
Journal of Mathematical Sciences, Vol. 209, No. 6, September, 2015

ON THE GEOMETRIC PROBABILITY OF ENTANGLED
MIXED STATES

A. Khvedelidze∗ and I. Rogojin† UDC 512.816, 530.145

The state space of a composite quantum system, the set of density matrices P+, is decomposable
into the space of separable states S+ and its complement, the space of entangled states. An explicit
construction of such a decomposition constitutes the so-called separability problem. If the space
P+ is endowed with a certain Riemannian metric, then the separability problem admits a measure-
theoretic formulation. In particular, one can define the “geometric probability of separability” as
the relative volume of the space of separable states S+ with respect to the volume of all states.
In the present note, using the Peres–Horodecki positive partial transposition criterion, we discuss
the measure-theoretic aspects of the separability problem for bipartite systems composed either
of two qubits or of a qubit-qutrit pair. Necessary and sufficient conditions for the separability
of a two-qubit state are formulated in terms of local SU(2) ⊗ SU(2) invariant polynomials, the
determinant of the correlation matrix, and the determinant of the Schlienz–Mahler matrix. Using
the projective method of generating random density matrices distributed according to the Hilbert–
Schmidt or Bures measure, we calculate the probability of separability (including that of absolute
separability) of a two-qubit and qubit-qutrit pair. Bibliograhpy: 47 titles.

1. Introduction

The word “entanglement,” “verschränkung” in the original Austrian phrasing, was intro-
duced into the glossary of quantum mechanics by Ervin Schrödinger in the 1930s. The name
is due to a strange type of correlations in composite systems predicted by the newly created
quantum theory [1]. The existence of “entangled” states in quantum theory seemed very
problematic and mysterious since its inception, but at present it is experimentally verified
and, moreover, used in practice in a variety of quantum engineering applications. Undoubt-
edly, nowadays entanglement has found its place among the fundamental notions of quantum
physics and gains popularity similar to that the words “energy” and “force” had in the 19th
century.

Being highly counterintuitive and strange, entanglement has a transparent mathematical
formulation. Mathematics certainly dispels the aura of mystery, reducing the understanding
of correlations between parts of a composite system to the analysis of a set of correctly stated
algebraic problems. One problem of primary importance, the so-called “separability problem,”
is formulated as follows. Consider a system composed of two dA- and dB-dimensional subsys-
tems with Hilbert spaces HdA and HdB , respectively. According to the axioms of quantum
mechanics, any state of the composite system is given by a density matrix � ∈ P+, which acts
on a Hilbert space of tensor product form:

HdA dB = HdA ⊗HdB .

For a given factorization HdA ⊗ HdB , an element �sep ∈ P+ belongs to the subset S+ of
separable states if and only if �sep admits a convex decomposition into r tensor product states
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with some probability distribution ωk [2]:

�sep =
r∑

k=1

ωk �A
k ⊗ �B

k . (1)

The operators �A
k and �B

k in (1) are the density operators of the subsystems A and B, respec-
tively. The states complementary to the separable ones are called entangled.1

The definition (1) is implicit, and hence the question of whether a given state is separable
or entangled is worth further attention. Even at first glance it becomes clear that the “sep-
arability” question is highly intricate. Moreover, as shown by Gurvits (cf. [4, 5]), even for a
bipartite system the separability problem is categorized computationally as NP-hard.

The complexity of the problem brings into play alternative approaches. In particular, by
considering the state space of a quantum mechanical system as an object with measure (cf.
[6, 7]), the “separability problem” can be reshaped into a probability issue [8, 9].

Below, adopting the above approach, we consider in detail bipartite systems consisting
of two- and three-level subsystems. Equipping the state space with a certain measure, we
compute the relative volume of the entangled states with respect to all possible states:

PE =
Vol(Space of entangled states)

Vol(Space of all states)
. (2)

This number determines the geometric probability of entanglement, which can be treated as
a certain measure of “capacity of quantumness” of the system.

The paper is organized as follows. In Secs. 2 and 3, the basic elements from the mathemati-
cal description of finite-dimensional quantum systems are given. Then, using this background,
we introduce the notion of the separability probability of states. Using the Peres–Horodecki
positive partial transposition criterion, we formulate necessary and sufficient conditions for the
separability of a state of the two-qubit system in terms of local SU(2)⊗SU(2) scalars, the deter-
minants of the correlation matrix and the Schlienz–Mahler matrix [10]. In Sec. 3, adopting the
projective method of generating random density matrices, we study the probabilistic aspects
of separability characteristics of two-qubit and qubit-qutrit pairs, including the computation
of the separability and absolute separability probability, as well as a numerical evaluation of
distributions of separable matrices with respect to the determinants of the correlation and
Schlienz–Mahler matrices.

