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1. Introduction

During the last several years the vortex mechanism of confinement has seen a steady

increase in popularity. Originally introduced by ’tHooft in 1978 [1] it has been for a

long time eclipsed by the rival monopole, or dual superconductor mechanism [2]. The dual

superconductor mechanism has attracted a lot of attention during the 80’s and most of the

90’s. Nevertheless, a steady background of work on the understanding of magnetic vortices

both on the lattice [3] and in the continuum [4] has been maintained. More recently the

interest in the vortex mechanism has been revived in the lattice community by the series

of works by Greensite and collaborators [5] and relation between vortices and confinement

has been studied in [6]. The notion that magnetic vortices are important for confinement

seems to have earned credibility even among the long time proponents of the monopole

condensation mechanism [7].

Ideally, of course, rather than just performing numerical studies, one would like to have

a simple theoretical description of the relevant confining dynamics directly in terms of the

operators that create and annihilate magnetic vortices. While in 3+1 dimensions this goal

has not been achieved, in 2+1 dimensional confining theories such a description exists [8].

The effective low energy description in terms of the vortex operators is well established in

the weakly coupled confining theories in 2+1 dimensions. It provides a simple and intuitive

picture of confinement and also deconfining phase transition at finite temperature [9].

It has been argued that the main properties of the vortex operators and the confinement

mechanism carry over to the strongly interacting theories, like pure gluodynamics [10]. The

reason is that in 2+1 dimensions the putative Higgs phase with a perturbatively massless

photon is not separated by a phase transition from a confining phase. One therefore can

imagine taking the pure gluodynamics limit by starting with the weakly coupled Georgi-

Glashow model, where the confining physics is well understood, and then continuously

changing the coefficient of the Higgs mass term so that it becomes positive and then very

large. In this transition between the Higgs regime and the confinement regime one should
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not encounter any non-analyticity. It is still far from straightforward to study the vortex

operators in such a theory, since their infrared physics is genuinely nonperturbative. On the

other hand, the ultraviolet physics in these theories is perturbative. It is thus interesting

to see what can be said about the ultraviolet properties of the vortex operator, such as its

scaling behaviour at short distances, and in particular what are the effects of decoupling

the Higgs field on it.

This is the question we ask in this paper: what is the influence of dynamical matter

fields on the ultraviolet behaviour of the vortex operator V (x)? To answer this we study

two 2+1 dimensional gauge theories: noncompact quantum electrodynamics (QED) with a

charged scalar field, and the SU(2) gauge theory with the Higgs field in the adjoint repre-

sentation. In the former theory confinement is logarithmic rather than linear. Nevertheless

the vortex operator plays a crucial role in the low energy dynamics [4]. The latter the-

ory in its weakly coupled incarnation is the simplest known model which exhibits linear

confinement between fundamental charges [11]. In this weakly coupled regime, where clas-

sically the Higgs field has a nonvanishing expectation value, this model is usually known

as the Georgi-Glashow model. We are interested in the opposite regime, namely when the

VEV of the Higgs vanishes and their masses become large. Nevertheless, since the two

regimes are analytically connected in 2+1 dimensions, we will continue to call this theory

the Georgi-Glashow model.

The regime of interest to us is when the mass of the Higgs field is much larger than the

gauge coupling constant (M À g2), and the distance between the vortex and the antivortex

in the correlation function is comparable to M−1. We will see that the effect of the Higgs

field is quite different in the two models. In QED the dynamical Higgs field affects the

ultraviolet behaviour of the vortex operator at the one loop level and leads to a power like

factor in the vortex correlation function:

〈V (x)V ∗(y)〉 =
(

1

|x− y|2Λ2
)

1
8

〈V (x)V ∗(y)〉0 , (1.1)

where

〈V (x)V ∗(y)〉0 = exp

(

− π

g2

[

Λ− 1

|x− y|

])

(1.2)

is the vortex correlator in the theory without Higgs.

