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SU(6) CASIMIR INVARIANTS AND SU(2) ® SU(3) SCALARS FOR A MIXED QUBIT-QUTRIT
STATE

V. Gerdt,* D. Mladenov,"* Yu. Palii,! and A. Khvedelidze* UDC 517.986

In the present paper, a few steps are undertaken towards the description of the “qubit—qutrit” pair — a quantum
bipartite system composed of two- and three-level subsystems. Calculations of the Molien functions and Poincaré
series for the qubit-qubit and qubit-quirit “local unitary invariants” are outlined and compared with the known
results. The requirement of the positive semi-definiteness of the density operator is formulated explicitly as a set of
inequalities in five Casimir invariants of the enveloping algebra su(6). Bibliography: 26 titles.

1. INTRODUCTION

The present article discusses several computational aspects of pure quantum effects in composite systems
valuable for the modern theory of quantum computing and quantum information [1, 2].

The cornerstone of these latest trends is an extraordinary quantum phenomenon — the “entanglement” of
quantum states. Basically, by entanglement one means the occurrence of diverse nonlocal correlations in a
composite multipartite quantum system, which have no classical analog. From the mathematical point of view,
characteristics of entanglement can be understood within the classical theory of invariants (cf. [3, 4]). The
central object in these studies is the ring of G-invariant polynomials in the elements of density matrices, with the
group G consisting of the so-called local unitary transformations acting separately on each part of a multipartite
composite system. The program of describing this ring for multipartite mixed states was outlined in [5], and
during the last decade it has been intensively developed. Many interesting physical and pure mathematical
results have been obtained. In particular, for the simplest bipartite system of two qubits, the structure of the
corresponding ring has been clarified (see, e.g., [6-8]). However, comparatively little is known for multipartite
states, as well as for bipartite mixed states composed of arbitrary d-level subsystems, i.e., for so-called qudits [9,
10]. The main reason is the great computational difficulty we are faced with. Indeed, even when dealing with a
3-level subsystem, a qutrit, a large number of independent elements of the density matrix leads to a wide variety
of local polynomial invariants and makes the direct usage of known computer algebra packages noneffective.

Below, attempting to construct the polynomial ring of invariants for the qubit-qutrit pair, we obtained ad-
ditional evidence of the complexity of the problem. The known results [23] and our calculation of the Molien
functions and Poincaré series for the qubit-qutrit show that the number of local invariants increases significantly
compared with the case of two qubits. Nevertheless, the obtained information is very useful for the analysis
of the ring of SU(2) ® SU(3) invariants. As a preliminary result, here we present a set of linearly independent
SU(2) ® SU(3) invariant polynomials up to the fourth order constructed via trace operation from noncommuta-
tive monomials in three elements of a special decomposition of the qubit-qutrit density matrix. Using the subset
of SU(2) ® SU(3) invariant polynomials consisting of the Casimir invariants of the enveloping algebra $((su(6)),
the positive semi-definiteness of the density matrix of the qubit-qutrit pair is derived in the form of a system of
algebraic inequalities.

2. THE SU(n) CASIMIR INVARIANTS

Here we present basic facts about the unitary symmetry of quantum mechanics and its role in the description
of composite multipartite states.

The density operator and SU(n)-invariants
According to conventional quantum theory, the complete information on a generic n-dimensional system is
accumulated in the self-adjoint positive semi-definite density operator ¢ with unit trace, ¢ € P4. For a closed
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quantum system, this description is highly redundant; the equivalence relation on B, due to the invariance of
observables under the adjoint action of the group SU(n),

(Adglo=gog™", geSU(n), (2.1)

guarantees that the physically relevant information about quantum states can be extracted from the orbit space
P |SU(n).! Relaxing for a moment the semi-definiteness condition, the density operator o can be expressed
via the Lie algebra su(n) of SU(n) [11]:

1
o= I,+Fkig, gecsu(n), *=-1, (2.2)
n

with some normalization factor %. Therefore, the density operator can be decomposed in terms of n? — 1 basis
elements, e;, of the Lie algebra su(n),

n?—1

i=1

and any other operator A[p] constructed from the density operator p admits a representation as a graded power
series:

