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a b s t r a c t

In this paper, we consider two non-local boundary value problems for two-dimensional
half-linear differential systems. We prove general Fredholm type theorems, which allow
one to derive new efficient solvability criteria for the problems studied.
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1. Statement of problem and formulation of main results

On the interval [a, b], we consider the differential system

du1

dt
= p1(t)|u2|

λ1 sgn u2 + q1(t, u1, u2),

du2

dt
= p2(t)|u1|

λ2 sgn u1 + q2(t, u1, u2)

(1.1)

subjected to one of the following boundary conditions,∫ a0

a
u1(s) dα1(s) = γ1(u1, u2),

∫ b

b0
u1(s) dα2(s) = γ2(u1, u2) (1.2)

and ∫ a0

a
u1(s) dα1(s) = γ1(u1, u2),

∫ b

b0
u2(s) dα2(s) = γ2(u1, u2). (1.3)

In the case, where λ1 = λ2 = 1, problems (1.1), (1.2) and (1.1), (1.3) as well as their particular cases are studied in detail
(see, e.g., [1–18] and the references therein). As for the case, where system (1.1) is half-linear, i.e., if

λ1 > 0, λ1 ≠ 1, λ1λ2 = 1, (1.4)
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as far as we know there is still a broad field for further investigation (Fredholm type results for a particular case of (1.1)
can be found, e.g., in [19–21]; comparison theorems and their applications are obtained in [22–24]; for some results closely
related to those given below see also [25,26]). In this paper, we try to fill this gap in a certain sense. For problems (1.1),
(1.2) and (1.1), (1.3) we prove Fredholm type theorems (see Section 1.1), which allow one to derive new efficient solvability
criteria in Sections 1.2 and 1.3.

The following notation is used throughout the paper:N andRdenote the sets of all natural and real numbers, respectively,
R+ = [0, +∞[. For any x ∈ R, we put

[x]+ =
1
2
(|x| + x), [x]− =

1
2
(|x| − x).

C stands for the Banach space of continuous functions u: [a, b] → R endowed with the norm

‖u‖C = max

|u(t)| : a ≤ t ≤ b


.

Moreover, we denote

ℓ(λ) := λ


1 + λ

π
sin

π

1 + λ

−1−λ

for λ > 0 (1.5)

and

η(h, λ)(t) :=

 t
a h(s) ds

λ b
t h(s) ds

λ

 t
a h(s) ds

λ

+

 b
t h(s) ds

λ
for a ≤ t ≤ b, λ > 0, (1.6)

if h: [a, b] → R+ is a Lebesgue integrable function which is not equal to zero on a set of positive measure.
In what follows we assume that pi: [a, b] → R (i = 1, 2) are Lebesgue integrable functions and qi: [a, b] × R2

→

R (i = 1, 2) are functions integrable in the first argument and continuous in the last two arguments. As for the boundary
conditions, a < a0 ≤ b, a ≤ b0 < b, α1: [a, a0] → R and α2: [b0, b] → R are functions of bounded variation, and
γi:C × C → R (i = 1, 2) are continuous functionals.

A pair (u1, u2) of functions u1, u2: [a, b] → R is said to be a solution to system (1.1), if the functions u1, u2 are absolutely
continuous and satisfy both equations in (1.1) almost everywhere on [a, b]. A solution (u1, u2) to system (1.1) verifying
boundary conditions (1.2) (respectively, (1.3)) is called a solution to problem (1.1), (1.2) (respectively, (1.1), (1.3)).

For every ϱ > 0 and almost all t ∈ [a, b], we put

q∗(t, ϱ) :=

2−
k=1

max

|q3−k(t, x1, x2)| : |xk| ≤ ϱλk , |x3−k| ≤ ϱ


(1.7)

and

γ ∗

0 (ϱ) :=

2−
k=1

sup

|γk(u1, u2)| : ‖u1‖C ≤ ϱ, ‖u2‖C ≤ ϱλ2


,

γ ∗(ϱ) :=

2−
k=1

sup

|γ3−k(u1, u2)| : ‖uk‖C ≤ ϱλk , ‖u3−k‖C ≤ ϱ


.

(1.8)

Problems (1.1), (1.2) and (1.1), (1.3) will be investigated under the assumptions

lim
ϱ→+∞

∫ b

a

q∗(s, ϱ)

ϱ
ds = 0, lim

ϱ→+∞

γ ∗

0 (ϱ)

ϱ
= 0 (1.9)

and

lim
ϱ→+∞

∫ b

a

q∗(s, ϱ)

ϱ
ds = 0, lim

ϱ→+∞

γ ∗(ϱ)

ϱ
= 0, (1.10)

respectively. For example, in view of (1.4), for the validity of relations (1.9) it is sufficient that the inequalities

|qk(t, x1, x2)| ≤ r

1 + |xk|1−ε

+ |x3−k|
λk−ε


(k = 1, 2) (1.11)

and

|γi(u1, u2)| ≤ r

1 + ‖u1‖

1−ε
C + ‖u2‖

λ1−ε
C


(i = 1, 2)
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are satisfied on the sets [a, b] × R2 and C × C, respectively, where r is a positive constant and ε is a positive number small
enough. As for the validity of relations (1.10), it sufficient to assume that, together with (1.11), the inequalities

|γi(u1, u2)| ≤ r

1 + ‖ui‖

1−ε
C + ‖u3−i‖

λi−ε
C


(i = 1, 2)

hold.

1.1. Fredholm type theorems

For any µ ∈ [0, 1], we consider the half-linear differential system

du1

dt
= µp1(t)|u2|

λ1 sgn u2,
du2

dt
= µp2(t)|u1|

λ2 sgn u1 (1.1µ)

together with the homogeneous boundary conditions∫ a0

a
u1(s) dα1(s) = 0,

∫ b

b0
u1(s) dα2(s) = 0 (1.20)

and ∫ a0

a
u1(s) dα1(s) = 0,

∫ b

b0
u2(s) dα2(s) = 0. (1.30)

Theorem 1.1. Let

λ1 > 1, λ1λ2 = 1, (1.12)

α1, α2 be non-decreasing functions satisfying the inequalities

α1(a0) > α1(a), α2(b) > α2(b0), (1.13)

a0 < b0,
∫ b0

a0
p1(s) ds ≠ 0, (1.14)

and there exist σ ∈ {−1, 1} such that

σp1(t) ≥ 0 for a.e. t ∈ [a, b]. (1.15)

Moreover, let for every µ ∈]0, 1] problem (1.1µ), (1.20) have only the trivial solution and conditions (1.9) hold. Then
problem (1.1), (1.2) possesses at least one solution.