In the Georgi-Glashow model, on the other hand, it turns out that the adjoint Higgs

has no effect on the vortex correlator in this regime. In this sense the pure gluodynamics

regime in the Georgi-Glashow model is achieved very efficiently, since the moment the

Higgs mass is large, the vortex correlation function has its pure gluodynamics behaviour

at all distance scales below g−2, including the true ultraviolet regime.

We start our discussion with the abelian theory.

2. The noncompact U(1) model

Consider the U(1) gauge theory with a complex scalar matter field defined by the (eu-

clidean) lagrangian

L =
1

4
F 2µν + |(∂µ + igAµ)φ|2 +M2φ∗φ . (2.1)

– 2 –
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The construction of the vortex operator and its role in the low energy dynamics of this

theory has been extensively reviewed recently. The vortex operator is defined as

V (x) = exp

{

2πi

g

∫

C(x)
Ei(y)εijdyj

}

, (2.2)

where the contour C(x) starts at the point x and goes to infinity. The important properties

of V are:

i) V (x) does not depend on the curve C;

ii) V (x) is a local, gauge invariant scalar field.

These may not be immediately obvious from the definition eq. (2.2), but nevertheless they

have been rigorously established (see [8] for review).

The expectation value of V in the euclidean path integral formalism is given by the

following expression

〈V (x)〉 = Z−1
∫

[dAµ][dφ] exp−
∫

d3x

(

1

4
(Fµν − sµν)

2 + |(∂µ + igAµ)φ|2 +M2φ∗φ

)

,

(2.3)

where Z is the normalization factor in the partition function of the theory and the c-number

source function sµν is given by

sµν =
2π

g
εµνλτλ(C)δ2(x ∈ C) , (2.4)

with τλ(C) the unit vector tangent to the contour C. Due to the explicit presence of

1/g in the source, one can calculate the path integral eq. (2.3) in the steepest descent

approximation. To leading order the presence of the Higgs field is irrelevant. The solution

of the classical equations of motion in the presence of the source sµν is the Dirac monopole

configuration with the Dirac string along C. The action of this solution is

Sclassical =
π

2g2
Λ (2.5)

and the corresponding vortex VEV is

〈V 〉0 = e
− π

2g2
Λ
, (2.6)

where Λ is the ultraviolet cutoff. The same calculation for the vortex-antivortex correlation

function gives

〈V (x)V ∗(y)〉0 = e
− π

g2
[Λ− 1

|x−y|
]
. (2.7)

The dynamical Higgs field enters the calculation of the VEV at one-loop resulting in

〈V 〉 = e
− π

2g2
Λ
Det−1

(−|D|2 +M2

−∂2 +M2

)

, (2.8)

where Dµ is the covariant derivative in the classical field of a Dirac monopole. The rest of

this section is devoted to the calculation of the determinant in eq. (2.8).

– 3 –
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The contribution due to the determinant is infrared finite, but ultraviolet divergent.

Since the ultraviolet cutoff Λ and the Higgs mass are the only scales in the calculation, the

result must be

lnDet

(−|D|2 +M2

−∂2 +M2

)

= tr ln

(−|D|2 +M2

−∂2 +M2

)

= α ln

(

Λ2

M2

)

, (2.9)

with α a pure number and we neglect corrections with positive powers in M/Λ. Our aim

is to calculate this number α. For convenience we will consider the derivative of eq. (2.9)

with respect to M 2:

tr

[

1

−|D|2 +M2
− 1

−∂2 +M2

]

= −αM−2 . (2.10)

This calculation is equivalent to solving the quantum mechanical problem of a scalar

particle in the field of the Dirac monopole of unit magnetic charge. Therefore, consider a

quantum mechanical hamiltonian

H = −D∗D + V(r) (2.11)

and the associated time-independent Schrödinger equation

HΨ = εΨ . (2.12)

For any rotationally invariant potential V(r) the angular part of the problem is solved

by separation of variables:

Ψ = fl(r)Y
q
l,m(θ, φ) , (2.13)

where Y q are the so-called monopole harmonics [12, 13] corresponding to a magnetic

monopole of magnetic charge 4πq/g and are analogous to the ordinary spherical func-

tions. In our case q = 1/2 but we shall keep q general for the moment. The angular

momentum quantum number l takes the values l = q, q+1, . . . and the magnetic quantum

number m = −l,−l+ 1, . . . , l.