2. Settings

Below, the relevant definitions and notions, including the basic algebraic and geometric
characteristics of composite quantum systems, are given in a form suitable for introducting a
probability of quantum states. Note that we consider only finite-dimensional quantum systems.

2.1. The state space. At the beginning of the “Golden Age” of quantum mechanics, John
von Neumann and Lev Landau became aware of limitations on the applicability of Schrödinger’s
Ψ-function and introduced the notion of a “mixed quantum state” [11, 12]. A mixed state is
characterized by a self-adjoint, positive semidefinite “density operator” acting on the Hilbert
space of a quantum system. For a nonrelativistic n-dimensional system, the Hilbert space H
is Cn and the density operator can be identified with an n×n Hermitian, unit trace, positive

1Note that the representation (1) is not unique, and even if one knows that a state is separable, to find its
decomposition is not an easy task. Furthermore, speaking about separability, one must always keep in mind
that a fixed factorization HdA ⊗HdB has been picked out. Using a global unitary transformation U acting on
the total space, one can switch to another factorization U

(HdA ⊗HdB
)
U+ . As a result, a separable state can

become entangled and vice versa (cf. the discussion in [3]).
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semidefinite matrix �. This matrix, termed the density matrix, completely specifies a state of
an n-level quantum system. All possible density matrices form the set P+, the state space of
the n-dimensional quantum system.

2.1.1. The state space as a semialgebraic variety. The space of Hermitian matrices is topolog-
ically isomorphic to R

n2
. Due to the positive semidefiniteness, any density matrix � represents

a point of the semialgebraic variety P+(Rn2−1) in the affine subspace determined by the unit
trace equation Tr� = 1. In spite of the long story of studies of finite-dimensional systems,
very little is known about P+(Rn2−1) for arbitrary n. It turns out that even for small n the
structure of P+(Rn2−1) is quite cumbersome.2

• Density matrices and the universal enveloping algebra U(su(n)). The state space
has a useful algebraic description in terms of the universal enveloping algebra U(su(n)) of the
Lie algebra su(n). Let e1, e2, . . . , en2−1 form a basis for su(n):

su(n) =
n2−1∑

i=1

ξi ei. (3)

Consider elements from U(su(n)) of the following form:

� =
1
n

⎛

⎝ In×n + ı

√
n(n − 1)

2

n2−1∑

i=1

ξi ei

⎞

⎠ , (4)

with a real (n2 − 1)-dimensional vector ξ = (ξ1, ξ2, . . . , ξn2−1) . As mentioned above, expres-
sion (4) represents an element of the state space P+ if the vector ξ satisfies a finite set of
polynomial inequalities:

fα(ξ) ≥ 0. (5)

Moreover, it turns out that the semialgebraic set described by (5) admits a representation with
polynomial functions fα that are invariant under the adjoint action of the unitary group SU(n)
on P+(Rn2−1) . More precisely, consider the ring R[P+]SU(n) of SU(n)-invariant polynomials
and a set of homogeneous polynomials P = (t1, t2, . . . , tn) that form an integrity basis of this
ring:

R[ξ1, ξ2, . . . , ξn2−1]
SU(n) = R[t1, t2, . . . , tn]. (6)

Then the state space P+(Rn2−1) for every n is a semialgebraic subset given by inequalities of
the following type:

pi(t1, t2, . . . , tn) ≥ 0 , i = 1, 2, . . . , s, (7)

where pi ∈ R[P+]SU(n). Below, analyzing the Hermiticity and semipositivity requirements
for density matrices, we will give an explicit form of inequalities (7). With this aim, a brief
digression is in order on constructing an integrity basis P = (t1, t2, . . . , tn) from elements of
the center Z(su(n)) of the universal algebra.

DIGRESSION 1

• The SU(n)-invariance. Constructing adjoint SU(n)-invariants from elements of Z(su(n)) is
a well-known procedure. Referring the reader to the literature on this subject (see, e.g., [14]),

2A neighborhood of a generic point of P+(Rn2−1) is locally isometric to
(
SU(n)/U(1)n−1

) × Dn−1, where

Dn−1 is the (n − 1)-dimensional disc (cf. [13]).

