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CONSTRUCTING THE SU(2)× U(1) ORBIT SPACE FOR
QUTRIT MIXED STATES

V. Gerdt,∗ A. Khvedelidze,† and Y. Palii‡ UDC 512.81, 530.145

The orbit space P(R8)/G of the group G := SU(2) × U(1) ⊂ U(3) acting adjointly on the state
space P(R8) of a three-level quantum system is discussed. The semialgebraic structure of P(R8)/G
is determined within the Procesi–Schwarz method. Using an integrity basis for the ring of G-
invariant polynomials R[P(R8)]G , the set of constraints on the Casimir invariants of the group
U(3) coming from the positivity requirement Grad(z) ≥ 0 for the Procesi–Schwarz gradient matrix
is analyzed in detail. Bibliography: 9 titles.

1. Introduction

Since the very beginning of quantum mechanics, a highly nontrivial interplay between quan-
tities describing a composite quantum system as a “single whole” and “local characteristics” of
its constituents became the subject of intensive studies (holistic vs. reductionistic views). The
present note aims to discuss a mathematical aspect of “the whole and the parts” problem in
quantum theory considering a model of a three-dimensional quantum system, qutrit. Putting
aside the physical motivation, these mathematical issues can be formulated as follows.

Consider a compact Lie group G acting on a real n-dimensional space V , and let H ⊂ G be
a compact subgroup of G. Assume that the corresponding orbit spaces V/G and V/H admit a
realization as semialgebraic subsets, Z(V/G) and Z(V/H), of Rq for some q. A mathematical
version of “the whole and the parts” dilemma can be formulated as the problem of finding a
correspondence between the sets Z(V/H) and Z(V/G).

In applications to quantum theory, the role of V is played by the space P(Rn2−1) of mixed
states of an n-dimensional binary quantum system. The groups G and H are associated with
the unitary group U(n) and its subgroup1 U(n1) × U(n2) ⊂ U(n) with the adjoint action

Ad (g) � = g�g−1, g ∈ U(n), (1)

on density matrices � ∈ P(Rn2−1). The action (1) determines the “global orbit space”
P(Rn2−1) |U(n) and the so-called entanglement space P(Rn2−1) |U(n1) × U(n2) of a binary
n1 × n2 system.

The semialgebraic structure of both orbit spaces admits a description in terms of the cor-
responding rings of G-invariant polynomials, R[P]U(n) and R[P]U(n1)×U(n2). According to
the Procesi–Schwarz method [1, 2], these semialgebraic varieties in R

q are determined by the
syzygy ideal for the corresponding integrity basis and the semipositivity of the so-called gra-
dient matrix, Grad(z) ≥ 0. As discussed recently in [3], the representation of the orbit space
P(Rn2−1) |U(n) in terms of an integrity basis for the ring of U(n)-invariant polynomials is
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completely determined from the physical requirements formulated as the semipositivity and
Hermiticity of density matrices. The conditions Grad(z) ≥ 0 do not impose any new constraint
on the elements of the integrity basis for R[P]U(n). In contrast to that case, the algebraic and
geometric properties of the entanglement space are more subtle. It turns out that in order to
determine the local orbit space P(Rn2−1) |U(n1) × U(n2), additional constraints arising from
the semipositivity of the Grad-matrix should be taken into account. Moreover, additional
inequalities in the elements of the integrity basis for R[P]U(n1)×U(n2) provide constraints on
the U(n)-invariants. Below, aiming to exemplify this statement, we will study a toy model
that mimics the generic case of a binary composite system. Namely, we consider the three-
dimensional quantum system defined by the state space P(R8) that is acted upon by the
symmetry group U(3) and its U(2) subgroup SU(2) × U(1).

