other hand,
if, along with the continuity of the operatogs : B, — L, (i =1, 2), we take into account
inequalities (2.15) and apply the Arzella—Ascoli lemma, then from representation (2.20) we
conclude thatgi, g2) : B, — B, is a continuous operator that transform% into its
compact subset. Hence, by Schauder’s theorem it follows that the operator equation (2.19)
has a solutioriuy, uz) € BS. O
2.3. Lemma on an a priori estimate

Letos € {—1, 1}, p; be a positive numbehg; € L, (i =1, 2) be nonnegative functions
andh : R x [0, +oo[ — [0, +o0[ be a nondecreasing with respect to the second argument

function such that(-, p) € L, for any p € [0, +oo[. We will consider the system of
differential inequalities

oup(uz—i (1) = — hoi ()|uz—; (| (=1,2), (2.21)

lu; (O <A, luz—i (D) (=1,2) (2.2)
with the additional conditions

min{lu;(t)] : 1 € R} <p; (=12). (2.22)
We call anw-periodic vector functionus, u2) : R — R? an w-periodic solution of
system (2.21), (2.21) if it is absolutely continuous and satisfies, almost everywherg,on

inequalities (2.21) and (2.23).

Lemma 2.5. There exists a positive numbeg such that an arbitraryo-periodic solution
(u1, up) of systen(2.21;), (2.21y), satisfying condition$2.22),admits estimat¢€2.12).

Proof. By inequalities (2.21) we have

| (Duz—i (O] = |ou; (OYuz—i (1) + hoi (1) [uz—i ()] — hoi (1) |uz—i ()]
<loup(Ouz—i (1) + hoi (1) lug—i (O] + hoi (1) luz—i (1)]
= ouj(Duz—; (1) + 2hoi (1)|uz—i(1)| (i =1,2).

Therefore,

|y (Duz(0)] + lupOur(0)] < ourOua(t)) + 2(hoa () u2(t)| + hoa()|ua (1))).
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By integrating both parts of the latter inequality from Occand taking into account the
w-periodicity of the functiong; andu, we obtain

/O ()] + luy(uen (D)) o
<2 /O (ho1(0)u2(t)] + hoa(t) lur (D)) dr. (2.23)
Set
pr=1+2(1+ py) /O (hoa() + hop(t)) dr (2.24)
and

L=t €(0,0]: lus_ k(D] > pp) (k=1,2).

Then by inequalities (212) we have

()
Pz/ Iu;(t)ldt=/)z/ Iui(t)ldt+pz/ |uj (1) Ot
0 [0, 0]\ Ix I
<p2/ h(t, py) dt +/ u (Duz_ (O] dt - (k=1,2).
[0, ]\ Ix Ir
If along with these inequalities we take into account (2.23), then we find
(&)
o [ a0l + o) o
0 w w
<P2/0 h(t, pp) dt + 2/0 (hoa(t) |uz(t)] + ho2(t) |lus(2)]) dr. (2.25)
By (2.22) we have
()
lu; ()| < pq +/ luj(t)|dr forte R (i=12). (2.26)
0
Using these estimates and notation (2.24), from (2.25) we obtain
(&)
oo [ a0l + o o
0 ) [0)
< Pz/o h(t, pp) dit + py + (p2 — 1)/0 (Juy (O] + |u5(0)]) dr
and, therefore,
w w
/0 (U1 ()] + [u5(0)]) dr <p2/o h(t, pp) di + p,.
By virtue of this inequality, from (2.26) follows estimate (2.12), where

w
po=2p1+ Pz/o h(t, pp) dt + p,

is the positive constant not depending@a, u2). [
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3. Proofs of the main results

Proof of Theorem 1.1. Assume the contrary that the theorem is not true. Then by Lemma
2.2 problem (2.4), (2.5) has a nontrivial solutian, vy). In that case, by condition (1.10)
and Lemma 2.3 either

(4 — Dvi()v2(t) >0 forre R (i=1,2) (3.1)

or v1 andvy are functions with alternating sign on each interval of length
Let inequality (3.1) be fulfilled. Then

(J1—1(2—1)>0.
Assume for simplicity that
1>1, Ao>1, (3.2)

since the case with; < 1 and/, < 1 is considered similarly.
By virtue of (1.10), (3.1) and (3.2)x1| and|uz| are nondecreasing functions,

i (O] <vi(@)| (=12

and
(A1 — D]v1(0)] =/O [p1(s)] [va(s)|ds, (A2 — D)]v2(0)] =f0 [p2(s)] [v(s)| ds.

Hence by the conditiong; () # 0 (i = 1, 2) and notation (1.6) we find

(41 — D (A2 — D]v1(0)v2(0)| < £|vi(w)v2(w)| = A142€|v1(0)v2(0)],
(A1 — 1) (J2 — D|v1(0)v2(0)| > £]v1(0)v2(0)].

Thereforg A1 —1)(12—1) € ¢, £41/2[ , which contradicts condition (1.9). We have thereby
proved thatv; andv; are functions with alternating sign.
Let o € [0, w] be such thabq(7g)v2(fg) = 0. Then

v1(fo + w)va(tg + w) = 0.
On the other hand,

s (u1(H)v2(0)) = | p15(1) + [p2()W5(1) 20 forto<t <10+ w.
Therefore,

v1i(t)v2(r) =0 forr € [ro, to + w].