Although the final result eq. (2.10) is infrared finite, each one of the two terms has a

part proportional to the volume. It is thus convenient to introduce an infrared regulator.

We choose to do this by placing our quantum mechanical system in the potential of a

spherically symmetric harmonic oscillator

V(r) = 1

2
ωr2 . (2.14)

The thermodynamic limit is recovered as ω → 0.

The radial wave function fl(r) satisfies the equation
[

−
(

∂2

∂r2
+

2

r

∂

∂r

)

+
l(l + 1)− q2

r2
+

1

2
ωr2
]

fl(r) = εfl(r) . (2.15)

The spectrum of eq. (2.15) can be found in a similar way to the well known case of the

ordinary spherically symmetric oscillator problem (see e.g. [14]). Requiring that the radial

function fl(r) vanishes at infinity, we have:

ε
(±)
n,l = ω

(

2n+ 2ρ
(±)
l +

1

2

)

, (2.16)
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with integers n = 0, 1, 2, . . . and parameters

ρ
(±)
l =

1

4
± 1

2

√

(

l +
1

2

)2

− q2 . (2.17)

The parameters ρ
(±)
l control the behaviour of the radial wave function fl at the origin:

fl(r) ∝ r2ρ
(±)
l
−1 as r → 0 . (2.18)

In order to ensure that the hamiltonian is self-adjoint, we demand the boundary condition

that fl(r) is finite at the origin. This requirement is satisfied only with the ρ
(+)
l branch of

the solutions (2.17). Therefore we take as the spectrum for our problem εn,l = ε
(+)
n,l and

consider the expression for the powers of the resolvent

tr

(

1

−|D|2 +M2

)s

=

∞
∑

n=0

∞
∑

l=q

2l + 1

[εn,l +M2]s
, (2.19)

where an appropriate power s has been introduced so as to ensure the absolute convergence

of the infinite sums at intermediate stages in the calculation. Here the factor 2l+ 1 in the

numerator is the degeneracy due to the magnetic quantum number m. We can rewrite

eq. (2.19) as

∞
∑

n=0

∞
∑

l=q

2l + 1

[εn,l +M2]s
=

2

(2ω)s

∞
∑

n=0

∞
∑

l=0

(l + 1
2)(1 + x)

[

n+ 1
2 +

1
2(l +

1
2)
√
1 + 2x+ M2

2ω

]s , (2.20)

with

x =
q

l + 1
2

. (2.21)

For our purposes it is convenient to expand this expression in powers of x. We only

need to keep terms up to and including order x3. The reason is that each power of x makes

the summation over l and n more convergent. Thus an expansion in powers of x under

the summation sign is related to the expansion of the result of the summation in powers

of ω/M2. In fact, as we shall see below, each additional power of x leads to at least one

additional power of ω/M 2. The term of order x0 results in the sum of order ω−3 (this term

diverges in the limit ω → 0 and has to cancel against the second term in eq. (2.10)). Thus

all terms starting with x4 vanish in the thermodynamic limit ω → 0. The only relevant

terms in eq. (2.20) are therefore

2

(2ω)s

∞
∑

n=0

∞
∑

l=0

(l + 1
2)

[

n+ 3
4 +

l
2 +

M2

2ω

]s ×

×
[

1 + q

(

− s

2[n+ 3
4 +

l
2 +

M2

2ω ]
+

1

l + 1
2

)

+

+ q2

(

− s

4[n+ 3
4 +

l
2 +

M2

2ω ](l + 1
2)

+
s(s+ 1)

8[n+ 3
4 +

l
2 +

M2

2ω ]2

)

+

+q3

(

− s(s+ 1)(s+ 2)

48[n+ 3
4 +

l
2 +

M2

2ω ]3

)]

. (2.22)
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Note that, as expected, the first term in this expression exactly cancels the second term in

eq. (2.10). To calculate the rest of the terms we use the following two basic integrals

∞
∑

n=0

∞
∑

l=0

(l + 1
2 )