2. Qutrit

• Parametrization of the qutrit states. Consider the quantum three-level system called
the qutrit. A state of this system, a semipositive Hermitian matrix � with unit trace, can be
parameterized as follows:

� =
1
3

(
I3 +

√
3

8∑
a=1

ξaλa

)
. (2)

Here the real parameters {ξa}a=1,...,8 are the components of the eight-dimensional Bloch vector
ξ, and {λa}a=1,...,8 are the Gell-Mann matrices generating the Hermitian basis of the Lie algebra
su(3) :

λ1 =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ , λ2 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠ , λ3 =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠ ,

λ4 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ , λ5 =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠ , λ6 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ ,

λ7 =

⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠ , λ8 =

1√
3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠ .

The product of a pair of Gell-Mann matrices involves two basic sets of structure constants of
the algebra su(3):

λaλb =
2
3
δab + (dabc + ifabc)λc, (3)

where dabc and fabc are the components of the completely symmetric and skew-symmetric
symbols defined via the anti-commutators {, } and commutators [, ] of the Gell-Mann matrices:

dabc = 1
4Tr({λa, λb}λc), fabc = 1

4Tr([λa, λb]λc).

The matrix � from (2) represents a physical state of the qutrit if and only if the Bloch vector
ξ is subject to the following polynomial constraints:2

ξaξa ≤ 1 , (4)

0 ≤ ξaξa − 2√
3
dabcξaξbξc ≤ 1

3
. (5)

2Inequalities (4) and (5) reflect the semipositivity � ≥ 0 of the qutrit density matrices.
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• The unitary symmetry of the qutrit. As mentioned above, we consider the adjoint
action of the unitary group U(3) on P(R8). The Bloch vector ξ transforms under the Ad-
action as an eight-dimensional vector:

ξ′a = Oabξb, O ∈ SO(8),

where O is an element of the eight-parameter subgroup of SO(8).3

• The “local symmetry” SU(2)×U(1). Consider the U(2) subgroup of U(3) identified (up
to conjugation) by the standard embedding

U(2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g(u) =

⎛
⎜⎜⎜⎝

u

(det u)−1

⎞
⎟⎟⎟⎠ | u ∈ U(2)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⊂ SU(3). (6)

According to the embedding (6) and to the choice of the Gell-Mann basis, the U(2) subgroup
is generated by λ1, λ2, λ3 (the generators of the SU(2) subgroup) and λ8 (the generator of the
U(1) subgroup). An element of the U(2) subgroup can be written as

g = exp(iλ1α) exp(iλ2β) exp(iλ3γ) exp(iθλ8), (7)

where the Euler angles α, β, γ parameterize the SU(2) group and the angle θ corresponds to
the U(1) phase, det u = exp(i 2√

3
θ).

3. A sketch of the Procesi–Schwarz method

The classical theory of invariants is the cornerstone for the description of orbit spaces. Using
this theory (see, e.g., [6]), the basic ingredients of the description can be formulated as follows.

Consider a compact Lie group G acting linearly on a real d-dimensional vector space V . Let
R[V ]G be the corresponding ring of G-invariant polynomials on V . Let P = (p1, p2, . . . , pq) be
a set of homogeneous polynomials that form an integrity basis:

R[x1, x2, . . . , xd]G = R[p1, p2, . . . , pq].

The elements of the integrity basis determine a polynomial mapping

p : V → R
q ; (x1, x2, . . . , xd) → (p1, p2, . . . , pq). (8)

Since p is constant on the orbits of G, it induces a homeomorphism V/G � X of the orbit
space V/G and the image X of p, see [7]. In order to describe X in terms of P uniquely, it is
necessary to take into account the syzygy ideal

IP = {h ∈ R[y1, y2, . . . , yq] : h(p1, p2, . . . , pq) = 0 in R[V ] }.
Let Z ⊆ R

q denote the locus of common zeros of all elements of IP . Then Z is an algebraic
subset of R

q such that X ⊆ Z. Denoting by R[Z] the restriction of R[y1, y2, . . . , yq] to Z,
one can easily verify that R[Z] is isomorphic to the quotient R[y1, y2, . . . , yq]/IP , and thus
R[Z] � R[V ]G . Therefore, the subset Z is essentially determined by R[V ]G, but in order to
describe X, further steps are required. According to [1, 2], the necessary information on X
is encoded in the structure of the q × q matrix whose elements are the inner products of the
gradients grad(pi):

‖Grad‖ij = (grad (pi) , grad (pj)) . (9)
Thus, summarizing all the above observations, the orbit space can be identified with the

semialgebraic variety defined as the set of points satisfying two conditions:
3More details on the algebraic and geometric structures of the group SU(3) can be found in the classical

paper [8].
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(a) z ∈ Z, where Z is the surface determined by the syzygy ideal for the integrity basis in
R[V ]G;

(b) Grad(z) ≥ 0.