990



we briefly state the results and discuss constraints on these invariants due to the Hermiticity
and positive semidefiniteness of density matrices. We are looking for polynomials

φ(ξ) =
∑

ci1···ir ξi1ξi2 . . . ξir (8)

in variables ξ1, ξ2, . . . , ξn2−1 that are invariant under the adjoint action

φ(ξ) = φ((Adg)T ξ) , (9)

where (Adg)T is the transpose of the adjoint operator calculated in the basis
ei1 , ei2 , . . . , en2−1:

g ei g−1 = (Adg )ijej , g ∈ SU(n) . (10)

These polynomials are in a one-to-one correspondence with the elements of the center Z(su(n)):

Cr =
∑ 1

r!
ci1···ir

∑

σ∈Sr

eiσ(1)
eiσ(2)

. . . eiσ(r)
, (11)

where Sr is the group of permutations of 1, 2, . . . , r.
Furthermore, the n − 1 independent Casimir operators Cr in (11) serve as a source for

an integrity basis of the polynomial ring R[P+]SU(n). The scalars arising from the above
isomorphism are commonly referred to as Casimir invariants. The first Casimir invariants up
to the sixth order in ξ are

C2 = (n − 1) ξ · ξ, (12)

C3 = (n − 1) (ξ ∨ ξ ) · ξ, (13)

C4 = (n − 1) (ξ ∨ ξ ) · (ξ ∨ ξ ), (14)

C5 = (n − 1)
(
(ξ ∨ ξ ),∨(ξ ∨ ξ )

)
· ξ, (15)

C6 = (n − 1) (ξ ∨ ξ ∨ ξ )2, (16)
. . . . . . ,

where

(U ∨ V )a := κdabcUaVb ,

dabc are symmetric structure constants for su(n), and κ =
√

n(n − 1)/2 is a normalization
constant. Another equivalent set of invariants, useful from a computational point of view, is
given by the so-called trace invariants, power series in the eigenvalues {λ} = λ1, λ2, . . . , λn of
the density matrix:

tk := tr(�k) = λk
1 + λk

2 + · · · + λk
n , k = 1, 2, . . . , n. (17)

Below we formulate the Hermiticity and semipositivity requirements for density matrices di-
rectly in terms of (17).

•The Hermiticity of � in terms of SU(n)-invariants. Since � is a Hermitian matrix, all
solutions (eigenvalues {λ}) of the characteristic equation

det ‖λ − �‖ = λn − S1λ
n−1 + S2λ

n−2 − · · · + (−1)n Sn = 0 (18)

are real numbers. According to a classical result, certain information on the properties of the
roots can be extracted from the so-called Bézoutian, the matrix B = ΔTΔ constructed from
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the Vandermonde matrix

Δ =

⎛

⎜⎜⎜⎜⎜⎝

1 λ1 λ2
1 . . . λn−1

1

1 λ2 λ2
2 . . . λn−1

2

1 λ3 λ2
3 . . . λn−1

3
...

...
...

...
...
...

1 λn λ2
n . . . λn−1

n

⎞

⎟⎟⎟⎟⎟⎠
. (19)

The entries of the Bézoutian are simply the trace invariants:

Bij = ti+j−2 . (20)

The Bézoutian accummulates information on the number of distinct roots (via its rank), the
number of real roots (via its signature), as well as the Hermiticity condition. A real charac-
teristic polynomial has all its roots real and distinct if and only if the Bézoutian is positive
definite. Here we are interested only in generic density matrices (the space of degenerate
matrices with coinciding roots is a set of zero measure). For this case, the positivity of the
Bézoutian reduces to the requirement

det ‖B‖ > 0 . (21)

Since det ‖B‖ = (det ‖Δ‖)2 , the determinant of the Bézoutian is nothing else but the discrim-
inant of the characteristic equation (18),

Disc =
∏

i>j

(λi − λj)
2 , (22)

rewritten in terms of the trace polynomials:

Disc(t1, t2, . . . , tn) := det ‖B‖. (23)

The dependence of the discriminant on the trace invariants only up to order n emphasized in
the left-hand side of (23) implicates that all higher trace invariants tk with k > n in (20) are
expressed via polynomials in t1, t2, . . . , tn (the Cayley–Hamilton theorem).
• The semipositivity of � in terms of SU(n)-invariants. The positive semidefiniteness
implies the nonnegativity of the roots of (18):

λk ≥ 0 , k = 1, 2, . . . , n. (24)

Inequalities (24) are not computationally efficient, the eigenvalues {λ} are nonpolynomial
SU(n)-invariants. Fortunately, it is known (see, e.g., [15, 16] and references therein) that
instead of (24) an equivalent set of inequalities can be formulated in terms of the first n
symmetric polynomials in the eigenvalues of � :

Sk ≥ 0 , k = 1, 2, . . . , n. (25)

In contrast to the eigenvalues, the coefficients Sk are SU(n)-invariant polynomial functions
of density matrix elements and thus are expressible in terms of trace invariants. An elegant
expression for Sk is given by the following determinant:

Sk =
1
k!

det

⎛

⎜⎜⎜⎜⎜⎝

t1 1 0 · · · 0
t2 t1 2 · · · 1
t3 t2 t1 · · ·
...

...
...

