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1. STATEMENT OF THE MAIN RESULTS

Let −∞ < a < t0 < b < +∞, let r : [a, b] → (0,+∞) be a continuous function, and let p,
q : [a, b] → R be Lebesgue integrable functions. On the interval [a, b], consider the differential
equation

(r(t)u′)′ = p(t)u + q(t) (1.1)

with nonlocal conditions of one of the following three types:

u(a) = l1(u) + c1, u(b) = l2(u) + c2, (1.2)
u(a) = l1(u) + c1, r(b)u′(b) = l2(ru′) + c2, (1.3)

r(a)u′(a) = l1(ru′) + c1, r(b)u′(b) = l2(ru′) + c2, (1.4)

where l1 : C([a, t0]) → R and l2 : C([t0, b]) → R are linear bounded functionals and ci ∈ R

(i = 1, 2). The multipoint boundary conditions

u(a) =
m∑

k=1

l1ku(ak) + c1, u(b) =
m∑

k=1

l2ku(bk) + c2, (1.2′)

u(a) =
m∑

k=1

l1ku(ak) + c1, r(b)u′(b) =
m∑

k=1

l2kr(bk)u′(bk) + c2, (1.3′)

r(a)u′(a) =
m∑

k=1

l1kr(ak)u′(ak) + c1, r(b)u′(b) =
m∑

k=1

l2kr(bk)u′(bk) + c2, (1.4′)

where m ≥ 1, lik ∈ R, and

a < am < · · · < a1 ≤ b1 < · · · < bm < b, (1.5)

are special cases of conditions (1.2)–(1.4).
For li(u) ≡ 0 (i = 1, 2), problems (1.1), (1.2), (1.1), (1.3), and (1.1), (1.4) are sufficiently well

studied (see [1–9] and the bibliography therein).
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I.T. Kiguradze and Lomtatidze [10] proved theorems of de la Vallée Poussin type containing in
a sense sharp criteria for the unique solvability of problem (1.1), (1.2′) for the case in which m = 1,
l11 = 0, and l21 = 1.

Il’in and Moiseev [11, 12] showed that if l1k = 0, l21l2k > 0 (k = 1, . . . ,m),
∑m

k=1 l2k ≤ 1, and
p(t) ≥ 0 for a < t < b [respectively, p(t) > 0 for almost all t ∈ (a, b)], then problem (1.1), (1.2′)
[respectively, problem (1.1), (1.3′)] has a unique solution.

Dovletov [13] proved the existence of a unique solution of problem (1.1), (1.2′) under the as-
sumption that p(t) ≥ 0 for a < t < b, m = 2, l11 = l12 = 0, and the constants l21 and l22 satisfy
either the inequalities l21 ≥ 0, l22 ≤ 0, and l21 + l22 ≤ 1 or the inequalities l21 ≤ 0 and l22 ≤ 1.

For l1(u) ≡ 0, optimal sufficient conditions for the unique solvability of problems (1.1), (1.2)
and (1.1), (1.3) were obtained by Lomtatidze [14, 15] and T.I. Kiguradze [16, 17]. Integral criteria
for the unique solvability of such problems can be found in [18]. Nevertheless, neither of prob-
lems (1.1), (1.k) (k = 2, 3, 4) has been completely studied for li(u) �≡ 0 (i = 1, 2). The present
paper is intended to bridge the gap. We obtain sharp conditions guaranteeing the well-posedness
of problems (1.1), (1.k) and (1.1), (1.k′). These conditions are new even for l1(u) ≡ 0 and l1k = 0
(k = 1, . . . ,m).

Throughout the paper, we use the following notation and definitions.
If x and xk (k = 1, 2, . . .) are real numbers, then

[x]+ =
|x| + x

2
, [x]− =

|x| − x

2
;

S1(x1) = [x1]+, Sk(x1, . . . , xk) = [xk + Sk−1(x1, . . . , xk−1)]+ (k = 2, 3, . . .); (1.6)