4. Constructing the G-invariant polynomials

Let GL(n,C) be the general linear group of degree n over the field C. Assume that GL(n,C)
acts on polynomials p(x1, x2, . . . , xn) ∈ C[x1, x2, . . . , xn] as follows:

(gp) (x1, x2, . . . , xn) := p
(
x′
1, x

′
2, . . . , x

′
n

)
, g ∈ GL(n,C), (10)

where
x′

i = g−1
ij xj . (11)

A polynomial p(x1, x2, . . . , xn) is called G-invariant if it is a fixed point of the transformation
(10):

(gp) (x1, x2, . . . , xn) := p (x1, x2, . . . , xn) . (12)

Here we deal with polynomials in the n2 complex entries of density matrices p(�) = p(�11,
�12, . . . , �nn). To reduce the adjoint action (1) to a linear transformation of the form (11), one
can identify a Hermitian density matrix � with a complex vector V of length n2 and consider
the linear representation of the subgroup L ⊂ GL(n,C) defined via the tensor product of a
unitary matrix with its complex conjugate:

L := U(n) ⊗ U(n). (13)

The invariant polynomials satisfying (12) form an algebra over C, and any such invariant can be
expressed as a polynomial in the so-called fundamental invariants, homogeneous polynomials
of fixed degrees. Since the homogeneous invariants of a fixed degree form a vector space, it is
sufficient to find a maximal linearly independent set of homogeneous invariants, i.e., a basis
for that vector space. The dimension of this vector space can be extracted from the power
series (Poincare series [4]) expansion of the Molien function [5]. In fact, given a compact Lie
group G and a representation π of G, the Molien function can be directly defined by the power
series (cf. [5])

Mπ(C[V ]G, q) =
∞∑

k=0

ck(π)qk. (14)

Here ck(π) is the number of linearly independent G-invariant polynomials of degree k on V .

4.1. The Molien function. The Molien function (14) associated with a representation π(g)
of a compact Lie group G on V admits an integral representation [5, 6] (Molien’s formula):

Mπ(C[V ]G, q) =
∫
G

dμ(g)
det(I− qπ(g))

, |q| < 1, (15)

where dμ(g) is the Haar measure for the Lie group G. According to Weyl’s integration formula
[6], an integral over a compact Lie group G can be decomposed into a double integral over a
maximal torus T and the quotient G/T of the group by this torus. If the integrand is a function
invariant under the conjugation in the group, then the latter integral is “q-independent” and
the total integral reduces to an integral over the maximal torus with coordinate x and the
additional Weyl factor A(x):

Mπ(C[V ]G, q) =
∫
T

dμ[x]A(x)
det(I− qπ(x))

. (16)
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The resulting integral is transformed into a complex path integral which can be evaluated by
the residue theorem.

In what follows, we present the Molien functions for the group U(3) and its U(2) subgroup
acting linearly according to (13) on the complex nine-dimensional space.
• The Molien function for U(3). For the group U(3), the Weyl factor A(x) is the squared
Vandermonde determinant calculated for the torus coordinates divided by the order of the
corresponding Weyl group:

A
SU(3)

(x1, x2, x3) =
1
3!