Remark 1.1. The assumption in Theorem 1.1 that problem (1.1µ), (1.20) has only the trivial solution for every µ ∈]0, 1]
cannot be weakened to µ ∈]0, 1[. Indeed, let λ1 > 0, λ2 = 1/λ1, p1(t) ≡ −1, p2(t) ≡

 πp
b−a

p
, q1(t, x1, x2) ≡ 0, and

q2(t, x1, x2) ≡ 1, where

πp = (p − 1)1/p
2π

p sin π
p

, p = 1 + λ2. (1.16)

Moreover, let γk(v1, v2) ≡ 0(k = 1, 2), a < a0 < b0 < b, and

α1(s) =


0 for s = a,
1 for s ∈]a, a0],

α2(s) =


0 for s ∈ [b0, b[,
1 for s = b. (1.17)

Then problem (1.1), (1.2) has the form

du1

dt
= −|u2|

λ1 sgn u2,
du2

dt
=


πp

b − a

p

|u1|
λ2 sgn u1 + 1,

u1(a) = 0, u1(b) = 0.

It follows from [27, Section 1] that problem (1.1µ), (1.20) has only the trivial solution for every µ ∈]0, 1[. However,
[27, Theorem 2.1(b)] yields that problem (1.1), (1.2) has no solution.

Theorem 1.2. Let conditions (1.4) and (1.13) be satisfied. Moreover, let for every µ ∈]0, 1] problem (1.1µ), (1.30) have only the
trivial solution and conditions (1.10) hold. Then problem (1.1), (1.3) possesses at least one solution.
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Remark 1.2. The assumption in Theorem 1.2 that problem (1.1µ), (1.30) has only the trivial solution for every µ ∈]0, 1]

cannot be weakened to µ ∈]0, 1[. Indeed, let λ1 > 0, λ2 = 1/λ1, p1(t) ≡ −1, p2(t) ≡


πp

2(b−a)

p

, q1(t, x1, x2) ≡ 0, and

q2(t, x1, x2) ≡ 1, where the numbers πp and p are defined by formulas (1.16). Moreover, let γk(v1, v2) ≡ 0(k = 1, 2), a <
a0 < b0 < b, and the functions α1, α2 are given by relations (1.17). Then problem (1.1), (1.3) has the form

du1

dt
= −|u2|

λ1 sgn u2,
du2

dt
=


πp

2(b − a)

p

|u1|
λ2 sgn u1 + 1,

u1(a) = 0, u2(b) = 0.

It is not difficult to deduce fromdiscussion presented in [27, Section 1] that problem (1.1µ), (1.30) has only the trivial solution
for every µ ∈]0, 1[. However, as follows from [27, Theorem 2.1(b)], problem (1.1), (1.3) has no solution.

1.2. Solvability conditions for problem (1.1), (1.2)

In this section, we present new efficient conditions guaranteeing the solvability of problem (1.1), (1.2).

Theorem 1.3. Let conditions (1.9), (1.12)–(1.14) be satisfied and the functions α1, α2 be non-decreasing. Moreover, let there
exist numbers σ ∈ {−1, 1} and p0 ≥ 0 such that

σp1(t) ≥ 0, σp2(t) ≥ −p0|p1(t)| for a.e. t ∈ [a, b], (1.18)

and

p0

∫ b

a
|p1(s)| ds

1+λ2

< 21+λ2ℓ(λ2), (1.19)

where the function ℓ is defined by relation (1.5). Then problem (1.1), (1.2) has at least one solution.

Remark 1.3. The example constructed in Remark 1.1 also shows that the strict inequality (1.19) in Theorem 1.3 cannot be
replaced by the non-strict one.

Theorem 1.4. Let conditions (1.9), (1.12)–(1.14) be satisfied and the functions α1, α2 be non-decreasing. Moreover, let there
exist a number σ ∈ {−1, 1} such that along with (1.15) the inequality∫ b

a
η(|p1|, λ2)(s)[σp2(s)]− ds < 1 (1.20)

holds, where the operator η is defined by relation (1.6). Then problem (1.1), (1.2) has at least one solution.

As an example of non-local boundary conditions (1.2) we consider the multi-point conditions

m1−
k=1

β1ku1(ak) = γ1(u1, u2),

m2−
k=1

β2ku1(bk) = γ2(u1, u2), (1.21)

where a ≤ a1 < · · · < am1 ≤ a0, b0 ≤ b1 < · · · < bm2 ≤ b, and βik are positive numbers (k = 1, . . . ,mi, i = 1, 2).
Theorems 1.3 and 1.4 immediately yield

Corollary 1.1. Let conditions (1.9), (1.12) and (1.14) be satisfied and there exist numbers σ ∈ {−1, 1} and p0 ≥ 0
(respectively, a number σ ∈ {−1, 1}) such that inequalities (1.18) and (1.19) (respectively, (1.15) and (1.20)) hold. Then
problem (1.1), (1.21) possesses at least one solution.

1.3. Solvability conditions for problem (1.1), (1.3)

In this section we present new efficient conditions guaranteeing the solvability of problem (1.1), (1.3).
Put

α1(s) = α1(a0) for a0 ≤ s ≤ b, α2(s) = α2(b0) for a ≤ s ≤ b0, (1.22)

and

δi(s) = max

|αi(s) − αi(a)|, |αi(b) − αi(s)|


for a ≤ s ≤ b, i = 1, 2. (1.23)
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Theorem 1.5. Let conditions (1.4) and (1.10) be satisfied,

α1(a0) − α1(a) = 1, α2(b) − α2(b0) = 1, (1.24)

and ∫ b

a
δ1(s)|p1(s)| ds

∫ b

a
δ2(s)|p2(s)| ds

λ1

< 1. (1.25)

Then problem (1.1), (1.3) has at least one solution.