C([t1, t2]) and C1([t1, t2]) are Banach spaces of continuous continuously differentiable functions
u : [t1, t2] → R with norms ‖u‖C = max{|u(t)| : t1 ≤ t ≤ t2} and ‖u‖C1 = ‖u‖C + ‖u′‖C ; Λ(t1, t2) is
the space of linear bounded functionals l : C([t1, t2]) → R; Λ−(t1, t2) is the set of all l ∈ Λ(t1, t2)
such that l(u) ≤ 0 for an arbitrary nonnegative function u ∈ C([t1, t2]); Λ+

τ (t1, t2), τ ∈ [t1, t2], is
the set of all l ∈ Λ(t1, t2) such that l(u) > 0 for an arbitrary function u ∈ C([t1, t2]) satisfying the
inequality u(t) > 0 for t �= τ ; Λ1

t1
(t1, t2) is the set of all l ∈ Λ(t1, t2) such that l(u) < u(t1) for an

arbitrary nonnegative decreasing function u ∈ C([t1, t2]); and Λ1
t2

(t1, t2) is the set of all l ∈ Λ(t1, t2)
such that l(u) < u(t2) for an arbitrary nonnegative increasing function u ∈ C([t1, t2]).

A function u ∈ C1([a, b]) is called a solution of Eq. (1.1) if ru′ is absolutely continuous and the
relation (r(t)u′(t))′ = p(t)u(t) + q(t) holds almost everywhere on [a, b].

A solution u of Eq. (1.1) satisfying the boundary conditions (1.k), k ∈ {2, 3, 4}, is called a solu-
tion of problem (1.1), (1.k).

Problem (1.1), (1.k) is said to be well-posed if it is uniquely solvable for arbitrarily fixed ci ∈ R

(i = 1, 2) and Lebesgue integrable function q : [a, b] → R and if there exists a positive constant �
independent of the ci (i = 1, 2) and q such that the solution admits the estimate

‖u‖C1 ≤ �(|c1| + |c2| + ‖q̃‖C),

where q̃(t) =
∫ t

a
q(s) ds.

Along with the inhomogeneous equations (1.1), consider the corresponding homogeneous equa-
tion

(r(t)u′)′ = p(t)u (1.10)

with the homogeneous boundary conditions

u(a) = l1(u), u(b) = l2(u), (1.20)
u(a) = l1(u), r(b)u′(b) = l2(ru′), (1.30)

r(a)u′(a) = l1(ru′), r(b)u′(b) = l2(ru′). (1.40)

Theorems 1.1 and 1.2 in [19] imply the following assertion.
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Proposition 1.1. Let k ∈ {2, 3, 4}. Problem (1.1), (1.k) is well posed if and only if the corre-
sponding homogeneous problem (1.1), (1.k0) has only the trivial solution.

We study problems (1.1), (1.k) (k = 2, 3, 4) for the cases in which the two functionals l1 and l2
satisfy one of the following conditions:

l1 ∈ Λ−(a, t0), l2 ∈ Λ−(t0, b), (1.7)
l1 ∈ Λ−(a, t0), l2 ∈ Λ1

b(t0, b), (1.8)
l1 ∈ Λ1

a(a, t0), l2 ∈ Λ−(t0, b), (1.9)
l1 ∈ Λ+

a (a, t0), l2 ∈ Λ+
b (t0, b), l1(1) = l2(1) = 1, (1.10)

l1 ∈ Λ+
a (a, t0), l1(1) = 1, l2 ∈ Λ−(t0, b). (1.11)

For problems (1.1), (1.k′) (k = 2, 3, 4), the conditions corresponding to (1.7)–(1.11) have the
form

l1k ≤ 0, l2k ≤ 0 (k = 1, . . . ,m), (1.7′)
l1k ≤ 0 (k = 1, . . . ,m), Sm(l21, . . . , l2m) ≤ 1, (1.8′)

Sm(l11, . . . , l1m) ≤ 1, l2k ≤ 0 (k = 1, . . . ,m), (1.9′)

l1k ≥ 0, l2k ≥ 0 (k = 1, . . . ,m);
m∑

i=1

l1i =
m∑

i=1

l2i = 1, (1.10′)

l1k ≥ 0, l2k ≤ 0 (k = 1, . . . ,m);
m∑

i=1

l1i = 1. (1.11′)

In the theorems and corollaries given below, the function p is subjected to one of the following
conditions:

(
π2

δ3(b)

b∫

a

rλ−1(t)δ(t)(δ(b) − δ(t))[p(t)]λ− dt

)1/λ

≤ π2

δ2(b)
, (1.12)