...
...
... k − 1

tk tk−1 tk−2 · · · t1

⎞

⎟⎟⎟⎟⎟⎠
. (26)
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Summarizing, the algebraic set of inequalities in SU(n)-invariants describing the state space
P+(Rn2−1) as a semialgebraic variety in the affine subspace Tr� = 1, reads

Disc ≥ 0 (Hermiticity) , (27)
Sk ≥ 0 (semipositivity). (28)

Now we are in a position to pose the following question: Is the space of separable states
S+ also a semialgebraic set? In spite of many efforts in the last decades, a complete answer
for the generic case is yet unknown. But for a simplest bipartite system 2 ⊗ 2, composed of
a pair of two-dimensional subsystems (qubits), the space of separable states S2⊗2 admits a
nice description as a basic semialgebraic variety. The next section is devoted to a detailed
demonstration of this particular result.

2.1.2. Decomposing the state space: separable vs. entangled. As mentioned in the introduction,
due to the quantum superposition principle, an arbitrary state of a composite system is de-
scribed by an element of the tensor product of the density operators of its subsystems. For a
given factorization of the system into parts, the state space P+(Rn2−1) decomposes into the
separable component S+ and the entangled component. Furthermore, since the separability
property is independent of the choice of a basis in each subsystem, it was conjectured (see the
discussion in [17]) that S+ is a so-called basic closed semialgebraic set, which is determined by
polynomial inequalities in variables that are invariant under the independent action of unitary
transformations of each subsystem. Below, starting with the necessary definitions, we will give
a description of S+ for a pair of qubits.

A generic 15-parameter density matrix for the composite 2 ⊗ 2 system consisting of two
qubits reads as

� =
1
4

[I4 + a · σ ⊗ I2 + I2 ⊗ σ · b + cij σi ⊗ σj ] . (29)

The representation (29) is often called the Fano [18] decomposition of a two-qubit state with
parameters a and b assigned to the Bloch vectors of the reduced density matrices �A and �B

extracted from � by taking the partial traces over the second and first qubit, respectively:

�A = TrB �, �B = TrA �. (30)

Nine real coefficients cij are usually collected in the “correlation matrix” ‖C‖ij = cij. As
follows from its name, the C-matrix contains information on interactions between the parts of
a composite system.
•The separability criterion. Perhaps the most useful tool for evaluating separability is the
famous Peres–Horodecki criterion [19–21], which is based on the idea of partial transposition.
The partial transpose �TB of a two-qubit density matrix is defined as

�TB = I ⊗ T�, (31)

where T is the standard transposition. Under this transposition, the Pauli matrices change as
T (σ1, σ2, σ3) → (σ1,−σ2, σ3) .

States for which the partial transposition preserves positivity are called positive partial
transpose (PPT) states. It is easy to verify that any separable state is PPT. The converse
is not true, even for low-dimensional bipartite systems. Counterexamples for the 3 × 3 case
show that there are entangled states with positive partial transpose. However, for composite
binary systems of type 2× 2 and 2× 3, the Peres–Horodecki criterion asserts that a state � is
separable if and only if its partial transpose �TB is positive too.3

3More generally, consider a family of so-called bipartite k × l states �, i.e., states whose partial traces are
matrices with rank�A = k and rank�A = l, respectively. For such k × l states, it was proved that � is separable
if it is PPT and (k − 1)(l − 1) ≤ 2 [19,20].
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Intuitively, it is clear that entanglement in composite systems is a function of the “relative
orientation” of its subsystems only, any “local characteristics” of subsystems are irrelevant for
the separability problem. To give a precise sense to this view, the second digression on the
so-called local invariance of composite systems is in order.

DIGRESSION 2

• The local unitary invariance. The characterization of entanglement for two qubits, as
well as for more general multipartite systems, admits a formulation in terms of invariants of
the so-called local groups [22]. To introduce this notion, consider a generic multipartite system
composed of r subsystems with d1, d2, . . . , dr levels, respectively. The special subgroup

SU(d1) ⊗ SU(d2) ⊗ · · · ⊗ SU(dr) (32)

of the unitary group SU(n) with n = d1 × d2 × · · · × dr acting on the state space is called
the group of local unitary transformations (LUT). This action introduces equivalence relations
on P+(Rn2−1) and determines its orbit decomposition. Two states of a composite system
connected by LUT (32) have the same nonlocal properties. Any characteristic of entanglement
is a function of LUT invariants. In particular, the separability criterion can be given in terms
of the corresponding polynomial LUT invariants. Before presenting an algebraic formulation of
the separability criterion, we turn to a basic description of LUT invariants (see, e.g., [22–26]).