Theorem 1.6. Let the functions α1, α2 be non-decreasing,

a0 ≤ b0, α1(a0) > α1(a), α2(b) > α2(b0), (1.26)

and conditions (1.4) and (1.10) hold. If, moreover, for each σ ∈ {−1, 1} one of the inequalities∫ b

a
[σp1(s)]+

∫ b

s
[σp2(ξ)]− dξ

λ1

ds < 1 (1.27)

and ∫ b

a
[σp2(s)]−

∫ s

a
[σp1(ξ)]+ dξ

λ2

ds < 1 (1.28)

is fulfilled, then problem (1.1), (1.3) possesses at least one solution.

Theorem 1.7. Let the functions α1, α2 be non-decreasing and conditions (1.4), (1.10) and (1.26) hold. Moreover, let there exist
numbers σ ∈ {−1, 1} and p0 ≥ 0 such that inequalities (1.18) are satisfied and

p0

∫ b

a
|p1(s)| ds

1+λ2

< ℓ(λ2), (1.29)

where the function ℓ is defined by formula (1.5). Then problem (1.1), (1.3) has at least one solution.

Remark 1.4. The example constructed in Remark 1.2 also shows that the strict inequality (1.29) in Theorem 1.7 cannot be
replaced by the non-strict one.

At last we consider the case, where boundary conditions (1.3) have the form

mi−
k=1

βikui(tik) = γi(u1, u2) (i = 1, 2) (1.30)

in which tik ∈ [a, b] and βik ∈ R (k = 1, . . . ,mi, i = 1, 2). The following statements follow immediately from
Theorems 1.5–1.7.

Corollary 1.2. Let
mi−
k=1

βik = 1 for i = 1, 2

and

δ0

∫ b

a
|p1(s)| ds

∫ b

a
|p2(s)| ds

λ1

< 1,

where

δ0 =


m1−
k=1

|β1k|


m2−
k=1

|β2k|

λ1

.

If, moreover, conditions (1.4) and (1.10) be satisfied, then problem (1.1), (1.30) possesses at least one solution.
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Corollary 1.3. Let a ≤ t1j ≤ t2k ≤ b (j = 1, . . . ,m1, k = 1, . . . ,m2), βik > 0 (k = 1, . . . ,mi, i = 1, 2), and conditions (1.4)
and (1.10) be satisfied. Moreover, let either for each σ ∈ {−1, 1} one of inequalities (1.27) and (1.28) be fulfilled, or there exist
numbers σ ∈ {−1, 1} and p0 ≥ 0 such that inequalities (1.18) and (1.29) hold. Then problem (1.1), (1.30) has at least one
solution.

2. Auxiliary statements

In this section we establish auxiliary statements that will be used in the proofs of the main results. For the sake of clarity
we divide lemmas into the following five subsections.

2.1. Lemmas on properties of solutions to a certain first-order differential inequality

Let h: [a, b] → R+ be a Lebesgue integrable functions, which is not equal to zero on a set of positive measure,
u2: [a, b] → R be an essentially bounded measurable function, and λ1 be a positive parameter.

Consider the differential inequality

|u′

1(t)| ≤ h(t)|u2(t)|λ1 . (2.1)
A function u1: [a, b] → R is said to be a solution to inequality (2.1), if it is absolutely continuous and satisfies inequality
(2.1) almost everywhere on [a, b].

Lemma 2.1. Let t0 ∈ [a, b] and u1 be a solution to differential inequality (2.1) satisfying the condition

u1(t0) = 0. (2.2)

Then

|u1(t)|1+λ2 ≤

∫ t

t0
h(s) ds

λ2 ∫ t

t0
h(s)|u2(s)|1+λ1 ds

 for t ∈ [a, b] (2.3)

and

ℓ(λ2)

∫ b

a
h(s)|u1(s)|1+λ2 ds ≤

∫ b

a
h(s) ds

1+λ2 ∫ b

a
h(s)|u2(s)|1+λ1 ds, (2.4)

where λ2 = 1/λ1 and the function ℓ is defined by formula (1.5).

To prove this lemma we need the following result that belongs to A. Levin.

Lemma 2.2 (A. Levin, [28]). 1 Let λ > 0, c > 0, x0 ∈ [0, c], and u: [0, c] → R be an absolutely continuous function such that

u(x0) = 0,
∫ c

0
|u′(x)|1+λ dx < +∞. (2.5)

Then

ℓ(λ)

∫ c

0
|u(x)|1+λ dx ≤ c1+λ

∫ c

0
|u′(x)|1+λ dx, (2.6)

where the function ℓ is defined by relation (1.5).

Proof of Lemma 2.1. In view of condition (2.2), it follows from inequality (2.1) that

|u1(t)|1+λ2 ≤

∫ t

t0
h(s)|u2(s)|λ1 ds

1+λ2

for t ∈ [a, b]. (2.7)

On the other hand, by using the Hölder inequality, we obtain∫ t

t0
h(s)|u2(s)|λ1 ds

 =


∫ t

t0
h

λ2
1+λ2 (s)


h(s)|u2(s)|1+λ1

 1
1+λ2 ds


≤

∫ t

t0
h(s) ds


λ2

1+λ2
∫ t

t0
h(s)|u2(s)|1+λ1 ds

 1
1+λ2

for t ∈ [a, b] which, together with (2.7), results in desired estimate (2.3).

1 See also [29, Theorem 256].
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It remains to show the validity of inequality (2.4). Let ε > 0 be arbitrary but fixed. We put

x =

∫ t

a


ε + h(s)


ds, u(x) = u1(t) for t ∈ [a, b], (2.8)

and

x0 =

∫ t0

a


ε + h(s)


ds, c =

∫ b

a


ε + h(s)


ds.

Then the function u: [0, c] → R is absolutely continuous. Moreover, by virtue of assumptions (1.4), (2.1) and (2.2), the
relation

|u′(x)|1+λ2 =

 u′

1(t)
ε + h(t)

1+λ2

≤


h(t)

ε + h(t)
|u2(t)|λ1

1+λ2

≤ |u2(t)|1+λ1

holds for a.e. x ∈ [0, c], u(x0) = 0, and∫ c

0
|u′(x)|1+λ2 dx ≤

∫ b

a


ε + h(s)


|u2(s)|1+λ1 ds < +∞. (2.9)

Consequently, condition (2.5) with λ = λ2 is satisfied and thus Lemma 2.2 yields that relation (2.6) holds. Hence, in view of
(2.1), (2.8) and (2.9), it follows from (2.6) that

ℓ(λ2)

∫ b

a


ε + h(s)


|u1(s)|1+λ2 ds ≤

∫ b

a


ε + h(s)


ds
1+λ2 ∫ b

a


ε + h(s)


|u2(s)|1+λ1 ds.