(
π2

4δ2(b)

b∫

a

rλ−1(t)δ(t)[p(t)]λ− dt

)1/λ

≤ π2

4δ2(b)
, (1.13)

(
π2

4δ2(b)

b∫

a

rλ−1(t)(δ(b) − δ(t))[p(t)]λ− dt

)1/λ

≤ π2

4δ2(b)
, (1.14)

p(t) < 0 for almost all t ∈ (a, b),

(
π2

4δ(b)

b∫

a

rλ−1(t)|p(t)|λ dt

)1/λ

≤ π2

δ2(b)
, (1.15)

p(t) > 0 for almost all t ∈ (a, b), (1.16)

where λ ≥ 1 and

δ(t) =

t∫

a

ds

r(s)
. (1.17)

Theorem 1.1. Problem (1.1), (1.2) is well posed if either conditions (1.7) and (1.12), or condi-
tions (1.8) and (1.13) or conditions (1.9) and (1.14), or condition (1.10) and one of conditions (1.15)
and (1.16) are satisfied.
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Corollary 1.1. Problem (1.1), (1.2′) is well posed if either conditions (1.7′) and (1.12), or
conditions (1.8′) and (1.13), or conditions (1.9′) and (1.14), or condition (1.10′) and one of condi-
tions (1.15) and (1.16) are satisfied.

Theorem 1.2. Problem (1.1), (1.3) is well posed if either conditions (1.7) and (1.13), or con-
ditions (1.8) and (1.16), or condition (1.11) and one of conditions (1.15) and (1.16) are satisfied.

Corollary 1.2. Problem (1.1), (1.3′) is well posed if either conditions (1.7′) and (1.13), or con-
ditions (1.8′) and (1.16), or condition (1.11′) and one of conditions (1.15) and (1.16) are satisfied.

By Corollary 1.1 (respectively, Corollary 1.2), if l1k = 0 (k = 1, . . . ,m), Sm(l21, . . . , l2m) ≤ 1,
and condition (1.13) [respectively, (1.16)] is satisfied, then problem (1.1), (1.2′) [respectively, prob-
lem (1.1), (1.3′)] is well posed. This generalizes the above-mentioned results obtained by Il’in and
Moiseev [11, 12] and Dovletov [13]. For the case in which condition (1.10′) [respectively, con-
dition (1.11′)] is satisfied, problem (1.1), (1.2′) [respectively, problem (1.1), (1.3′)] has not been
studied yet.

Theorem 1.3. Problem (1.1), (1.4) is well posed if either condition (1.7) and one of condi-
tions (1.15) and (1.16) or one of conditions (1.8) and (1.9) and condition (1.16) are satisfied.

Corollary 1.3. Problem (1.1), (1.4′) is well posed if either condition (1.7′) and one of condi-
tions (1.15) and (1.16) or one of conditions (1.8′) and (1.9′) and condition (1.16) are satisfied.

Example 1.1. For an arbitrarily fixed ε ∈ (0, 1) and for a continuous function r : [a, b] →
(0,+∞), take numbers a0 ∈ (a, b), b0 ∈ (a0, b), and λ ≥ 1 such that

δ(b0) − δ(a0) ≥
(π

2

)1/λ

(1 + ε)−1/2δ(b). (1.18)

Then
δ(a0) < 2δ(a0) < 2δ(b0) − δ(b) < δ(b0).

This, together with relation (1.17), implies the existence of numbers a1 ∈ (a0, b0) and b1 ∈ (a0, b0)
such that

δ(a1) = 2δ(a0), δ(b1) = 2δ(b0) − δ(b). (1.19)

Set

p(t) = − γ

r(t)

(
π

δ(b0) − δ(a0)

)2

, m = 1 (1.20)

and consider problem (1.1), (1.2′), where γ is a positive constant and l11 and l21 are numbers
satisfying one of the conditions

l11 = −1, l21 = −1, (1.21)
l11 = 1, l21 = 1, (1.22)
l11 = −1, l21 = 1, (1.23)
l11 = 1, l21 = −1. (1.24)

If γ = 1, then, by conditions (1.17), (1.18), and (1.20), we obtain the inequalities