3∏
i<j

(xi − xj)(xi − xj),

and the Molien function is given by

M
(d=9)
U(3) (q) =

1
(1 − q)(1 − q2)(1 − q3)

. (17)

• The Molien function for SU(2)×U(1). In this case, the π ⊗ π̄ representation for the
maximal torus is

π ⊗ π̄ = (x, x−1, y) ⊗ (x−1, x, y−1) = (1, x2, xy−1, x−2, 1, x−1y−1, yx−1, xy, 1),

where x is the coordinate on the torus of SU(2) and y is the coordinate on U(1). The Weyl
factor for SU(2) is

ASU(2)(x) := 1 − x2 − x−2

2
,

so that the integral in (16) reduces to the double path integral

M
(d=9)
SU(2)×U(1)

(q) =
∫

dμSU(2)dμU(1)

det |1 − q π ⊗ π̄|
=

1
8π2

1
(1−q)3

∮
|x|=1

∮
|y|=1

(1−x2)2 xdx ydy

(1−qx2)(1−qxy)(y−qx)(x−qy)(xy−q)(x2−q)

.

The subsequent calculation of the residues of the integrand first with respect to y at the poles
Py = {qx, q/x} and then with respect to x at the poles Px = {±√

q, ±q} finally gives a rational
expression for the Molien function:

M
(d=9)
SU(2)×U(1)(q) =

1
(1 − q)2(1 − q2)2(1 − q3)

. (18)

4.2. U(3)- and SU(2)×U(1)-invariant polynomials. Expressions (17) and (18) for the
Molien functions indicate that the set of fundamental homogeneous polynomials for the ring
C[x]SU(3) consists of three polynomials of degrees 1, 2, and 3, while there are five SU(2) × U(1)-
invariant homogeneous polynomials forming an integrity basis for the ring C[x]SU(2)×U(1). The
latter basis includes one polynomial of degree 1, two polynomials of degree 2, and one poly-
nomial of degree 3.

An integrity basis for the ring C[x]SU(3) can be composed either of the trace invariants
tk = tr

(
�k

)
, k = 1, 2, 3, or of the SU(3) Casimir invariants constructed via the correspondence

with the elements of the center of the universal enveloping algebra U(su(3)).
• Casimir invariants. Using the Bloch parametrization for the density matrix (2) of the
qutrit, we see that the quadratic and qubic Casimir invariants are the following polynomials:

C2 = ξiξi , (19)

C3 =
√

3 dijkξiξjξk. (20)
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• SU(2)×U(1)-invariants. Due to the graded structure of the ring of invariants, their
construction reduces to constructing the basic homogeneous invariant polynomials. These
homogeneous G-invariant polynomials of a given degree are subject to the system of linear
homogeneous equations (12). Actually, these equations reduce to an infinitesimal version of
the following form [4]:

eif = 0 , i = 1, . . . ,m ,

gjf = f , i = 1, . . . , s ,

where e1, . . . , em form a basis of the Borel subgroup B ⊂ G and g1, . . . , gs is a system of
representatives of the conjugacy classes of the group G with respect to its maximal connected
subgroup. Applying this general scheme, one can derive the following set of SU(2) × U(1)-
invariants:

f1=ξ8 , (21)

f2=ξ21 + ξ22 + ξ23 , (22)

f3=ξ24 + ξ25 + ξ26 + ξ27 , (23)

f4=2(−ξ1(ξ4ξ6+ξ5ξ7)+ξ2(ξ4ξ7−ξ5ξ6))+ξ3(−ξ24−ξ25+ξ26+ξ27). (24)

5. The orbit spaces of the qutrit

Before applying the above-mentioned method by Procesi and Schwarz [1,2] to the construc-
tion of the orbit space, let us reformulate the semialgebraic description of the qutrit state space
P(R8) in terms of the SU(3) Casimir invariants. In doing so, we mainly follow the ideology
presented in [9].