1 1
Ae) = AOT4+4W ¢, + 2!A§j.> eie; + 3!A§.j?,1 eiejer + ... . (2.4)

According to the Poincaré-Birkhoff-Witt theorem [12], the ordered monomials
eo =1, €iiyip =€i1€Cip .. iy € < €y < -0 < €4y, (2.5)

form a linear basis of the universal enveloping algebra (su(n)) of su(n). A direct corollary of this theorem is
that the symmetrized monomials of degree d in (2.4) span a linear space 4¢(su(n)) and the universal enveloping
algebra

U(su(n)) = @ U (su(n))
d=0

is isomorphic as a linear space to the polynomial algebra in commutative real variables &, i = 1,...,n% — 1.

Furthermore, according to the well-known Gelfand’s theorem [13], the description of the center Z(su(n)) of the
enveloping algebra 4(su(n)) reduces to the study of invariants in the commutative symmetrized algebra S(su(n)),
which is isomorphic to the algebra of invariant polynomials over su(n). The elements of the center Z(su(n))
are in a one-to-one correspondence with the SU(n)-invariant polynomials in n? — 1 real variables, coordinates in
su(n). More precisely, an element

1
Q:r = E ,l Ciq iy E eia(l)eia(z) eia(r) (26)

cES,

of YU(su(n)), where S, is the group of permutations of 1,2,...,r, belongs to Z(su(n)) if and only if ¢;,...;. are
the coeflicients of a polynomial

B(E1,Ear 1 60) = Y Civoiy Einbin -+ iy (2.7)
in variables &1, &s, ..., &, that is invariant under the adjoint action
$&1,&,---,&) = ¢(Ad 9)761,(Ad 9)7&, ... (Ad 9)7¢,), (2.8)

with (Ad g)7, the matrix of the adjoint operator Ad g, calculated in the basis e;,, €, ... ,e€;,.

Therefore, from the algebraic point of view, the study of the orbit space PB4 | SU(n), as well as of any charac-
teristic of quantum-mechanical observables invariant under the unitary action (2.1), reduces to the computation
of the center Z(su(n)) of HU(su(n)).

IThe orbit space P | SU(n) of SU(n) is defined as the set of all SU(n)-orbits endowed with the quotient topology and differen-
tiable structure, and the subset of all SU(n)-orbits with the same orbit type forms a stratum of P | SU(n).
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The elements €, belonging to the center are called Casimir operators. The number of independent homoge-
neous Casimir generators for SU(n) is equal to ranksu(n) =n — 1.
It is well known that a quadratic Casimir operator is unique up to a constant factor and is expressible in
terms of the Cartan tensor:
Cz'j = tr((Ad e,)(Ad €j)). (29)

Therefore, for the algebra su(n) the quadratic Casimir operator reads as

= Z €;i€;. (2.10)

The higher-dimensional Casimirs can be expressed in terms of the symmetric structure constants d;; of su(n)
[15]. Since in what follows, when dealing with the qubit-qutrit system, the Casimirs of SU(6) will be used,? the
expressions for €; are given below:

= Z di1i2i3 €1 €i5 €3,

¢y = E djiyinQjigis €y €ir€ig€iy s
= E diiy iy Qijis Ajisis €i €iy €ig€iy € i
= E iiy iy Qijis Ajkis Arigic €iy iy Cis iy Cis Cig -

Now, using these operators and decomposition (2.3) based on the isomorphism between the center Z(su(n)) and
the SU(n)-invariant polynomials, the following scalars, hereafter referred as Casimir invariants, can be written:

C=m—-1)¢-¢, (2.11)
€ =(n—-1)(EVE) € (2.12)
€= (- 1)(EVE) - (€VE) (2.13)
& =m-1)(EVEVEVE)-E (2.14)
C=(n-1)(EVEVE), (2.15)

where
(UV V), :=kdapUpVe,

with the normalization constant & := \/n(n —1)/2.
These scalars will be used for an explicit formulation of the positive semi-definiteness of the density matrices
for an arbitrary n-level quantum system.