(
π2

δ3(b)

b∫

a

rλ−1(t)δ(t)(δ(b) − δ(t))[p(t)]λ− dt

)1/λ

≤ (1 + ε)
π2

δ2(b)
, (1.12ε)

p(t) < 0 for almost all t ∈ (a, b),

(
π2

4δ(b)

b∫

a

rλ−1(t)|p(t)|λ dt

)1/λ

≤ (1 + ε)
π2

δ2(b)
. (1.15ε)
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But if γ = 1/4, then
(

π2

4δ2(b)

b∫

a

rλ−1(t)δ(t)[p(t)]λ− dt

)1/λ

≤ (1 + ε)
π2

4δ2(b)
, (1.13ε)

(
π2

4δ2(b)

b∫

a

rλ−1(t)(δ(b) − δ(t))[p(t)]λ− dt

)1/λ

≤ (1 + ε)
π2

4δ2(b)
. (1.14ε)

On the other hand, if γ = 1 and condition (1.21) [respectively, condition (1.22)] is satisfied, then,
by virtue of relations (1.19) and (1.20), the homogeneous differential equation (1.10) with the
homogeneous boundary conditions (1.2′

0) has the nontrivial solution

u(t) = sin
(

π(δ(t) − δ(a0))
δ(b0) − δ(a0)

) (
u(t) = cos

(
π(δ(t) − δ(a0))
δ(b0) − δ(a0)

))
.

Consequently, problem (1.1), (1.2′) is ill posed, and this is caused by the fact that inequality (1.12ε)
[respectively, (1.15ε)] holds instead of (1.12) [respectively, (1.15)].

But if γ = 1/4 and condition (1.23) [respectively, (1.24)] is satisfied, then the homogeneous
problem (1.10), (1.2′

0) has the nontrivial solution

u(t) = sin
(

π(δ(t) − δ(a0))
2(δ(b0) − δ(a0))

) (
u(t) = cos

(
π(δ(t) − δ(a0))
2(δ(b0) − δ(a0))

))
.

Consequently, in this case, problem (1.1), (1.2′) is ill posed again, and this is caused by the fact
that inequality (1.13ε) [respectively, (1.14ε)] holds instead of (1.13) [respectively, (1.14)].

The constructed example shows that, for each k ∈ {12, 13, 14, 15}, condition (1.k) in Theorem 1.1
and Corollary 1.1 is sharp and cannot be replaced by condition (1.kε), however small ε > 0 is.

If we now consider problem (1.1), (1.3′) [respectively, problem (1.1), (1.4′)] for the case in which
condition (1.20) is satisfied and the numbers a1, b1, l11, and l21 are chosen in the above-described
way, then we find that conditions (1.13) and (1.15) in Theorem 1.2 and Corollary 1.2 [respectively,
condition (1.15) in Theorem 1.3 and Corollary 1.3] cannot be replaced by conditions (1.13ε) and
(1.15ε) [respectively, condition (1.15ε)] for an arbitrarily small ε > 0.

Example 1.2. Let

p(t) = − 2
r(t)(� + δ(t)(δ(b) − δ(t)))

, (1.25)

where � = 1 + δ2(b). Then condition (1.15) is satisfied. This, together with Corollary 1.1, implies
that if the numbers lik (i = 1, 2, k = 1, . . . ,m) satisfy condition (1.10′), then problem (1.1), (1.2′)
is well posed. Let us show that condition (1.10′) cannot be replaced by the condition

l1k > 0, l2k > 0 (k = 1, . . . ,m), 1 − ε <

m∑

j=1

lij < 1 (i = 1, 2), (1.26)

however small ε > 0 is. Indeed, for an arbitrarily fixed ε ∈ (0, 1), take numbers ak, bk, l1k, and l2k

(k = 1, . . . ,m) so as to satisfy condition (1.5) and the conditions

δ(b)δ(a1) < ε, δ(b)(δ(b) − δ(b1)) ≤ ε, l1k > 0, l2k > 0 (k = 1, . . . ,m),
m∑

i=1

l1i(� + δ(ai)(δ(b) − δ(ai))) = �,

m∑

i=1

l2i(� + δ(bi)(δ(b) − δ(bi))) = �. (1.27)

Then, on the one hand, the numbers lik, (i = 1, 2; k = 1, . . . ,m) satisfy inequalities (1.26), and on
the other hand, it follows from relations (1.25) and (1.27) that Eq. (1.10) has the nontrivial solution

u(t) = � + δ(t)(δ(b) − δ(t))
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satisfying the homogeneous boundary conditions
m∑

k=1

l1ku(ak) = 0,
m∑

k=1

l2ku(bk) = 0.