5.1. The global orbit space P(R8)/SU(3). Let us start with the semialgebraic structure
of the state space P(R8)/SU(3).
• The semipositivity of the density matrix. Equations (4) and (5) defining the semipos-
itivity of the qutrit density matrix in terms of the Bloch vector ξ can be rewritten via two
SU(3) Casimir invariants C2 and C3 as follows:

0 ≤ C2 ≤ 1 , (25)
0 ≤ 3C2 − 2C3 ≤ 1. (26)

• The Hermiticity of the density matrix. Inequalities (25) and (26) should be com-
pleted by the condition of being real for the eigenvalues of the qutrit density matrix. This con-
dition can also be expressed as a polynomial inequality in two Casimirs. This inequality is the
nonnegativity requirement for the discriminant of the characteristic equation det (λ − �) = 0
for the qutrit density matrix �:

Disc := C3
2 − C2

3 ≥ 0. (27)
Thus the intersection of the strip determined by the linear inequalities (25) and (26) with
the domain (27) is the image of the qutrit state space under the polynomial mapping. This
intersection is the curvilinear triangle ABC on the (C2,C3)-plane depicted in Fig. 1.

Now we will show that the triangle ABC represents the coset space P(R8)/SU(3) for the
qutrit state space. Indeed, since the determinant of the Procesi–Schwarz GradSU(3)-matrix

GradSU(3) =

(
4C2 6C3

6C3 9C2
2

)
(28)

is proportional to the discriminant (27)

det ‖GradSU(3)‖ = 36(C3
2 − C2

3),
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the semipositivity of the Grad-matrix that determines the orbit space
P(R8)/SU(3) coincides with the Hermiticity requirement for the qutrit density matrix.

Fig. 1. The triangle ABC as the global orbit space of the qutrit on the Casimir
(C2 ,C3)-plane.

5.2. The orbit space P/SU(2) × U(1). Let us start with the observation that the SU(3)
Casimir invariants can be expressed in terms of the four SU(2) × U(1)-invariants (21)–(24) as

C2 = f2
1 + f2 + f3 , C3 = 3f1(f2 − 1

2
f3) − 3

√
3

4
f4 − f3

1 . (29)

Since we are interested in the projection of the orbit space P/SU(2) × U(1) to the space
P(R8)/SU(3), it is constructive to use relations (29) and to build an integrity basis that
contains C2 and C3 as elements of the second and third degree:

PSU(2)×U(1) := {f1, f2, C2, C3} .

Fig. 2. The domain GradSU(2)×U(1) ≥ 0 and its projection to the (C2,C3)-plane
for f1 = 0 .
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Let us write the 4 × 4 Grad-matrix for the integrity basis {f1, f2,C2,C3} in block form:

GradSU(2)×U(1) =

⎛
⎝ A, B

BT , D

⎞
⎠ . (30)

Here A := diag(1, 4f2), D is the 2 × 2 diagonal matrix that coincides with the Grad-matrix
(28), and

B :=

(
2f1, 3

2(3f2 − f2
1 − C2)

4f2, 3f1(f2 + C2) + 2C3 − f3
1

)
. (31)

It is easy to see that the semipositivity of the matrix (30) reduces to the nonnegativity condition
for its determinant:

det ‖GradSU(2)×U(1)‖ ≥ 0. (32)

Furthermore, from the expression

det ‖GradSU(2)×U(1)‖ = 4
(
C2 + 3f2 − f2

1

)
×

[
− 9f2

1

(
C2
2 + 3f2

2

) − 12C3f1(C2 − 3f2) + 3f4
1 (2C2 + 3f2)

+ 27f2(C2 − f2)2 − 4C2
3 + 4C3f

3
1 − f6

1

]
.

(33)

it follows that the nonnegativity domain of the Grad-matrix is the four-dimensional body
bounded by two three-dimensional hypersurfaces that we denote by Σ+ and Σ−. An explicit
parametrization of Σ± can be found by solving the equation

− 9f2
1

(
C2
2 + 3f2

2

) − 12C3f1
(
C2 − 3f2 − 1

3
f2
1

)
+ 3f4

1 (2C2 + 3f2) + 27f2(C2 − f2)2 − 4C2
3 − f6

1 = 0
(34)

with respect to C3. Therefore, the hypersurfaces Σ± are given by the equations

C3 =
3
2

(
f1(3f2 − C2) +

f3
1

3
∓

√
3f2

(−C2 + f2 + f2
1

))
. (35)

According to (35), the hyperfaces Σ+ and Σ− intersect if√
3f2

(
f2 + f2

1 − C2

)
= 0. (36)