Positivity of density operators

To the best of our knowledge, the first analysis of the consequences of the constraints on the density operator
due to its positive semi-definiteness was carried out in the 1960s when studying the production and decay of
resonant states in strong interaction processes [16-18]. Nowadays, quantum computing and quantum information
reveal the new role of these constraints, and recently they have been derived once again [19, 20].

To formulate the semi-definiteness, we choose the Bloch representation of the density operator (2.2) (see [11]),

1
e=_(Intw), w=r&-A (2.16)

characterized by an (n? — 1)-dimensional Bloch vector & € R" 1 contracted with Hermitian basis elements
Xi, i = 1,...,n% — 1, of the Lie algebra su(n). According to [17],% a necessary and sufficient condition for a
Hermitian matrix to be positive is that the coefficients Sy of its characteristic equation

Tz — o] = 2™ — 12"t + Sz 2 — ...+ (=1)"S, =0 (2.17)

2The tensorial $14(2) ® sU(3) product type basis for 5U(6) is given in Appendix A. There we also present formulas for the
symmetric structure constants d;;x, as well as for the antysymmetric structure constants f;;5 for su(n).

3In our recent publication [8], the positivity conditions for density operators were analyzed in the context of consequences for
an integrity basis of the ring of SU(2) ® SU(2) polynomial invariants, as well as for entanglement characteristics of mixed qubit
states [21].

4Note that P. Minnaert attributed the same result to D. N. Williams.
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are nonnegative:
0>0 & 5,20, k=1,...,n. (2.18)

It is convenient to rewrite these inequalities in terms of the normalized coefficients Sy, := S,/ max{ Si.}. Observ-
ing that the maximum values of Sy correspond to the most degenerate roots ;3 = 3 = ... = x,, = 1/n of the
characteristic equation (2.17), one can express them in terms of binomial coefficients:

1 n
max{ S} = nk (n— k>7

and hence
0<Sy <1, k=2,...,n. (2.19)

Now we are ready to rewrite the constraints (2.19) in terms of the Casimir invariants (2.11)—(2.15). This
can be done since each of the three sets, €, Sk, and t; = tr(o*), k = 2,... ,n, forms a basis of algebraically
independent invariants of SU(n) (see, e.g., [14]). Expressions for the coefficients Sy in terms of t,, are well
known; they are given by determinants:

t1 1 0 0 . 0
to t1 2 0 . 0
1 t3 to t1 3 cee 0
Sk = . . . . .
kb : : : - :
th—1 tp—o trp—3 tp—4 ... k-1
tp  tg—1 lk—2 trp—3 ... ty

Further, the t,, can be written as polynomials in the Casimir invariants. Using the expressions for the traces of
symmetrized products of basis elements of a Lie algebra (see Appendix A; cf. also [20]), we have

tr(w”) = ne€,y, (2.20)
tr(w?) = nes, (2.21)
tr(w?) = n (€3 + &), (2.22)
tr(w®) = n (2¢2€3 + &), (2.23)
tr(w®) = n (€3 +2¢2€, + € + &). (2.24)
Finally, imposing the following normalization for the Casimir invariants,
E—1)!
Cr = ( ) k., (2.25)

m—1n—-2)...(n—k+1)

we arrive at a system of inequalities in the Casimir invariants of su(6) that determines the positive semi-
definiteness of the density matrix of the qubit-qutrit pair:

0<Cy <1, (2.26)
0<3C,—C3<1, (2.27)
0<6Cy,—5C; —4Cs+Cy <1, (2.28)
0<(1-5C2)* —3002C5 +10C3—5Cy+C5<1 (2.29)
0 < (1 —5C3)* —180C2Cs + 125C2Cy + 20C3(1 + 5C3) — 15C4 + 6C5 — C < 1. (2.30)

To discuss the role of the positive semi-definiteness in the entanglement problem, we need to write the obtained
system in terms of local SU(2) ® SU(3) invariants.
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3. LOCAL UNITARY INVARIANTS

The local invariance of composite states

When a quantum system is obtained by combining r subsystems with ni,ns,... ,n, levels each, nonlocal
properties of the composite system are in a correspondence with a certain decomposition of the unitary operations
(2.1).