Consequently, problem (1.1), (1.2′) is ill posed.
The constructed example shows that condition (1.10) in Theorem 1.1 and condition (1.10′) in

Corollary 1.1 are in a sense sharp.

2. AUXILIARY ASSERTIONS

2.1. Lemmas on the Unique Solvability of Two-Point Boundary Value Problems

Consider the homogeneous differential equation (1.10) with two-point conditions of one of the
following four forms:

u(a0) = 0, u(b0) = 0, (2.1)
u(a0) = 0, u′(b0) = 0, (2.2)
u′(a0) = 0, u(b0) = 0, (2.3)
u′(a0) = 0, u′(b0) = 0, (2.4)

where a ≤ a0 < b0 ≤ b. Just as above, we assume that r : [a, b] → (0,+∞) is a continuous function,
p : [a, b] → R is an integrable function, and δ is the function given by (1.17).

Lemma 2.1. If inequality (1.12) holds for some λ ≥ 1, then problem (1.10), (2.1) has only the
trivial solution.

Proof. The transformation
x = δ(t), w(x) = u(t) (2.5)

reduces problem (1.10), (2.1) to the problem

w′′ = p0(x)w, (2.6)
w(x1) = 0, w(x2) = 0, (2.7)

where
p0(δ(t)) = r(t)p(t), x1 = δ(a0), x2 = δ(b0). (2.8)

On the other hand, by Theorem 1.2 in [8], if
x2∫

x1

(x − x1)(x2 − x)
x2 − x1

[p0(x)]λ− dx ≤
(

π

x2 − x1

)2λ−2

, (2.9)

then problem (2.6), (2.7) and hence problem (1.10), (2.1) have only the trivial solution. Therefore,
to prove the lemma, it suffices to show that inequality (1.12) implies inequality (2.9). Indeed, if, in
addition to (1.12), we take into account relations (1.17) and (2.8), then we obtain the inequalities

(x − x1)(x2 − x)
x2 − x1

≤ x(δ(b) − x)
δ(b)

if x1 ≤ x ≤ x2,

x2∫

x1

(x − x1)(x2 − x)
x2 − x1

[p0(x)]λ− dx ≤
δ(b)∫

0

x(δ(b) − x)
δ(b)

[p0(x)]λ− dx

=
1

δ(b)

b∫

a

rλ−1(t)δ(t)(δ(b) − δ(t))[p(t)]λ− dt ≤
(

π

δ(b)

)2λ−2

≤
(

π

x2 − x1

)2λ−2

.

The proof of the lemma is complete.

DIFFERENTIAL EQUATIONS Vol. 47 No. 10 2011
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Lemma 2.2. If the inequality

b0∫

a0

rλ−1(t)(δ(t) − δ(a0))[p(t)]λ− dt ≤
(

π

2(δ(b0) − δ(a0))

)2λ−2

(2.10)

holds for some λ ≥ 1, then problem (1.10), (2.2) has only the trivial solution. If

b0∫

a0

rλ−1(t)(δ(b0) − δ(t))[p(t)]λ− dt ≤
(

π

2(δ(b0) − δ(a0))

)2λ−2

, (2.11)

then problem (1.10), (2.3) has only the trivial solution.