Letting ε → 0 in the last inequality gives desired estimate (2.4). �

Lemma 2.3. Let a ≤ t1 < t2 ≤ b and u1 be a solution to differential inequality (2.1) such that

u1(t1) = u1(t2) = 0. (2.10)

Then

|u1(t)|1+λ2 ≤ η(h, λ2)(t)
∫ t2

t1
h(s)|u2(s)|1+λ1 ds for t ∈ [t1, t2] (2.11)

and

21+λ2ℓ(λ2)

∫ t2

t1
h(s)|u1(s)|1+λ2 ds ≤

∫ t2

t1
h(s) ds

1+λ2 ∫ t2

t1
h(s)|u2(s)|1+λ1 ds, (2.12)

where λ2 = 1/λ1, the function ℓ and the operator η are defined by formulas (1.5) and (1.6), respectively.

Proof. In view of equalities (2.10), it follows from Lemma 2.1 that

|u1(t)|1+λ2 ≤

∫ t

t1
h(s) ds

λ2 ∫ t

t1
h(s)|u2(s)|1+λ1 ds

≤

∫ t

a
h(s) ds

λ2 ∫ t

t1
h(s)|u2(s)|1+λ1 ds for t ∈ [t1, t2]

and

|u1(t)|1+λ2 ≤

∫ t2

t
h(s) ds

λ2 ∫ t2

t
h(s)|u2(s)|1+λ1 ds

≤

∫ b

t
h(s) ds

λ2 ∫ t2

t
h(s)|u2(s)|1+λ1 ds for t ∈ [t1, t2].

Consequently, we have∫ b

t
h(s) ds

λ2

|u1(t)|1+λ2 ≤

∫ t

a
h(s) ds

λ2∫ b

t
h(s) ds

λ2 ∫ t

t1
h(s)|u2(s)|1+λ1 ds for t ∈ [t1, t2]
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and ∫ t

a
h(s) ds

λ2

|u1(t)|1+λ2 ≤

∫ t

a
h(s) ds

λ2∫ b

t
h(s) ds

λ2 ∫ t2

t
h(s)|u2(s)|1+λ1 ds for t ∈ [t1, t2].

Summing the last two inequalities results in∫ t

a
h(s) ds

λ2

+

∫ b

t
h(s) ds

λ2
|u1(t)|1+λ2

≤

∫ t

a
h(s) ds

λ2∫ b

t
h(s) ds

λ2 ∫ t2

t1
h(s)|u2(s)|1+λ1 ds for t ∈ [t1, t2]

which, in view of notation (1.6), guarantees the validity of estimate (2.11).
It remains to show that inequality (2.12) also holds. Indeed, let t0 ∈ [t1, t2] be such that∫ t0

t1
h(s) ds =

∫ t2

t0
h(s) ds =

1
2

∫ t2

t1
h(s) ds.

Then, by virtue of equalities (2.10), it follows from Lemma 2.1 that

ℓ(λ2)

∫ t0

t1
h(s)|u1(s)|1+λ2 ds ≤

∫ t0

t1
h(s) ds

1+λ2 ∫ t0

t1
h(s)|u2(s)|1+λ1 ds

=
1

21+λ2

∫ t2

t1
h(s) ds

1+λ2 ∫ t0

t1
h(s)|u2(s)|1+λ1 ds

and

ℓ(λ2)

∫ t2

t0
h(s)|u1(s)|1+λ2 ds ≤

∫ t2

t0
h(s) ds

1+λ2 ∫ t2

t0
h(s)|u2(s)|1+λ1 ds

=
1

21+λ2

∫ t2

t1
h(s) ds

1+λ2 ∫ t2

t0
h(s)|u2(s)|1+λ1 ds,

whose summing we obtain desired estimate (2.12). �

2.2. Lemmas on properties of solutions to system (1.1µ)

Throughout this section we assume that µ ∈]0, 1] and that condition (1.4) holds.

Lemma 2.4. Let t0 ∈ [a, b]. Then system (1.1µ) has only the trivial solution satisfying the initial conditions

ui(t0) = 0 (i = 1, 2). (2.13)

Proof. Let (u1, u2) be a solution to problem (1.1µ), (2.13). Put

u(t) := max


|u1(s)| : 0 ≤ (s − t0) sgn(t − t0) ≤ |t − t0|


for t ∈ [a, b]

and

p(t) := |p1(t)|
∫ t

t0
|p2(s)| ds

λ1 for a.e. t ∈ [a, b].

Then, by virtue of conditions (1.4) and (2.13), we get from (1.1µ) the relation

u(t) ≤


∫ t

t0
|p1(s)|

∫ s

t0
|p2(ξ)| |u1(ξ)|λ2 dξ

λ1 ds


≤

∫ t

t0
p(s)u(s) ds

 for t ∈ [a, b].
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By using the Gronwall–Bellman lemma we get from the last inequalities that u(t) ≡ 0. Consequently, we have u1(t) ≡ 0
and u2(t) ≡ µ

 t
t0
p2(s)|u1(s)|λ2 ds ≡ 0. �

Lemma 2.5. Let a ≤ t1 < t2 ≤ b and (u1, u2) be a solution to system (1.1µ) such that

u1(t2)u2(t2) = u1(t1)u2(t1). (2.14)

Then ∫ t2

t1
p1(s)|u2(s)|1+λ1 ds = −

∫ t2

t1
p2(s)|u1(s)|1+λ2 ds. (2.15)

Proof. By direct calculation we get

µ

∫ t2

t1
p1(s)|u2(s)|1+λ1 ds =

∫ t2

t1
u′

1(s)u2(s) ds

= u1(t2)u2(t2) − u1(t1)u2(t1) −

∫ t2

t1
u1(s)u′

2(s) ds

= −µ

∫ t2

t1
p2(s)|u1(s)|1+λ2 ds. �

Lemma 2.6. Let a ≤ t1 < t2 ≤ b and (u1, u2) be a nontrivial solution to system (1.1µ) such that

ui(ti) = 0 (i = 1, 2). (2.16)