In order to discuss this decomposition, consider the subgroup
SU(n1) ® SU(n2) ® -+ - @ SU(n,) (3.1)

of the unitary group formed by the local unitary transformations acting independently on the density matrix of
each subsystem:

Q(n") — Q("i)/ = gg("i)g_l, g e SU(ni), 1=1,2,...,7r. (3.2)

Two states of the composite system connected by local unitary transformations (3.1) have the same nonlocal
properties. The latter can be changed only by the remaining unitary actions

SU(n

SU(n1) @ SU(ns) @ -+ @SU(n,)" 02 (3.3)

generating the class of nonlocal transformations.

Now we are in a position to discuss the structure of the ring of polynomial local invariants, i.e., polynomials
in the elements of the density matrices that are scalars under the adjoint local unitary transformations. It is well
known that for any reductive linear algebraic group G (in particular, a Lie group) and for any finite-dimensional
G-module V, the ring R has the Cohen-Macaulay property [22] and possesses a Hironaka decomposition

RY =P J.ClKy, Ka, ..., Ky, (3.4)
a=0
where Kp, b = 1,2,...,n, are primary algebraically independent polynomials and J,, a = 0,1,2,...,r, with

Jo = 1, are secondary linearly independent invariants, respectively. According to this, the corresponding Molien
function Mg(q) for RY (see [7]) can be expressed as follows:

zr: qdeg Ja
a=0

. (3.5)
(1 — gdea k)

Mg(q) =

—Is

b=1

In this form, it provides us with information about the number of algebraically independent polynomials, as well
as linearly independent invariants.

The Molien function for CJ f®2)] and C[“Bf@g)]

Let us start with a remark concerning the adjoint action (2.1). Consider the case of nondegenerate density
matrices. In this case, using the natural identification of the linear space spanned by the Hermitian n x n matrices

. 2
with R? 1,
0 — Pij,
one can, instead of the adjoint action (2.1), consider the linear representation on R -1,
Vi = LapVs, Lap € SU(n) ® SU(n),

where the overline means complex conjugation.

After this identification, in order to get some insight into the structure of the ring of polynomial invariants of
a linear action of a Lie group G on a linear space V', we may compute the Molien function

G dp(g)
M(CIVI%,q) = (Z ot e o<1, (36)
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where du(g) is the Haar measure for the Lie group G and n(g) is the corresponding representation on V. We
start with the system of two qubits.

Two qubits. In this case, the local unitary group is
G =SU(2) ® SU(2). (3.7)

As is well known, for any reductive linear group, the integration in (3.6) reduces to integration over the maximal
compact subgroup K of G (see [4]). In the present case, this results in integration over the maximal torus

7(g) = diag (1,1, 2,27 ") @ diag (1, L, w,w™ "), (3.8)

where z,w are coordinates on the one-dimensional tori. Therefore, the computations reduce to the following

two-dimensional integral:
Msu(2)esu(2)(q) 2m / / (zw,q)’ (3.9)

=1 |w|=1
where

dp=(1-2(1—wp @

det(I —gm(g)) = (1 —¢q) ¥(z,w,q) (3.10)
U(z,w,q) = (1-¢)°(1 - g2)*(1 = qu)*(1 =gz~ )*(1 — qu ™)
x (1 —qzw)(1 — gz 'w)(1 — qzw™ ) (1 — gz tw ™).