• SU(2)⊗ SU(2) invariants. LUT invariants of the mixed two-qubit system are polyno-
mials in the elements of the density matrix � that are constant under the adjoint action of the
group SU(2)⊗ SU(2). These invariants and the corresponding ring RSU(2)⊗SU(2) have been the
subject of intensive studies. In this general setting, RSU(2)⊗SU(2) necessarily has the Cohen–
Macaulay property, i.e., there exists a homogeneous system of parameters K1,K2, . . . ,Kn, for
some n, such that RSU(2)⊗SU(2) is finitely generated as a free module over C[K1,K2, . . . ,Kn].
It is known that the polynomial ring of SU(2) ⊗ SU(2) invariants admits the Hironaka decom-
position, namely ([24]),

RSU(2)⊗SU(2) =
15⊕

k=0

Jk C[K1,K2, . . . ,K10], (33)

where ten primary algebraically independent polynomials Kr have degrees

degK = (1, 2, 2, 2, 3, 3, 4, 4, 4, 6);

and fifteen secondary linearly independent invariants Jk, k = 0, 1, 2, . . . , 15, are polynomials
of degrees degJ = (4, 5, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 10, 11, 15) with J0 = 1.

An integrity basis of SU(2)⊗ SU(2) invariants in the enveloping algebra U(su(n)) is known
[24, 27]. Following Quesne’s notation, below we list the invariants (up to the fourth order)
necessary for our analysis (all repeated indices should be summed from 1 to 3):

3 invariants of the second degree

C(200) = aiai , C(020) = bibi , C(002) = cijcij ; (34)

2 invariants of the third degree

C(003) =
1
3!

εijkεαβγciαcjβckγ , C(111) = aicijbj ; (35)
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4 invariants of the fourth degree

C(004) = ciαciβcjαcjβ, (36)

C(202) = aiajciαcjα , (37)

C(022) = bαbβciαciβ, (38)

C(112) = εijkεαβγaibαcjβckγ . (39)

Now we will show that two LUT invariants, namely, C(003) and C(112), play a special role
in the algebraic form of the Peres–Horodecki separability criterion.
• Separability in terms of local invariants. As follows from the Peres–Horodecki crite-
rion, a density matrix � for the two-qubit system is separable if the coefficients STB

k of the
characteristic equation for the corresponding partially transposed matrix �TB are nonnegative:

STB
k ≥ 0 , k = 2, 3, 4. (40)

As calculations show, the second coefficient of the characteristic equation is invariant under
the partial transposition (31):

STB
2 = S2, (41)

while the higher coefficients change as follows:

STB
3 = S3 + det ‖C‖, (42)

STB
4 = S4 + det ‖M‖, (43)

where M stands for the Schlienz–Mahler matrix [10]:

Mij := cij − aibj. (44)

Comparing with (35), one can easily verify that both determinants det ‖C‖ and det ‖M‖ are
invariant under the local group SU(2) ⊗ SU(2):

det ‖C‖ = C003, det ‖M‖ = C003 − 1
2
C112. (45)

It is interesting that Eqs. (42) and (43) allow one to formulate sufficient conditions for
entanglement of two qubits.
• Sufficient conditions for entanglement of two qubits. Consider a pair of qubits in

a generic mixed state (29). Then from (41)–(43) it follows that any density matrix ρ obeying
the inequalities

det2‖M‖ > 1, det2‖C‖ > 1 (46)

is necessarily an entangled matrix. Density matrices from the complementary domain

−1 ≤ det ‖M‖ ≤ 1, −1 ≤ det ‖C‖ ≤ 1 (47)

are separable as well as entangled.
The separability vs. entanglement conditions described above are invariant under the LUT

group, but can change under generic unitary transformations. However, observing that the
maximally mixed state �0 ∼ In×n remains separable under arbitrary U(n) transformations,
one can expect the existence of states in its neighborhood that possess separability properties
independent of the chosen basis. Below, a short review of the characterization of such states
is given.
• Absolute separability. The separability vs. entanglement property is sensitive to how the
system is decomposed into parts. In general, it depends on a fixed factorization, but there are
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exceptions. M. Kuś and K. Zyczkowski in [28] drew attention to the states of an n-dimensional
quantum system that are absolutely separable, i.e., to the U(n)-invariant subspace AS+ ⊂ S+:

AS+ = {� ∈ S+ | U�U+ ∈ S+, for every U ∈ U(n)}. (48)

What is the condition for a state to be absolutely separable? The answer to this question
for a two-qubit system was found by Verstraete et al. [29], who showed that a necessary and
sufficient condition is given by a quadratic inequality on the eigenvalues of the density matrix.
Later, for the case of a bipartite system composed of qudits, a similar system of inequalities
in the eigenvalues of the density matrix was derived by R. Hildebrand [30]. In particular, for
the 2 ⊗ 2 and 2 ⊗ 3 cases, the inequalities read

λ1 − λ3 ≤ 2
√

λ2λ4, (49)

λ1 − λ5 ≤ 2
√

λ4λ6. (50)

The algebraic description of the state space and, in particular, of the separable states pre-
sented here is well adapted for the extraction of quantitative characteristics of entanglement.
Now a few applications exemplifying this thesis will be given.