Then ∫ t2

t1
|p1(s)| |u2(s)|1+λ1 ds > 0 and

∫ t2

t1
|p2(s)| |u1(s)|1+λ2 ds > 0. (2.17)

Proof. Assume that, on the contrary, at least one of inequalities (2.17) is violated. Then, by virtue the integral representations

u1(t) = µ

∫ t

t1
p1(s)|u2(s)|λ1 sgn u2(s) ds for t ∈ [t1, t2]

and

u2(t) = −µ

∫ t2

t
p2(s)|u1(s)|λ2 sgn u1(s) ds for t ∈ [t1, t2],

it is clear that u1(t) = 0 and u2(t) = 0 for t ∈ [t1, t2]. Consequently, Lemma 2.4 guarantees that u1(t) ≡ 0 and u2(t) ≡ 0
on [a, b], which contradicts the assumption of the lemma. �

2.3. Lemma on the unique solvability of problem (1.1µ), (1.20)

Lemma 2.7. Let conditions (1.4), (1.13) and (1.14) be satisfied and the functions α1, α2 be non-decreasing. Moreover, let
there exist numbers σ ∈ {−1, 1} and p0 ≥ 0 (respectively, a number σ ∈ {−1, 1}) such that inequalities (1.18) and
(1.19) (respectively, (1.15) and (1.20)) hold. Then, for every µ ∈]0, 1], problem (1.1µ), (1.20) has only the trivial solution.

Proof. Assume that, on the contrary, (u1, u2) is a nontrivial solution to problem (1.1µ), (1.20) with someµ ∈]0, 1]. Since the
functionsα1, α2 are non-decreasing and satisfy inequalities (1.13) and (1.14), there exist t1 ∈ [a, a0] and t2 ∈ [b0, b], t1 < t2,
such that equalities (2.10) are fulfilled. The integration of the first equation in (1.1µ) from t1 to t2 results in∫ t2

t1
p1(s)|u2(s)|λ1 sgn u2(s) ds = 0

which, together with assumptions (1.14) and (1.15), guarantees that there is a point t0 ∈ [t1, t2] such that

u2(t0) = 0. (2.18)
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Clearly, t0 > t1 because, in the contrary case, we obtain a contradiction with the assertion of Lemma 2.4. Therefore, in view
of (2.10) and (2.18), Lemma 2.6 yields∫ t2

t1
|p1(s)| |u2(s)|1+λ1 ds ≥

∫ t0

t1
|p1(s)| |u2(s)|1+λ1 ds > 0. (2.19)

On the other hand, it follows from Lemma 2.3 with h(t) ≡ |p1(t)| that

21+λ2ℓ(λ2)

∫ t2

t1
|p1(s)| |u1(s)|1+λ2 ds ≤

∫ t2

t1
|p1(s)| ds

1+λ2 ∫ t2

t1
|p1(s)| |u2(s)|1+λ1 ds (2.20)

and

|u1(t)|1+λ2 ≤ η(|p1|, λ2)(t)
∫ t2

t1
|p1(s)| |u2(s)|1+λ1 ds for t ∈ [t1, t2], (2.21)

where the function ℓ and the operator η are defined by formulas (1.5) and (1.6), respectively. By using inequalities (1.18)
and (2.20) (respectively, (1.15) and (2.21)) and Lemma 2.5 we get∫ t2

t1
|p1(s)| |u2(s)|1+λ1 ds =

∫ t2

t1


−σp2(s)


|u1(s)|1+λ2 ds

≤ p0

∫ t2

t1
|p1(s)| |u1(s)|1+λ2 ds

≤
p0

21+λ2ℓ(λ2)

∫ b

a
|p1(s)| ds

1+λ2 ∫ t2

t1
|p1(s)| |u2(s)|1+λ1 ds

respectively,
∫ t2

t1
|p1(s)| |u2(s)|1+λ1 ds =

∫ t2

t1


−σp2(s)


|u1(s)|1+λ2 ds

≤

∫ t2

t1
[σp2(s)]−|u1(s)|1+λ2 ds

≤

∫ b

a
η(|p1|, λ2)(s)[σp2(s)]− ds

∫ t2

t1
|p1(s)| |u2(s)|1+λ1 ds


which, in view of (2.19), contradicts assumption (1.19) (respectively, (1.20)). �

2.4. Lemmas on the unique solvability of problem (1.1µ), (1.30)

Lemma 2.8. Let conditions (1.4), (1.24) and (1.25) be satisfied, where the functions δ1, δ2 are defined by formulas (1.22) and
(1.23). Then, for every µ ∈]0, 1], problem (1.1µ), (1.30) has only the trivial solution.

Proof. Let (u1, u2) be a solution to problem (1.1µ), (1.30) with some µ ∈]0, 1]. Then, in view of (1.22) and (1.24), equalities∫ b

a
ui(s) dαi(s) = 0, αi(b) − αi(a) = 1 (i = 1, 2)

are satisfied. Therefore, u1 and u2 admit the integral representations

u1(t) = µ

∫ b

a
g1(t, s)p1(s)|u2(s)|λ1 sgn u2(s) ds for t ∈ [a, b],

u2(t) = µ

∫ b

a
g2(t, s)p2(s)|u1(s)|λ2 sgn u1(s) ds for t ∈ [a, b],

(2.22)

where

gi(t, s) =


αi(s) − αi(a) for s ≤ t,
αi(s) − αi(b) for s > t (i = 1, 2).

Moreover, in view of (1.23), we have

|gi(t, s)| ≤ δi(s) for a ≤ s, t ≤ b, i = 1, 2. (2.23)
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Put

ϱi := ‖ui‖C for i = 1, 2.

Then, by virtue of (1.4) and (2.23), it follows from equalities (2.22) that

ϱ1 ≤ ϱ
λ1
2

∫ b

a
δ1(s)|p1(s)| ds, ϱ2 ≤ ϱ

λ2
1

∫ b

a
δ2(s)|p2(s)| ds,

whence we get

ϱ1 ≤ ϱ1

∫ b

a
δ1(s)|p1(s)| ds

∫ b

a
δ2(s)|p2(s)| ds

λ1

.