Proof. The transformation

x = δ(t) − δ(a0), w(x) = u(t)

reduces problem (1.10), (2.2) to Eq. (2.6) with the boundary conditions

w(0) = 0, w′(x0) = 0, (2.12)

where
p0(δ(t) − δ(a0)) = r(t)p(t) if a0 ≤ t ≤ b0, x0 = δ(b0) − δ(a0). (2.13)

On the other hand, the transformation

x = δ(b0) − δ(t), w(x) = u(t)

reduces problem (1.10), (2.3) to problem (2.6), (2.12), where

p0(δ(b0) − δ(t)) = r(t)p(t) if a0 ≤ t ≤ b0, x0 = δ(b0) − δ(a0). (2.14)

It follows from Theorem 1.4 in [8] that if the function p0 satisfies the inequality

x0∫

0

x[p0(x)]λ− dx ≤
(

π

2x0

)2λ−2

, (2.15)

then problem (2.6), (2.12) has only the trivial solution. Consequently, to prove the lemma, it suffices
to show that conditions (2.10) and (2.13) [respectively, (2.11) and (2.14)] ensure inequality (2.15).
Indeed, if conditions (2.10) and (2.13) are satisfied, then we have

x0∫

0

x[p0(x)]λ− dx =

b0∫

a0

rλ−1(t)(δ(t) − δ(a0))[p(t)]λ− dt ≤
(

π

2x0

)2λ−2

.

If conditions (2.11) and (2.14) hold, then

x0∫

0

x[p0(x)]λ− dx =

b0∫

a0

rλ−1(t)(δ(b0) − δ(t))[p(t)]λ− dt ≤
(

π

2x0

)2λ−2

.

The proof of the lemma is complete.

DIFFERENTIAL EQUATIONS Vol. 47 No. 10 2011



CONDITIONS FOR THE WELL-POSEDNESS OF NONLOCAL PROBLEMS 1421

Lemma 2.3. Suppose that there exists a σ ∈ {−1, 1} such that

σp(t) > 0 for almost all t ∈ (a0, b0). (2.16)

Then an arbitrary solution u of problem (1.10), (2.4) has at least one zero in the interval (a0, b0).

Proof. Assume that the lemma is false. Then there exists a solution u of problem (1.10), (2.4)
such that

u(t) > 0 if a0 < t < b0. (2.17)

If we integrate the identity
σ(r(t)u′(t))′ = σp(t)u(t)

from a0 to b0, then, by condition (2.4), we obtain

σ

b0∫

a0

p(t)u(t) dt = 0.

But this relation contradicts conditions (2.16) and (2.17). The resulting contradiction proves the
lemma.

Lemma 2.4. If one of conditions (1.15) and (1.16) is satisfied , then problem (1.10), (2.4) has
only the trivial solution.

Proof. First, note that condition (1.15) [respectively, condition (1.16)] implies inequalities (2.16)
with σ = −1 (respectively, σ = 1).

Now assume that the lemma is false; i.e., one of conditions (1.15) and (1.16) is satisfied, but
nevertheless, problem (1.10), (2.4) has a nontrivial solution u. Then, by Lemma 2.3 and inequal-
ity (2.16), there exists a c ∈ (a0, b0) such that

u(c) = 0. (2.18)

On the other hand, it follows from Lemma 2.2 and relations (2.4) and (2.18) that

c∫

a0

rλ−1(t)(δ(c) − δ(t))[p(t)]λ− dt >
(π

2

)2λ−2

(δ(c) − δ(a0))2−2λ,

b0∫

c

rλ−1(t)(δ(t) − δ(c))[p(t)]λ− dt >
(π

2

)2λ−2

(δ(b0) − δ(c))2−2λ.

Therefore,
c∫

a0

rλ−1(t)[p(t)]λ− dt >
(π

2

)2λ−2

(δ(c) − δ(a0))1−2λ,

b0∫

c

rλ−1(t)[p(t)]λ− dt >
(π

2

)2λ−2

(δ(b0) − δ(c))1−2λ.

If we add these two inequalities, then we obtain the estimate

b0∫

a0

rλ−1(t)[p(t)]λ− dt >
(π

2

)2λ−2

�, (2.19)
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where
� = (δ(c) − δ(a0))1−2λ + (δ(b0) − δ(c))1−2λ.

By the Radon theorem (see [20, Th. 65] or [5, Lemma 2.1]), we have

� ≥ 22λ(δ(b0) − δ(a0))1−2λ ≥ 22λδ1−2λ(b).

Therefore, it follows from (2.19) that

b∫

a

rλ−1(t)[p(t)]λ− dt ≥
b0∫

a0

rλ−1(t)[p(t)]λ− dt >
4

δ(b)

(
π

δ(b)

)2λ−2

.