After the integration we obtain the Molien function (see [7])

1+q4+q5+3q6+2q7+2q8+3q9+q10+q11+q15

Msueesves (@) = (1 - g2)2(1 = )2(1 — ¢)3(1 — o) ’ (311

which is palindromic:
Msy(2)esu(2) (1/4) = —¢"° Msy2)esu() (@),
in accordance with the fact that

dim SU(4) =

Qubit qutrit. Now the local unitary group is G := SU(2) ® SU(3), and owing to the symmetries of the
integrand (3.6), the nontrivial contribution to the integral comes from the diagonal components of the 7 (g)-
representation of the form

ﬂ'(g)diag = dla‘g (17 17'7;7'77_1) ® dlag (17 17 172172’;11}2’;11/_1;2’_1: (yz)_l)v (312)

where z,y, and z are coordinates on the one-dimensional tori. Therefore, the computation of the Molien function
(3.6) reduces to the evaluation of a multiple contour integral over the unit circles in the complex planes:®

Msy2)esu() (@) = (2731) / . f(z,y,2,q)dedydz, (3.13)
jai=t lyi=1 "
where
F@,y,2,q) = mzz (=27 ‘1{1,(33(; R Zq; =27 (3.14)
det(I —gm(g)) = (1 - q)¥(z,y,2,q9), (3.15)

5The multiple integral (3.13) was calculated by repeated application of Cauchy’s residue theorem. Since f has poles of rather
high orders, computer calculations of the residues were performed using the built-in command Residue of the Mathematica packet,
which implements the standard limit formula for high-order poles (see http://mathworld.wolfram.com/ComplexResidue.html).
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and
i,y 50) = (1= 0 (1= )P (=02 (1 =gy (1= P = TP )2
x (1 - qz)*(1 — qry)(1 — qz2)(1 — qay2)(1 — q;xl - a1

z Yz

<= Dra=ha="He="ha- o= o= ).

As a result, the Molien function can be represented in a rational form (cf. [23]):

N
Msu2)esus) (@) = D’

where

N=1+4¢"+9¢° +38¢° +69¢" +173¢% + 347¢° + 733 ¢"° + 1403 ¢"*

+ 2796 ¢'? + 5091 ¢*2 + 9286 ¢'* + 16058 ¢'° + 27208 ¢'¢ + 44250 ¢'7

+ 70537 ¢"® + 108430 ¢'° + 163158 ¢*° + 238264 ¢*' + 339974 ¢*2

+ 472130 ¢ + 641187 ¢** + 848615 ¢*° + 1098643 ¢ + 1388741 ¢*7

+ 1717327 ¢*8 + 2075836 ¢*° + 2456389 ¢°° + 2843020 ¢* + 3222408 ¢*2

+ 3575226 ¢>° + 3884797 ¢** + 4133599 ¢*° + 4308636 ¢°¢ + 4398377 ¢°7

+4398377¢% + ... +38¢% +9¢"° +4¢™ +¢7,
D=(1-¢P1-¢)"1-¢")’1-")'1-¢")°1—q¢")?1~d". (3.16)

This Molien function is palindromic:

Msu(2)ssu(s)(1/0) = ¢°° Msu@)esue) (4),

since

dim SU(6) = 35.

This form of the Molien function serves as a source of information on the polynomial ring of SU(2) ® SU(3)
invariants. In particular, one may endeavor to identify the structure of algebraically independent local uni-
tary scalars. According to (3.16), there are 24 independent scalars, in agreement with a simple count of
dim [SU(6)/SU(2) ® SU(3)] = 35 — 11 = 24. The set of these 24 polynomial invariants can be composed of
three invariants of degree 2, four of degree 3, five of degree 4, four of degree 5, five of degree 6, two of degree 7,
and one of degree 8.