3. A probabilistic view on entanglement

Here probabilistic aspects of entanglement are discussed within the semialgebraic description
given in the previous sections. Adopting the probability approach [8, 9, 31–33], we present
probabilistic characteristics of the two-qubit and qubit-qutrit systems. Since standard methods
of probability theory require the existence of a measure, below we start with the introduction
of Riemannian structures on P+(Rn2−1).

3.1. The Riemannian geometry of states. There is no way to single out a unique measure
in the state space. Various physical and mathematical argumentations have been used to
introduce different metrics on P+(Rn2−1). Several popular distances between two density
matrices �1 and �2 commonly used in the literature are as follows:

• the trace distance
Dtr(�1, �2) = tr

(√
(�1 − �2)2

)
, (51)

• the Hilbert–Schmidt distance

DHS(�1, �2) =
√

tr [(�1 − �2)2] , (52)

• the Bures distance

DB(�1, �2) =
√

2
(
1 − tr

[
(�1/2

1 �2�
1/2
1 )1/2

])
. (53)

These distances naturally appear in different approaches, e.g., the Bures distance [34] originates
from the statistical distance between quantum states [35] and quantum fidelity [36]. Each of
them possesses certain advantages as well as drawbacks, and often the obtained results strongly
depend on the choice made. Below, in order to analyze this type of dependence, we use the
measures on P+(Rn2−1) corresponding to two of them, (52) and (53). They can be derived as
follows.
• The Hilbert–Schmidt measure. Considering the distance (52) between two infinitesi-

mally close points � and � + d�, we get the flat metric

g
HS

= tr (d� ⊗ d�) , (54)
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which in the Bloch coordinates (4) for the two-qubit system takes (up to a scale factor) the
standard Euclidean form in R

15:

g
HS

= dξ1 ⊗ dξ1 + dξ2 ⊗ dξ2 + · · · + dξ15 ⊗ dξ15. (55)

The measure corresponding to (55),

dμ
HS

:= dξ1 ∧ dξ2 ∧ · · · ∧ dξ15 , (56)

admits the following decomposition:

dμ
HS

= dμ�Δ4
× dν

U(4)/U(1)4
, (57)

where dμ�Δ4
is a certain measure on the ordered 3-dimensional simplex4 in R

4 and dνU(4)/U(1)4

is the measure on the coset U(4)/U(1)4 induced from the standard Haar measure on the unitary
group U(4). Note that the decomposition (57) follows from the principal axis transformation
applied to density matrices. Since density matrices are Hermitian, for every � there exists a
unitary matrix U ∈ U(4) such that

� = UΛU †. (58)

Since the adjoint action on a diagonal matrix Λ has stability group HΛ , the matrix U is not
unique, it belongs to a coset homeomorphic to U(4)/HΛ. To make the representation (58)
one-to-one, we constraint the diagonal elements of the matrix

Λ =

⎛

⎜⎜⎝

λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

⎞

⎟⎟⎠ (59)

to the ordered simplex �Δ4 by fixing the descending order

1 ≥ λ1 ≥ λ2 ≥ λ3 ≥ λ4 ≥ 0.

The stability group HΛ depends on the matrix Λ, and all possible types of HΛ are listed in
Table 1.

Eigenvalues Stability group HΛ dim(U(4)
HΛ

) dim(Λ)

λ1 > λ2 > λ3 > λ4 > 0 U(1)4 12 3
λ1 = λ2 > λ3 > λ4 > 0 U(2) ⊗ U(1)2 10 2
λ1 > λ2 = λ3 > λ4 > 0 U(1) ⊗ U(2) ⊗ U(1) 10 2
λ1 > λ2 > λ3 = λ4 > 0 U(1)2 ⊗ U(2) 10 2
λ1 > λ2 = λ3 = λ4 > 0 U(1) ⊗ U(3) 6 1
λ1 = λ2 > λ3 = λ4 > 0 U(2) ⊗ U(2) 8 1
λ1 = λ2 = λ3 > λ4 > 0 U(3) ⊗ U(1) 6 1
λ1 = λ2 = λ3 = λ4 ≥ 0 U(4) 0 0

Table 1. The stability groups and dimensions of U(4)/HΛ cosets.