But this inequality contradicts both condition (1.15) and condition (1.16). The resulting contra-
diction completes the proof of the lemma.

2.2. Lemmas on Functionals Belonging to the Sets Λ+
τ (t1, t2) and Λ1

ti
(t1, t2) (i = 1, 2)

Throughout this section, we assume that −∞ < t1 < t2 < +∞ and τ ∈ [t1, t2].

Lemma 2.5. If
l ∈ Λ+

τ (t1, t2), (2.20)

then for each function u ∈ C([t1, t2]), there exists a τ0 ∈ [t1, t2] such that τ0 �= τ and

l(u) = u(τ0)l(1).

Proof. It follows from condition (2.20) that l(1) > 0. Set

u0 = l(u)/l(1). (2.21)

We should show that u(τ0) = u0 for some τ0 ∈ [t1, t2]\{τ}. Assume the contrary: there does not
exist a τ0 with this property. Then, without loss of generality, one can assume that

u(t) > u0 for t ∈ [t1, t2]\{τ}.

This, together with condition (2.20), implies that l(u−u0) > 0. But this contradicts relation (2.21),
and the proof of the lemma is complete.

Lemma 2.6. Let m be a positive integer , let xi ∈ R (i = 1, . . . ,m), and let

0 ≤ y1 < · · · < ym. (2.22)

Then
m∑

i=1

xiyi ≤ Sm(x1, . . . , xm)ym. (2.23)

Proof. Since y1 is nonnegative, we have

x1y1 ≤ [x1]+y1 = S1(x1)y1.

Now assume that the inequality

k∑

i=1

xiyi ≤ Sk(x1, . . . , xk)yk
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holds for some k ∈ {1, . . . ,m − 1}. Then, by virtue of conditions (1.6) and (2.22), we obtain the
relations

k+1∑

i=1

xiyi =
k∑

i=1

xiyi + xk+1yk+1 ≤ Sk(x1, . . . , xk)yk + xk+1yk+1

≤ (Sk(x1, . . . , xk) + xk+1)yk+1 ≤ [Sk(x1, . . . , xk) + xk+1]+yk+1 = Sk+1(x1, . . . , xk+1)yk+1.

This, by induction, implies inequality (2.23). The proof of the lemma is complete.

Lemma 2.7. Let l : C([t1, t2]) → R be the functional given by the relation

l(u) =
m∑

i=1

xiu(τi), (2.24)

where

t1 < τ1 < · · · < τm < t2 (t1 < τm < · · · < τ1 < t2), (2.25)
Sm(x1, . . . , xm) ≤ 1. (2.26)

Then
l ∈ Λ1

t2
(t1, t2) (l ∈ Λ1

t1
(t1, t2)). (2.27)

Proof. Let u : [t1, t2] → [0,+∞) be an arbitrary continuous increasing (respectively, decreas-
ing) function. Then, by condition (2.25), the numbers yi = u(τi) (i = 1, . . . ,m) satisfy inequali-
ties (2.22). This, together with Lemma 2.6, implies the estimate (2.23). By virtue of this estimate
and inequalities (2.25) and (2.26), it follows from the representation (2.24) that l(u) ≤ u(τm) and

l(u) < u(t2) [respectively, l(u) < u(t1)].

Consequently, the functional l satisfies condition (2.27). The proof of the lemma is complete.

3. PROOF OF THE MAIN RESULTS

3.1. Proof of Theorem 1.1

By Proposition 1.1, to prove the theorem, it suffices to show that the homogeneous prob-
lem (1.10), (1.20) has only the trivial solution.

First, consider the case in which conditions (1.7) and (1.12) are satisfied. By (1.7), for an ar-
bitrary solution u of problem (1.10), (1.20), there exist a0 ∈ [a, t0) and b0 ∈ (t0, b] such that
relations (2.1) hold. However, by Lemma 2.1 and inequality (1.12), problem (1.10), (2.1) has only
the trivial solution. Consequently, u(t) ≡ 0.

Now let us prove that problem (1.10), (1.20) also has only the trivial solution for the case in
which conditions (1.8) and (1.13) are satisfied. Assume the contrary: this problem has a nontrivial
solution u. Conditions (1.20) and (1.8) ensure the existence of an a0 ∈ [a, t0) such that u(a0) = 0.
Without loss of generality, one can assume that u′(a0) = 1. On the other hand, by inequality (1.13),
inequality (2.10) holds for each b0 ∈ (a0, b]. This, together with Lemma 2.1, implies that

u(t) > 0, u′(t) > 0 for a0 < t ≤ b.