Thus the hypersurfaces Σ± intersect along the following two-dimensional surfaces Δ1 and Δ2:
(1) the surface Δ1:

f2 = 0 , C3 =
3
2
f1

(
f2
1

3
− C2

)
, (37)

(2) the surface Δ2:

f2 + f2
1 − C2 = 0 , C3 = 3f1

(
C2 − 4

3
f2
1

)
. (38)

To make the description of the orbit space more transparent, consider its three-dimensional
cross sections for different values of the “local” invariant f1.
• P/SU(2) × U(1) for f1 = 0. Figure 2 shows the semipositivity domain for the Grad-matrix
in the space (f2,C2,C3). The three-dimensional slice of the “local” orbit space fixed by the local
invariant f1 = 0 is shown in Fig. 7 (middle). From this picture one can see that the projection
of the “semipositivity cone” of the Grad-matrix to the (C2,C3)-plane exactly reproduces the
ABC triangle, the orbit space P(R8)/SU(3) depicted in Fig. 1.
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Fig. 3. The domain GradSU(2)×U(1) ≥ 0 and its projection to the (C2,C3)-plane
for f1 = 2/5.

Fig. 4. DCBE is the image of P/SU(2) × U(1) on the SU(3) orbit space for f1 = 2/5.

For nonvanishing values of f1, the attainable area of the Casimir invariants (C2, C3) is
shrinking. To illustrate this effect, below we give the corresponding pictures for a positive,
f1 = 2/5, and a negative, f1 = −2/5, value of the invariant f1.
• P/SU(2) × U(1) for f1 = 2/5. For this value, the “semipositivity cone” is shown in Fig. 3.
For nonzero values of f1, the vertex of the “semipositivity cone” intersects the (C2, C3)-plane
of Casimir invariants at the point D which is different from A. The line DE is the projection of
the surface Δ2 with f1 = 2/5. As f1 grows, the line DE moves towards BC, and for f1 = 1/2
covers it. To make a more vivid illustration, the shrinking area of allowed SU(3) Casimir
invariants is shown in Fig. 4.

When the “local” invariant f1 lies in the interval (0,−1], an alternative mechanism of
shrinking of the triangle ABC works.
• P/SU(2) × U(1) for f1 = −2/5. For this case, the “semipositivity cone” is depicted in
Fig. 5. When f1 takes negative values, the points D and E move toward the point B, and all
of them coincide for f1 = −1.

Figure 6 exemplifies the effect of shrinking of the domain of allowed SU(3) Casimir invariants
for the negative value f = −2/5.
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Fig. 5. The domain GradSU(2)×U(1) ≥ 0 and its projection to the (C2,C3)-plane
for f1 = −2/5.

Fig. 6. DCBE is the image of P/SU(2) × U(1) on the SU(3) orbit space for f1 = −2/5.

Finally, the three-dimensional slices of the orbit space P/SU(2) × U(1) for different values
of f1 are presented in Fig. 7.
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Fig. 7. P/SU(2) × U(1) slices for f1 = 2/5 (top), f1 = 0, and f1 = −2/5 (bottom).

6. Conclusion

In the present note, we analyze the SU(2)×U(1) orbit space of the qutrit treating it as a sim-
plified analog of the entanglement space of a composite system. The orbit space is described as
a semialgebraic variety in R

4 defined by a set of polynomial inequalities in SU(2)×U(1) adjoint
invariants. These inequalities follow from the simultaneous semipositivity of two matrices, the
qutrit density matrix and the Procesi–Schwarz Grad-matrix, constructed from a fundamental
set of SU(2)× U(1) invariants. We discuss in detail how the semipositivity of the Grad -matrix
for SU(2)× U(1) invariants provides new constraints on the geometry of the orbit space, in
contrast to the case of the SU(3) orbit space.

The work is supported in part by the Ministry of Education and Science of the Russian
Federation (grant 3003.2014.2) and the Russian Foundation for Basic Research (grant 13-01-
0068).
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