From Table 1 one can conclude that the measure is determined by the case with the minimal
isotropy group U(1)4. Thus, passing to new coordinates via the transformation (58), we bring

4The ordered simplex �Δ4 is the standard simplex Δ4 factored by the action of the permutation group S4.
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the measure (57) to the form

dμ�Δ4
=

∏

i>j

(λi − λj)
2 dλ1 ∧ · · · ∧ dλ4, (60)

with the discriminant of the characteristic equation for � as the Jacobian and the measure on
the coset SU(4)/U(1)4 depending on 42 − 4 angles:

dμ
SU(4)/U(1)4

= ω1 ∧ ω2 ∧ · · · ∧ ω12, (61)

where ω1 , . . . , ω12 are the left-invariant 1-forms on U(4) projected to the coset
SU(4)/U(1)4. As a result, the Hilbert–Schmidt measure (56) induces the following joint dis-
tribution function on the simplex of eigenvalues of density matrices:

P
HS

(λ) = C
HS

n δ

(
1 −

n∑

i=1

λi

)
n∏

i=1

Θ(λi)
∏

i>j

(λi − λj)
2 , (62)

where the normalization constant Cn is

C
HS

n :=
Γ(n2)

n−1∏
j=0

Γ(n − j)Γ(n − j + 1)
.

It is important to note that the distribution (62) may be regarded as a special case of the
family of measures induced by the partial tracing [31–33]. Below, we will use this observation
for the numerical analysis of the geometric probability.
• The Bures measure. The infinitesimal form of the Bures distance (53) leads to the metric

g
Bures

=
1
2

Tr (Gd�) , (63)

where G is defined from the equation d� = G� + �G, see [37,38].
It is known (see, e.g., [36, 39]) that the Bures probability distribution on the simplex of

eigenvalues reads

PBures(λ) = CBures
n δ

(
1 −

n∑

i=1

λi

)
∏

Θ(λi)
dλi√

λi

∏

i<j

(λi − λj)2

λi + λj
, (64)

where

CBures
n = 2n2−n Γ(n2/2)

πn/2
∏n

j=1 Γ(j + 1)
is a normalization constant.

3.2. The probability of separability. Now, having introduced a measure on the space
of states, we are in a position to define probabilistic characteristics of entanglement. The
simplest one is the probability of finding separable states among all possible states distributed
according to the introduced measure on the state space.
• The geometric probability of separability. Consider a bipartite system consisting of

a pair of qubits or of a qubit and a qutrit. Taking into account the semialgebraic structure of
the state space, one can define the probability of separability as

Psep =

∫
P+∩ P̃+

dμ
∫
P+

dμ
. (65)

The denominator in (65) represents the volume of the total state space P+, while the numerator
is the volume of the separable states; the integral is over the intersection P+ ∩ P̃+ of P+
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and its image P̃+ under the partial transposition map. The set P+ ∩ P̃+ is the subset of P+

invariant under the partial transposition map:

P+ ∩ P̃+ = {ρ ∈ P+ | I ⊗ Tρ ∈ P+} .

In our computations below, the measure dμ in the integrals (65) is assumed to be either the
Hilbert–Schmidt one or the Bures one. Since the volume of the state space is known for both
metrics, the Hilbert–Schmidt metric [40] and the Bures metric [36], the problem of computing
the probability of separability reduces to the evaluation of the integral over the set P+ ∩ P̃+.

Leaving for future studies generic properties of (65), we will discuss how to evaluate the prob-
ability of separability for pairs of qubits and qubit-qutrit pairs. A direct numerical calculation
of the multidimensional integral over the set P+ ∩ P̃+ is a hard computational problem. To
avoid very cumbersome calculations, one can use a reliable remedy, the Monte-Carlo method.

3.3. Generation of ensembles of density matrices. The basic ingredient of the Monte-
Carlo approach is the generation of a specific random variable. To generate random density
matrices from the Hilbert–Schmidt and Bures ensembles, the ideology of the method of induced
measures (cf. [31–33] and [41–43]) can be used. To proceed, let us first start with the generation
of the so-called Ginibre ensemble [44], i.e., the set of complex matrices whose entries have real
and imaginary parts distributed as independent normal random variables.
• The Ginibre ensemble. Let M(C, n) be the space of n×n matrices whose entries are com-
plex numbers. Assume that the entries of Z ∈ M(C, n) are independent identically distributed
standard normal complex random variables:

p(zij) =
1
π

exp(−|zij |), i, j = 1, 2, . . . , n.