If, in addition, we use the condition l2 ∈ Λ1
b(t0, b), then it becomes clear that l2(u) < u(b). But this

inequality contradicts the second relation in (1.20). The resulting contradiction shows that, in the
considered case, problem (1.10), (1.20) has only the trivial solution. In a similar way, one can show
that problem (1.10), (1.20) also has only the trivial solution for the case in which conditions (1.9)
and (1.14) are satisfied.
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To complete the proof of the theorem, it remains to consider the case in which, in addition
to (1.10), one of condition (1.15) and (1.16) is satisfied. In this case, by Lemma 2.5, for an arbitrary
solution u of problem (1.10), (1.20), there exist numbers τ1 ∈ (a, t0] and τ2 ∈ [t0, b) such that

l1(u) = u(τ1), l2(u) = u(τ2);

consequently,
u(a) = u(τ1), u(b) = u(τ2).

This, together with Rolle’s theorem, implies that the function u satisfies relation (2.4) for some
a0 ∈ (a, t0) and b0 ∈ (t0, b). However, problem (1.10), (2.4) has only the trivial solution by
Lemma 2.4. Consequently, u(t) ≡ 0. The proof of the theorem is complete.

3.2. Proof of Theorem 1.2

Let u be an arbitrary solution of problem (1.10), (1.30). By Proposition 1.1, to prove Theo-
rem 1.2, it suffices to show that u(t) ≡ 0.

First, consider the case in which conditions (1.7) and (1.13) are satisfied. By (1.30) and (1.7),
there exist numbers a0 ∈ [a, t0) and b0 ∈ (t0, b] such that the function u satisfies relation (2.2).
On the other hand, inequality (1.13) implies (2.10). If we now use Lemma 2.2, then we find that
u(t) ≡ 0.

Now let us proceed to the case in which conditions (1.8) and (1.16) are satisfied. Suppose that
u(t) �≡ 0 in this case. It follows from the conditions u(a) = l1(u) and l1 ∈ Λ−(a, t0) that there exists
an a0 ∈ [a, t0) such that u(a0) = 0. Without loss of generality, one can assume that r(a0)u′(a0) = 1.
Then, by condition (1.16), we have

r(t)u′(t) > 1 for t0 ≤ t ≤ b, (r(t)u′(t))′ > 0 for almost all t ∈ (t0, b).

This, together with the condition l2 ∈ Λ1
b(t0, b), implies that l2(ru′) < r(b)u′(b). But this inequality

contradicts the second relation in (1.30). From the resulting contradiction, we have u(t) ≡ 0.
In conclusion, consider the case in which, in addition to (1.11), one of conditions (1.15) and (1.16)

is satisfied. By Lemma 2.5 and conditions (1.30) and (1.11), there exist τ0 ∈ (a, t0] and b0 ∈ (t0, b]
such that

u(a) = u(τ0), u′(b0) = 0.

This, together with Rolle’s theorem, implies that the function u satisfies relation (2.4) for some
a0 ∈ (a, τ0). However, problem (1.10), (2.4) has only the trivial solution by Lemma 2.4. Conse-
quently, u(t) ≡ 0. The proof of the theorem is complete.

Theorem 1.3 can be proved by analogy with Theorem 1.2.

3.3. Proof of Corollaries 1.1–1.3

Set t0 = a1 and

l1(v) =
m∑

i=1

l1iv(ai), l2(v) =
m∑

i=1

l2iv(bi).

Then for each k ∈ {2, 3, 4}, the boundary conditions (1.k′) acquire the form (1.k). If, in addition to
the definitions of the sets Λ−(a, t0), Λ−(t0, b), Λ+

a (a, t0), and Λ+
b (t0, b), we use inequalities (1.5) and

Lemma 2.7, then we find that, for each k ∈ {7, 8, 9, 10, 11}, condition (1.k′) implies condition (1.k).
Therefore, Corollaries 1.1–1.3 follow from Theorems 1.1–1.3, respectively.
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