Note that the Poincaré series of Msy(2)esu(3)(q),

Msu(2)esu) (@) = Z dim (PC?U(Z)@)SU@)) ¢, (3.17)
d=0

determines the number of homogeneous polynomial invariants of degree d. According to the calculations of
(3.13), a few terms of the Taylor expansion over ¢ are

Msu2)esu@) (@) = 143 +4¢° +15¢* +25¢°+90 ¢°+170 ¢" +489 ¢°
+ 1059 ¢° + 2600 ¢'° + 5641 ¢** + 12872 ¢'2 + 27099 ¢**
+57990 ¢'* + 118254 ¢ + 240187 ¢'* + O (¢'7) . (3.18)

Now, having in mind the structure of the Molien function (3.16), we attempt to construct the local SU(2) ®
SU(3) unitary invariants.
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Constructing SU(2) ® SU(3) invariants
Let us introduce a decomposition of density matrices well adapted to the case of a composite qubit-qutrit
system. The space su(6) in (2.2) for n = 6 admits a decomposition into the direct sum of three real spaces:

su(6) = @ Vi = 5u(2) ® Iz + I, ®su(2) + su(2) @ su(3). (3.19)

a=1

Using the Pauli matrices o; as a basis for su(2) and the Gell-Mann matrices A\, as a basis for su(3) (see the
Appendix), the density matrix (2.16) for the qubit-qutrit system can be written (see [9, 10]) as

1
0= lstw], w=atf+n, (3:20)
where
3 8 3 8
o = Zaiai®13, B = Zbl I ®)\a; Y ZZZ Zcia 0; @ Aq. (321)
i=1 a=1 i=1 a=1

Among the 35=3+8+24 real parameters (a;,bq,ciq), the first two sets, a; and b,, correspond to the Bloch
vectors of an individual qubit and qutrit, respectively; the evaluation of the partial trace yields the reduced
matrices for the subsystems:

1 - — 1 - bd
o =trp(o) = 2(12 +i-3), oP) :=trao) = 3(13 +b- ),

while the variables ¢;, are the entries of the so-called correlation matrix ¢;q = ||C|||ia-

Before suggesting a set of local SU(2) ® SU(3) scalars, candidates for the elements of an integrity basis, let us
make a few explanatory remarks. Consider the homogeneous polynomials in variables (a, b, ¢) of degrees s, t,q,
respectively, constructed as follows.

By analogy with the generators (2.5) of the universal enveloping algebra, we introduce a general noncommu-
tative monomial of total degree d,

Mh iqg ‘& Xi1 : Xig et Xida (322)
in three matrix variables X;, € {«,3,7},k = 1,...,d. The trace operation on the monomial (3.22) determines
a map

tr : M — P; tr (MZ1 id) S Pstq(ai; baycia); (323)

where Pgiq(a;, be, ¢iq) is a polynomial in the variables (a;, bq, ciq) of total degree d = s + ¢ + g, where s, ¢, and ¢
are the sums of the degrees of the variables a;, by, and ¢; 4, respectively.

Now it is easy to verify that the image of the trace map is a set of SU(2) ® SU(3) invariants. Indeed, a generic
term of the polynomial (3.23) consists of the convolution of monomials in (a;, bs, ¢;e) With the traces of tensorial
products in the monomials (3.22):

tr(0'102"'0'p®)\1)\2"')\7-) :tr(0102~-~0p)tr()\1)\2-~-)\T),

where p = s+ ¢ and r = ¢t + ¢. Since under a transformation of the form &y ® k2, where k; € SU(2) and
ks € SU(3), the basis elements are transformed independently in the adjoint way,

o — kiok;t, XN — kaky

the polynomials tr (M) are invariant under the action of SU(2) ® SU(3).

Therefore, the polynomials Pst,(a;, ba, ciq) are a store for constructing an integrity basis for C[3 |SURI®SUE),
Now, in contrast to the case of SU(n), where the Casimir invariants are built with the help of the symmetric
structure constants only, the invariants are expressed in terms of the antisymmetric structure constants of product
algebras as well. For example,

tr ’7/3 = CiaCjbCkc tr (UinUk ® )‘a)‘b)‘c) = CiaCjbCkc tr (U,’O’jak) tr ()\a)‘b)\c) .
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This quantity, being invariant under the action of SU(2) ® SU(3), is expressible in terms of the totally antisym-
metric tensor €5 (the structure constants of su(2)) and fope (the structure constants of su(3)):