Consequently, in view of inequality (1.25), we obtain ϱ1 = 0 and ϱ2 = 0, i.e., ui(t) ≡ 0 (i = 1, 2). �

Lemma 2.9. Let the functions α1, α2 be non-decreasing and conditions (1.4) and (1.26) hold. If, moreover, for each σ ∈ {−1, 1}
one of inequalities (1.27) and (1.28) is satisfied then, for every µ ∈]0, 1], problem (1.1µ), (1.30) has only the trivial solution.

Proof. Assume that, on the contrary, (u1, u2) is a nontrivial solution to problem (1.1µ), (1.30) with some µ ∈]0, 1]. Since
the functions α1, α2 are non-decreasing and satisfy inequalities (1.26), there exist t1 ∈ [a, a0] and t2 ∈ [b0, b] such that

ui(ti) = 0 (i = 1, 2). (2.24)

Clearly, Lemma 2.4 yields

t1 < t2, u2(t1) ≠ 0, u1(t2) ≠ 0.

Therefore, we can assume without loss of generality that

u1(t) > 0 for t1 < t ≤ t2, σu2(t) > 0 for t1 ≤ t < t2, (2.25)

where σ ∈ {−1, 1}.
By using relations (2.24) and (2.25), from (1.1µ) we get the inequalities

0 < u1(t) ≤

∫ t

t1
[σp1(s)]+|u2(s)|λ1 ds for t1 < t ≤ t2,

0 < σu2(t) ≤

∫ t2

t
[σp2(s)]−|u1(s)|λ2 ds for t1 ≤ t < t2.

(2.26)

Let

ϱi := max

|ui(t)| : t ∈ [t1, t2]


for i = 1, 2.

Clearly, ϱ1 > 0 and ϱ2 > 0.
If inequality (1.27) holds then, in view of relations (1.4), it follows from inequalities (2.26) the contradiction

ϱ1 ≤

∫ t2

t1
[σp1(s)]+

∫ t2

s
[σp2(ξ)]−|u1(ξ)|λ2 dξ

λ1

ds ≤ ϱ1

∫ t2

t1
[σp1(s)]+

∫ t2

s
[σp2(ξ)]− dξ

λ1

ds < ϱ1.

If inequality (1.28) is satisfied then, by virtue of relations (1.4), from inequalities (2.26) we get

ϱ2 ≤

∫ t2

t1
[σp2(s)]−

∫ s

t1
[σp1(ξ)]+|u2(ξ)|λ1 dξ

λ2

ds ≤ ϱ2

∫ t2

t1
[σp2(s)]−

∫ s

t1
[σp1(ξ)]+ dξ

λ2

ds < ϱ2,

which is a contradiction. The contradictions obtained prove the lemma. �

Lemma 2.10. Let the functions α1, α2 be non-decreasing and conditions (1.4) and (1.26) hold. Moreover, let there exist numbers
σ ∈ {−1, 1} and p0 ≥ 0 such that inequalities (1.18) and (1.29) are satisfied, where the function ℓ is defined by formula (1.5).
Then, for every µ ∈]0, 1], problem (1.1µ), (1.30) has only the trivial solution.

Proof. Assume that, on the contrary, (u1, u2) is a nontrivial solution to problem (1.1µ), (1.30) with some µ ∈]0, 1]. Since
the functions α1, α2 are non-decreasing and satisfy inequalities (1.26), there exist t1 ∈ [a, a0] and t2 ∈ [b0, b] such that
equalities (2.24) hold. Clearly, t1 < t2 because, in the contrary case, we obtain a contradiction to the assertion of Lemma 2.4.
Therefore, Lemma 2.6 yields∫ t2

t1
|p1(s)| |u2(s)|1+λ1 ds > 0. (2.27)
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On the other hand, it follows from Lemmas 2.5 and 2.1 with h(t) ≡ |p1(t)| that equality (2.15) holds and

ℓ(λ2)

∫ t2

t1
|p1(s)| |u1(s)|1+λ2 ds ≤

∫ t2

t1
|p1(s)| ds

1+λ2 ∫ t2

t1
|p1(s)| |u2(s)|1+λ1 ds, (2.28)

where the function ℓ is defined by formula (1.5). By using relations (1.18), (2.15) and (2.28) we get∫ t2

t1
|p1(s)| |u2(s)|1+λ1 ds =

∫ t2

t1


−σp2(s)


|u1(s)|1+λ2 ds ≤ p0

∫ t2

t1
|p1(s)| |u1(s)|1+λ2 ds

≤
p0

ℓ(λ2)

∫ b

a
|p1(s)| ds

1+λ2 ∫ t2

t1
|p1(s)| |u2(s)|1+λ1 ds,

which, in view of (2.27), contradicts assumption (1.29). The contradiction obtained proves the lemma. �

2.5. Lemmas on the solvability of problems (1.1), (1.2) and (1.1), (1.3)

Along with problems (1.1), (1.2) and (1.1), (1.3) we consider the problems

du1

dt
= (1 − δ)σu2 + δ


p1(t)|u2|

λ1 sgn u2 + q1

t, u1, u2


,

du2

dt
= δ


p2(t)|u1|

λ2 sgn u1 + q2

t, u1, u2


,

(2.29)

∫ a0

a
u1(s) dα1(s) = δγ1(u1, u2),

∫ b

b0
u1(s) dα2(s) = δγ2(u1, u2) (2.30)

with σ ∈ R and

du1

dt
= δ


p1(t)|u2|

λ1 sgn u2 + q1

t, u1, u2


,

du2

dt
= δ


p2(t)|u1|

λ2 sgn u1 + q2

t, u1, u2


,

(2.31)

∫ a0

a
u1(s) dα1(s) = δγ1(u1, u2),

∫ b

b0
u2(s) dα2(s) = δγ2(u1, u2) (2.32)

depending on a parameter δ ∈]0, 1[.

Lemma 2.11. Let a0 < b0, the functions α1, α2 be non-decreasing and satisfy inequalities (1.13). Moreover, let there exist
numbers σ ∈ {−1, 1} and ϱ > 0 such that, for any δ ∈]0, 1[, every solution (u1, u2) to problem (2.29), (2.30) admits the
estimate

‖u1‖C + ‖u2‖C ≤ ϱ. (2.33)

Then problem (1.1), (1.2) has at least one solution.