Sincev1 and vy are functions with alternating sign, this implies that there exists
[to, to + ] such that

vi(s0) =0 (=1,2). (3.3)

Butthis isimpossible since problem (2.4), (3.3) has only a trivial solution. The contradiction
obtained proves the theorem(J
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Proof of Theorem 1.2. First we note that by virtue of the conditiohs € M,, (i, k=1, 2)
from inequalities (1.15) follow the inequalities

o fi(t, x1,x2)x3-; = — hoi () |x3—i| (i =1,2), (3.4)
|ﬁ(t’x15 x2)|<h(t’ |x3,,'|) - |x37i|’ (35)
wherehg; (t) = —inf{hy; (¢, x) : x #0}, ho; € Ly, (i =1, 2) and

2

h(t,p) =) hai(t, p) +hai(t. —p) + 2hoi ()] + p=0  for p=0.
i=1

Moreover,h does not decrease with respect to the second argumerit(and € L,, for
any p €10, +oo[. On the other hand, in view of (1.14) there exists a positive nurmpber
such that

w
/ hik(t,x)dr >0 for |x| =pq (k=1,2). (3.6)
0

By Lemma 2.5, there exists a positive numpgisuch that an arbitrarg-periodic solution
of system (2.21), (2.21L), satisfying conditions (2.22), admits estimate (2.12).
According to Corollary 1.1, the differential system

u; =ouz—; (i=1,2)

does not have a nontriviab-periodic solution. By virtue of this fact and Lemma 2.4, to
prove Theorem 1.2 it suffices to establish that for each]0, 1[ an arbitraryw-periodic
solution(u1, u2) of the differential system

u, =1 — Douz—; + Afi(t,ur,u2) (i=1,2) 3.7)

admits estimate (2.12).
First we show thati; andu» satisfy inequalities (2.22). Assume the contrary that for
somei € {1, 2} the inequality

ooui(t)y=p, forre R, wheresg=sgnu;(0)
holds. If along with this we take into account condition (1.15), then from (3.7) we find
ooous_; (1) > h1;(t, ui(t)) > Ah1; (t, 6op1).

Therefore,

w w
0= 000/ us_;(r)dr > )v/ h1; (¢, oopq) dt,
0 0

whichisimpossible in view of condition (3.6). The obtained contradiction proves the validity
ofinequality (2.22). On the other hand, due to conditions (3.4) and (3.5), from (3.7) it follows
that (u1, u2) is a solution of the system of differential inequalities (2)212.21). Hence,
taking into account how the numbgg is chosen, we have estimate (2.12).]
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Proof of Theorem 1.3. Let (u1, u2) and(u1, u2) be arbitraryw-periodic solutions of sys-
tem (1.16). Set

vi(t) =u;(t) —u;(t) (=12),
Iy ={t € [0, w] : v3_¢(t) #0} (k=1 2).

Then
v (1) =0 foralmostallr € [0, w]\Iox (k=1,2), (3.8)
v (1) #0 foralmostallr € Iox N I (k =1, 2). (3.9)
On the other hand, in view of condition (1.18), for almostradl [0, ] we have

o1 vak (1)
= [fic(t. a1 (0) — fi(t, uz—p ()] @) —uz—; () =0 (k=12).

Therefore,
o(v1(H)v2(1)) = Vi (Ov2(1)| + [va(H)va(?)].

Integrating this identity from O te, we find

./o (I v2()] + va(H)v2(1)]) dr = 0.

Thus,
/ log()]dr =0 (k=1,2)
lok

and, consequently,
v (1)=0 foralmostallr € Iox (k=1,2).
Hence, due to (3.8) and (3.9), follows
v (1) =0 foralmostallr € R (k=1,2) (3.10)
and
mes(lor N Ix) =0 (k=1 2).
However, meg; > 0 (k = 1, 2). Thus there exisf, € Is_; (k =1, 2) such that
wt) =0 (k=1,2).

By virtue of these conditions, (3.10) resultsuip(z) = 0 (k = 1, 2), and consequently,

ur(t) = ur(t) (k =1, 2). Thus we have proved that system (1.16) has at most one solution.
Now we prove that for the existence of anrperiodic solution of system (1.16) it is

necessary inequalities (1.20) to be fulfilled. Indeed, if this system hasgariodic solution

(u1, u2), then

fo filt,uz_ () dt =0 (k=1,2).
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Hence, by virtue of conditions (1.18) and (1.19), follows

/w g fx(t, p)dt >0, /w afi(t,—p)dr <0 (k=1,2),
0 0

wherep =1+ maxX{|u1(t)| + |u2(t)| : t € R}. If now we apply again condition (1.18), then
the validity of inequalities (1.20) becomes evident.

To complete the proof it remains to show that if along with (1.18) and (1.19) condition
(1.20) holds, then system (1.16) has@aperiodic solution. Indeed, system (1.16) is obtained
from system (1.2) in the case, where

filt,x1,x2) = fi(t,x3—1) (=1,2).
In that case oR x R? inequalities (1.15) are satisfied, where
hii(t,x) = hoi(t,x) =afi(t,x)sgnx (i =1,2).

On the other hand, in view of (1.18) and (1.20) it is obvious thate M,, (i,k =1, 2)
and the functiongy, (k = 1, 2) satisfy inequalities (1.20). Therefore all the conditions
of Theorem 1.2 are fulfilled, which guarantees the existence of-periodic solution of
system (1.16). O

To convince ourselves of the validity of Corollary 1.2, it suffices to note that according to
inequalities (1.21) anghx (t) £0(k=1,...,m;;i =1, 2), the functionsf1 and fo, given
by the equalities

filtt,x) =Y pi@lxl* sgnx +g; (1) (i =1,2),
k=1

satisfy conditions (1.18)—(1.20).
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