3
try? = —4 trEijkfabc CiaCjbCke-

When choosing a basis for the local invariants, several types of algebraic dependences between polynomials
in Psiq(ai,ba,ciq) must be taken into account. It is worth considering two illustrative examples. Applying
the Hamilton—Cayley theorem to the elements «, 3, and 7y, regarded as Hermitian 6 x 6 matrices, one can
determine algebraic identities for polynomials of the form tr(™), n > 7. A less obvious example of relations
between polynomials arises from identities between the structure constants of the algebra.® Let us consider two
invariants, both of the 4th order in the variables C', but the first one constructed using the invariant symmetric
structure constants d, while the second one, using the antisymmetric structure constants f:

394 (dd) = dape depg (CTC)ap (CTC) g, (3.24)
3004 (ff) = fapcfcbq(CTC)ab (CTC)pq- (325)

With the aid of identities (A.6) and (A.7) (see the Appendix) for the structure constants of su(3), one can check
that

2 1 :
4 dd) = IS — [(tr(CTC))Z —2t(CTCCT o). (3.26)
According to the Poincaré series (3.18), there are 15 homogeneous scalars of order 4, while there are 81 = 34
monomials in three noncommutative variables. But since the elements « and # commute, this number decreases.

Taking into account this commutativity, as well as the invariance of the trace operation under cyclic permutations
of products, one can find 18 valuable monomials:

o, BY, Y B, aBd, Py, ayt, By, BYP,
a?B2, &y, ayay, B292, ByBy,
o?By, aB®y, aBy?, aypBy. (3.27)

Taking the traces of these monomials, one can check that five of them form the kernel of the trace map,
tr(a®B) = tr(af?) = tr(a™) = tr(8%) = tr(a®B7) =0,
and the images of the last two monomials in (3.27) coincide up to sign:
tr (afy?) = —tr (ayfy).

Therefore, the set of twelve traces

tr(a), tr(8Y), tr(a®p?), tr(a®+?), (3.28)
tr(v!), tr(ey®), t(8y?), tr(ayay), (3.29)
tr (8297), tr(BvBy), tr(af?y), tr(afy?), (3.30)

plus the three fourth-order polynomials constructed as products of second-order polynomials tr (a?) tr (5?),
tr (a?) tr (v?), tr (8?) tr (y?), are 15 homogeneous invariant polynomials, in accordance with the Poincaré series

How difficult is to extract independent scalars from this list? It is easy to verify that all traces in (3.28) can
be expressed in terms of second-order polynomials; e.g., tr (a?3?) = é tr (a?) tr (8?). As concerns the remaining
monomials, one can see that some of them have the same multidegree. Namely, the “trace” polynomials

(1) tr (@®y?) = § tr(a?) tr (v?) and tr (ayay),

(2) tr (8%) tr (v*), tr (8%7), and tr (ByS7)

SFor a detailed analysis of relations of this type, we refer to [24].
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belong to the spaces Pogz and Pyao, respectively. Being linearly independent monomials, they obey the following
relations:

tr (042’)/2) +tr (aryaf}/) =38 iy iy Ciy jy Cinga
2 2 1 2 2
tr (B777) = o tr (B7) tr (v7) = ddjujok dijaja bjs biaCija Cirjas
tr (BQ’YQ) +tr (B'YBFY) = 8(§b]1 bjz Ciyj1Cirjo + dj1j2k dkj3j4 bjl bjs Ci1ja ci1j4)7

where the summation over all indices is assumed. This fact leaves open the question of how to build the elements
of the integrity basis with a certain multidegree with the aid of the invariant “trace” polynomials.

To sum up our analysis, we present the following list of linearly independent SU(2) ® SU(3) scalars that are
not products of low-order ones:”

e degree 2, three invariants:

tr(a®), tr(5%), tr(y?);

e degree 3, four invariants:

tr(8%), tr(v%), tr(aBy), tr(8y*);
e degree 4, eight invariants:

tr(vh), tr(ay®), tr(8y%), tr(ayay),
tr (B°7%), tr(ByBy), tr(aB®y), tr(aBy?).