Proof. According to [30, Corollary 2], in order to prove the lemma it is sufficient to show that, for every σ ∈ {−1, 1}, the
system

du1

dt
= σu2,

du2

dt
= 0 (2.34)

has only the trivial solution satisfying boundary conditions (1.20).
Indeed, let (u1, u2) be a solution to problem (2.34), (1.20) with some σ ∈ {−1, 1}. Since the functions α1, α2 are non-

decreasing and satisfy inequalities (1.13), there exist t1 ∈ [a, a0] and t2 ∈ [b0, b] such that t1 < t2 and equalities (2.10) are
fulfilled. The integration of the first equation in (2.34) from t1 to t2 results in

σ

∫ t2

t1
u2(s) ds = 0,

which guarantees that there is a point t0 ∈ [t1, t2] such that u2(t0) = 0. Consequently, (2.34) yields u2(t) ≡ 0 and u1(t) ≡ 0
as well. �

Lemma 2.12. Let inequalities (1.13) hold and there exist a number ϱ > 0 such that, for any δ ∈]0, 1[, every solution (u1, u2) to
problem (2.31), (2.32) admits estimate (2.33). Then problem (1.1), (1.3) has at least one solution.
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Proof. The validity of the lemma follows immediately from the above-mentioned [30, Corollary 2] because it is clear that,
in view of inequalities (1.13), the system

du1

dt
= 0,

du2

dt
= 0

has only the trivial solution satisfying boundary conditions (1.30). �

3. Proofs of main results

Proof of Theorem 1.1. Assume that, on the contrary, there is no solution to problem (1.1), (1.2). Then, according to
Lemma 2.11, there exist sequences (u1n)

+∞

n=1, (u2n)
+∞

n=1 of functions absolutely continuous on [a, b] and a sequence (δn)
+∞

n=1 of
numbers from the interval ]0, 1[ such that the relations∫ a0

a
u1n(s) dα1(s) = δnγ1(u1n, u2n),

∫ b

b0
u1n(s) dα2(s) = δnγ2(u1n, u2n),

u′

1n(t) = (1 − δn)σu2n(t) + δnp1(t)|u2n(t)|λ1 sgn u2n(t) + δnq1

t, u1n(t), u2n(t)


for a.e. t ∈ [a, b],

u′

2n(t) = δnp2(t)|u1n(t)|λ2 sgn u1n(t) + δnq2

t, u1n(t), u2n(t)


for a.e. t ∈ [a, b],

and

‖u1n‖C + ‖u2n‖
λ1
C ≥ n (3.1)

are satisfied for every n ∈ N. Put

ϱn := ‖u1n‖C + ‖u2n‖
λ1
C for n ∈ N (3.2)

and

z1n(t) :=
u1n(t)

ϱn
, z2n(t) :=

u2n(t)

ϱ
λ2
n

for t ∈ [a, b], n ∈ N. (3.3)

Then, for any n ∈ N, we have

‖z1n‖C + ‖z2n‖
λ1
C = 1, (3.4)∫ a0

a
z1n(s) dα1(s) =

δn

ϱn
γ1(u1n, u2n),

∫ b

b0
z1n(s) dα2(s) =

δn

ϱn
γ2(u1n, u2n), (3.5)

z ′

1n(t) = (1 − δn)σ
z2n(t)

ϱ
1−λ2
n

+ δnp1(t)|z2n(t)|λ1 sgn z2n(t) +
δn

ϱn
q1

t, u1n(t), u2n(t)


for a.e. t ∈ [a, b], (3.6)

and

z ′

2n(t) = δnp2(t)|z1n(t)|λ2 sgn z1n(t) +
δn

ϱ
λ2
n

q2

t, u1n(t), u2n(t)


for a.e. t ∈ [a, b]. (3.7)

By using relations (1.7), (1.12) and (3.2), we obtain

δn

ϱn

q1t, u1n(t), u2n(t)
 ≤

δn

ϱn
q∗(t, ϱn) for a.e. t ∈ [a, b], n ∈ N (3.8)

and

δn

ϱ
λ2
n

q2t, u1n(t), u2n(t)
 ≤

δn

ϱ
λ2
n

q∗

t, ϱλ2

n


for a.e. t ∈ [a, b], n ∈ N. (3.9)

Therefore, in view of (1.12), (3.1), (3.2), (3.4), (3.8) and (3.9), the equalities (3.6) and (3.7) yield

|z1n(t) − z1n(s)| ≤

∫ t

s
(1 + |p1(ξ)|) dξ +

∫ t

s

q∗(ξ , ϱn)

ϱn
dξ for a ≤ s ≤ t ≤ b, n ∈ N (3.10)

and

|z2n(t) − z2n(s)| ≤

∫ t

s
|p2(ξ)| dξ +

∫ t

s

q∗


ξ,ϱ

λ2
n


ϱ
λ2
n

dξ for a ≤ s ≤ t ≤ b, n ∈ N. (3.11)
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Since we suppose that
 b
a

q∗(s,ϱ)

ϱ
ds → 0 as ϱ → +∞, it follows from (3.1), (3.2), and [31, Corollary IV.8.11] that, for any

ε > 0, there exists ω > 0 such that∫
E

q∗(s, ϱn)

ϱn
ds < ε,

∫
E

q∗

s, ϱλ2

n


ϱ
λ2
n

ds < ε

for every E ⊆ [a, b],mes E < ω, and all n ∈ N. Consequently, relations (3.4), (3.10) and (3.11) guarantee that the sequences
(z1n)+∞

n=1 and (z2n)+∞

n=1 are uniformly bounded and equicontinuous. We can thus assume without loss of generality that there
exist z1, z2 ∈ C and µ ∈ [0, 1] such that

lim
n→+∞

δn = µ (3.12)

and

lim
n→+∞

‖z1n − z1‖C = 0, lim
n→+∞

‖z2n − z2‖C = 0. (3.13)

The integration of (3.6) and (3.7) from a to t implies

z1n(t) = z1n(a) +
(1 − δn)σ

ϱ
1−λ2
n

∫ t

a
z2n(s) ds + δn

∫ t

a
p1(s)|z2n(s)|λ1 sgn z2n(s) ds

+
δn

ϱn

∫ t

a
q1

s, u1n(s), u2n(s)


ds for t ∈ [a, b], n ∈ N (3.14)

and

z2n(t) = z2n(a) + δn

∫ t

a
p2(s)|z1n(s)|λ2 sgn z1n(s) ds

+
δn

ϱ
λ2
n

∫ t

a
q2

s, u1n(s), u2n(s)


ds for t ∈ [a, b], n ∈ N. (3.15)

Observe that, in view of (3.4), the relation

1 − δn

ϱ
1−λ2
n

∫ t

a
z2n(s) ds

 ≤
b − a

ϱ
1−λ2
n

for t ∈ [a, b], n ∈ N

holds. Therefore, by virtue of (1.9), (1.12), (3.1), (3.2), (3.8), (3.9), (3.12) and (3.13), we get from equalities (3.14) and (3.15)
that

z1(t) = z1(a) + µ

∫ t

a
p1(s)|z2(s)|λ1 sgn z2(s) ds for t ∈ [a, b]

and

z2(t) = z2(a) + µ

∫ t

a
p2(s)|z1(s)|λ2 sgn z1(s) ds for t ∈ [a, b].