The joint probability distribution

P (Z) =
n∏

i,j=1

p(zij) =
1

πn2 exp
(
−Tr

(
Z†Z

))
(66)

and the linear measure on M(C, n) determine the Ginibre probability distribution:

dμG(Z) = P (z)Tr
(
dZ†dZ

)
. (67)

Having random Ginibre matrices, one can use a simple prescription to generate elements
from both Hilbert–Schmidt and Bures ensembles.
• The Hilbert–Schmidt ensemble. In order to generate Hilbert–Schmidt states

P (�)HS ≈ Θ(�)δ(1 − �), (68)

consider a square n×n complex random matrix Z from the Ginibre ensemble. Then it is easy
to check that the matrix

�HS =
Z†Z

Tr (Z†Z)
(69)

is, by construction, Hermitian, semipositive, unit norm matrix that belongs to the Hilbert–
Schmidt ensemble (68).
• The Bures ensemble. The density matrix distributed according to the Bures measure

can also be generated using the Ginibre ensemble. Following [42], consider the random matrix

�B =
(I + U)ZZ+(I + U+)

Tr [(I + U)ZZ+(I + U+)]
, (70)
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where Z is a complex matrix belonging to the Ginibre ensemble, while U is a unitary matrix
distributed according to the Haar measure on the unitary group U(N). By a straightforward
calculation one can verify that the matrices �B are distributed according to the Bures measure.

3.4. Numerical results

• The distribution of separable matrices. Now, having an algorithm for generating
Hilbert–Schmidt and Bures matrices, one can analyze the character of the distribution of
separable matrices in both ensembles. As concerns the two-qubit system, the distributions of
separable density matrices with given entanglement characteristics, the determinants of the
correlation and Schlienz–Mahler matrices, det ‖C‖ and det ‖M‖, have been found. The results
of our calculations are presented in Figs. 1 and 2.

Fig. 1. The distribution of separable states with respect to the correlation mea-
sure det ‖C‖ for 106 matrices from the Hilbert–Schmidt ensemble.

• Probabilities and conjectures. Finally, we give the values of probabilities for the two-
qubit and qubit-qutrit composite systems whose density matrices are distributed according to
the Hilbert–Schmidt and Bures measures.

Generating random density matrices as described above and then counting the number of
matrices satisfying the PPT conditions

STB
k ≥ 0, k = 1, 2, . . . , 6,

we have found the probability of separability for the two measures. The results are as follows.
For the Hilbert–Schmidt measure, the probabilities of separability are

P2⊗2
H−S = 0.2424, (71)

P2⊗3
H−S = 0.0373, (72)

while for the Bures measure they are

P2⊗2
B = 0.073, (73)

P2⊗3
B = 0.001. (74)
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Fig. 2. The distribution of separable states with respect to the Schlienz–Mahler
entanglement measure det ‖M‖ for 106 random Hilbert–Schmidt matrices.

Besides, the probabilities of absolutely separable states for the two-qubit and qubit-qutrit
systems have been determined. In this case, the problem reduces to the calculation of integrals
over the domain in the ordered simplex given by inequalities (49) and (50):

P2⊗2
Measure

=
∫

P
Measure

(λ)Θ(2
√

λ2λ4 − λ1 + λ3), (75)

P2⊗3
Measure

=
∫

P
Measure

(λ)Θ(2
√

λ4λ6 − λ1 + λ5). (76)

These integrals have been evaluated using the MATHEMATICA package for the Hilbert–Schmidt
(62) and Bures (64) distributions. Summarizing, all results, including the percentage of abso-
lutely separable states, are collected in Table 2.

System Separable Abs. Sep.
H-S metric

2 ⊗ 2 24.24 % 23,874174 % 0.365826 %

2 ⊗ 3 3.73 % 2,753321 % 0.976679 %

Bures metric

2 ⊗ 2 7.3 % 7,2838208 % 0.0161792 %

2 ⊗ 3 0.1 % 0,1 % -

Table 2. Probabilities for the two-qubit and qubit-qutrit systems.

4. Concluding remarks

In the present note, an algebraic description of low-dimensional binary composite systems,
pairs of qubits and qubit-qutrit pairs, has been given in a form well adapted to computational
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purposes. Using this formulation, we have discussed a few probabilistic aspects of entangle-
ment. Here a short comment on the results of our numerical experiments with probability of
separability is in order. In particular, as concerns the probability of separability for the case
of the Hilbert–Schmidt measure, one can observe the existence of intriguing simple rational
approximations:

P2⊗2
H−S = 0.2424 ≈ 8

33
=

23

3 ∗ 11
, (77)

P2⊗3
H−S = 0.0373 ≈ 16

429
=

24

3 ∗ 11 ∗ 13
, (78)

in agreement with the results conjectured by P. B. Slater a few years ago [45, 46]. It is
interesting whether this observation has some deep background or is an accidental fact only.

Another interesting unclear issue discovered is the large value of the probability of absolute
separability for the 2 ⊗ 3 system with the Hilbert–Schmidt measure compared with the two-
qubit system. Finally, we would also like to emphasize the strong dependence of entanglement
characteristics on the choice of the measure (cf. [47]).
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