Decomposition of the Casimir invariants
The expansion of the Casimir invariants up to the 4th order (2.11)—(2.13) in terms of the SU(2) ® SU(3)
“trace” scalars suggested above reads as follows:

6Cy =tr(a?) +tr (6%) + tr (v?),

6€; = tr (8%) +tr (v°) + 3 tr (87%) + 6 tr (af),

6€, = 3 [1r(0®) (2 (5 +r0%) ) 4} 0(8)2 -} () —tx(5?) ()
4[ r(ay?) + tr(67%) + tr(6%9?) + tr(afy?) + 3tr(aﬁ2’y)}

+2 [tr(ava’y) + tr(ﬂvﬁ’y)} + tr(y?).

We conclude with a final remark on the applicability of the obtained results to the problem of classification
of mixed quantum states. Using inequalities (2.26)—(2.30) and the results from [21], the well-known Peres—

Horodecki criterion for the separability of qubit-qutrit mixed states can be reformulated as a set of inequalities
in SU(2) ® SU(3) scalars.
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APPENDIX: FORMULAS FOR $u(6)

The tensorial basis
For the algebra su(6), we use the basis {74} a=1, 35 constructed from tensor products of the Pauli matrices

O'iESU(Q),
0 1 0 —i 1 0
“1:<1 0)’ JZ:(Z’ 0)’ ”3:<0 —1)’ (A1)

"Note that invariants of the second and third order were suggested in [23].
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and eight Gell-Mann matrices {\,}o=1, s forming a basis of su(3):

01 0 0 — O 1 0 O
M=|1 0 O0|,Xx=14% 0 O0]|,X=10 -1 0],
0 0 O 0 0 O 0 0 0
0 0 1 0 0 —i¢ 0 0 O
M=10 0 O0],Xx=10 0 01],Xx=10 0 1],
1 0 0 i 0 0 0 1 0
0 0 O 1 1 0 0
M=10 0 —i], Asg= 01 0
0 i 0 V3\o 0 —2
The elements 74 are enumerated as
1 1
T = \/3 0'Z'®H3, T34q = \/2 H2®)\a, (A2)
1 ® A L ® A L ® A
Til4a = g ay T19+a = O ay T27+a = g a-
114 V2 1 19+ V2 2 27+ V2 3

The algebraic structures
The product of basis elements reads as follows:

2
TATB = n5ABH + (daBc + 1 fapc)Tc.

The structure constants d4pc and fapc can be determined via the equations
1 7
dapc = Tr({ra,7B}70), faBC = 4 Tr([ra, TB]7C),
where, apart from the Lie algebra product [, ], the “anticommutator” of elements, i.e., {74,778} = TATB +TB T4,
has been used.

Identities for the structure constants
For SU(n), the structure constants obey the following identities:

favefepq + fope feaq + Fpacfevg =0, (A.3)
dabe fepg + dbpe feag + dpac fevg = 0, (A4)
favefepq = dapedebg — dagederp + Z (0apdvg — Oaglvp), (A.5)
Savefepg + fagefepp = 2dapedeng — dabelepg — dagedevp + Z (20ap0bg — 0abIpg — daglbp)- (A.6)
The SU(3) symmetric constants satisfy (see [25, 26]) the important identities
dapedepg + dopedeaq + dpacdeny = :1,)(5@6” + Gapbg + daqlbp)- (A7)

The traces
The traces of symmetrized products of su(n) basis elements are

tr (T{aTb}) = 204p,
tr (T4aT7ey) = 2 dape,
22
tr (T{aTchTd}) = n dapdcd + 2 dapedecd,
22
tr (T{aTchTdTe}) = n (dabcéde + 6abdcde) +2 dabfdfcgdgde:
3 2

2
tr (T{aTchTdTeTf}) = n2 6ab60d66f + n (dabgdgcdfsef + 6abdcdgdgef)
2
+ n dabcddef + 2dabgdgchdhdvdvef-
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