Consequently, the functions z1 and z2 are absolutely continuous and (z1, z2) is a solution to system (1.1µ).
On the other hand, by using relations (1.8), (1.12) and (3.2), we obtain

δn

ϱn

γk

u1n, u2n

 ≤
δn

ϱn
γ ∗

0 (ϱn) for n ∈ N, k = 1, 2 (3.16)

and thus, in view of (1.9), (3.1), (3.2) and (3.13), it follows from (3.4) and (3.5) that

‖z1‖C + ‖z2‖
λ1
C = 1 (3.17)

and ∫ a0

a
z1(s) dα1(s) = 0,

∫ b

b0
z1(s) dα2(s) = 0. (3.18)

Thus we have shown that (z1, z2) is a nontrivial solution to problem (1.1µ), (1.20). On the other hand, according to one of
the conditions of the theorem, problem (1.1µ), (1.20) has only the trivial solution for every µ ∈]0, 1]. Therefore it is clear
that µ = 0.
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Now, for any n ∈ N, we choose an ∈ [a, a0] and bn ∈ [b0, b] such that

|z1n(an)| = min

|z1n(t)| : t ∈ [a, a0]


,

|z1n(bn)| = min

|z1n(t)| : t ∈ [b0, b]

 (3.19)

and we find cn ∈ [an, bn] with the property

|z2n(cn)| = min

|z2n(t)| : t ∈ [an, bn]


. (3.20)

Clearly, we can assume without loss of generality that

lim
n→+∞

cn = c0, (3.21)

where c0 ∈ [a, b].
Since the functions α1, α2 are non-decreasing and satisfy inequalities (1.13), by virtue of relations (3.16), it follows from

equalities (3.5) that

|z1n(an)| ≤
δn

α1(a0) − α1(a)
γ ∗

0 (ϱn)

ϱn
for n ∈ N (3.22)

and

|z1n(bn)| ≤
δn

α2(b) − α2(b0)
γ ∗

0 (ϱn)

ϱn
for n ∈ N. (3.23)

The integration of equality (3.6) from an to bn implies

σ z1n(bn) − σ z1n(an) =
1 − δn

ϱ
1−λ2
n

∫ bn

an
z2n(s) ds + δn

∫ bn

an
σp1(s)|z2n(s)|λ1 sgn z2n(s) ds

+
δnσ

ϱn

∫ bn

an
q1

s, u1n(s), u2n(s)


ds for n ∈ N.

Therefore, by using (1.15), (3.8), (3.20), (3.22) and (3.23), we get

|z2n(cn)|λ1
∫ b0

a0
|p1(s)| ds ≤ |z2n(cn)|λ1

∫ bn

an
σp1(s) ds

≤


1

α1(a0) − α1(a)
+

1
α2(b) − α2(b0)


γ ∗

0 (ϱn)

ϱn
+

1
ϱn

∫ b

a
q∗(s, ϱn) ds for n ∈ N.

Consequently, by virtue of (1.9), (1.14), (3.1), (3.2), (3.13) and (3.21), letting n → +∞ in the last inequality gives

z2(c0) = 0. (3.24)

On the other hand, since the function z1 satisfies (3.18) and the function α1 is non-decreasing with the property (1.13),
there exists t0 ∈ [a, a0] such that

z1(t0) = 0. (3.25)

As we have proved above, (z1, z2) is a solution to the system

dz1
dt

= 0,
dz2
dt

= 0

and thus, in view of (3.24) and (3.25), we obtain z1(t) ≡ 0 and z2(t) ≡ 0, which contradicts equality (3.17). �

Proof of Theorem 1.2. Assume that, on the contrary, there is no solution to problem (1.1), (1.3). Then, according to
Lemma 2.12, there exist sequences (u1n)

+∞

n=1, (u2n)
+∞

n=1 of functions absolutely continuous on [a, b] and a sequence (δn)
+∞

n=1 of
numbers from the interval ]0, 1[ such that the relations∫ a0

a
u1n(s) dα1(s) = δnγ1(u1n, u2n),

∫ b

b0
u2n(s) dα2(s) = δnγ2(u1n, u2n),

u′

1n(t) = δnp1(t)|u2n(t)|λ1 sgn u2n(t) + δnq1

t, u1n(t), u2n(t)


for a.e. t ∈ [a, b],

u′

2n(t) = δnp2(t)|u1n(t)|λ2 sgn u1n(t) + δnq2

t, u1n(t), u2n(t)


for a.e. t ∈ [a, b],

and

‖u1n‖C + ‖u2n‖
λ1
C ≥ n
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are satisfied for every n ∈ N. Define numbers ϱn (n ∈ N) by formula (3.2) and functions z1n, z2n (n ∈ N) by equalities (3.3).
Following similar steps as in the proof of Theorem 1.1 we construct a nontrivial solution to problem (1.1µ), (1.30), where
µ ∈ [0, 1]. Consequently, according to one of the assumptions of the theorem, we have µ = 0, which is a contradiction
because, in view of inequalities (1.13), it clear that problem (1.10), (1.30) has only the trivial solution. �

Proof of Theorem 1.3–1.7. Theorems 1.3 and 1.4 follow from Theorem 1.1 and Lemma 2.7. Theorem 1.5 follows from
Theorem1.2 and Lemma2.8. Theorem1.6 (respectively, Theorem1.7) follow fromTheorem1.2 and Lemma2.9 (respectively,
Lemma 2.10). �
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