[

n+ 3
4 +

l
2 +

M2

2ω

]p =
1

16

1

Γ(p)

∫ ∞

0
dt tp−1e−

M2

2ω
t 1

sinh3( t4)
, (2.23)

∞
∑

n=0

∞
∑

l=0

1
[

n+ 3
4 +

l
2 +

M2

2ω

]p =
1

8

1

Γ(p)

∫ ∞

0
dt tp−1e−

M2

2ω
t 1

cosh( t4) sinh
2( t4)

. (2.24)

These expressions follows from the well-known infinite integral representation for the gen-

eralized Riemann zeta function (see e.g. [15]).

Expansion in powers of ω/M 2 is simply achieved by expanding the factors that multiply

exp{−M2

2ω t} in the integrands in eqs. (2.24) in powers of t. Clearly increasing the power

p by one or adding a factor of l + 1
2 in the denominator in these expressions, leads to an

extra power of ω/M 2. From eq. (2.22), each additional power of q (and hence x) in the

expansion is indeed accompanied by such an increase and thus results in a higher power of

ω/M2 as claimed above. Some simple algebra shows that the terms O(ω−2) and O(ω−1)

in eq. (2.22) vanish, and the final result to order O(ω0) is

−1

6
q

(

q2 +
1

2

)

M−2s . (2.25)

Now taking s = 1, q = 1/2 and referring back to eq. (2.10) we obtain

α =
1

16
. (2.26)

Putting these results together, we find that to one-loop order the vacuum expectation

value of the vortex operator is

〈V 〉 = e
− π

2g2
Λ
(

M2

Λ2

)

1
16

. (2.27)

Although we have not calculated directly the correlation function of the vortex opera-

tor, eq. (2.27) in conjunction with the mechanics of the calculation allow us to understand

its main features. The calculation of the correlation function would lead to the quantum

mechanical problem of a particle in the background of the monopole-antimonopole pair

separated by a distance r = |x− y|. Clearly, if the separation of the pair is larger than the

inverse mass of the Higgs field, the result of the calculation will simply be the square of

eq. (2.27). On the other hand, if the distance is much smaller that M−1, the Higgs mass

will not enter the final result. Instead the mass M will be substituted by r−1. Thus the

correlation function has the form

〈V (x)V ∗(y)〉 = e
− π

g2
[Λ− 1

|x−y|
]
(

M2

Λ2

)

1
8

f(M2r2) , (2.28)

where

lim
z→∞

f(z) = 1 , (2.29)

lim
z→0

f(z) ∝ z−1/8 . (2.30)
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We thus find that the presence of the dynamical Higgs field leads to an additional factor

|x− y|−1/4 in the vortex-antivortex correlator in the ultraviolet region.

3. The SU(2) Georgi-Glashow model

Next we consider the SU(2) gauge theory with an adjoint Higgs field

L =
1

4
(F a

µν)
2 + (Dab

µ φ
b)2 +M2φaφa . (3.1)

The vortex operator in this theory is defined as

V (x) = exp

{

2πi

g

∫

C(x)
Ea
i (y)φ̂

a(y)εijdyj

}

(3.2)

with the unit vector

φ̂a =
φa

|φ| . (3.3)

As discussed in detail in [8], the theory is invariant under the Z2 magnetic symmetry,

V (x)→ −V (x). The nonvanishing expectation value of V (x) breaks this symmetry spon-

taneously and the magnetic symmetry breaking is tantamount to linear confinement.

Although the calculation of 〈V 〉 has been discussed in some detail in the framework

of the effective low energy theory [8], we are not aware of its direct calculation in the

microscopic theory defined by the lagrangian eq. (3.1). We therefore start our discussion

by setting up this calculation. In the path integral formalism

〈V (x)〉 = Z−1
∫

[dAa
µ][dφ

a] exp−
∫

d3x

(

1

4
(F a

µν − φ̂asµν)
2 + (Dφ)2 +M2φ2

)

. (3.4)

As in the case of QED, in the leading order the Higgs field is irrelevant and we must

minimize the pure Yang-Mills action in the presence of the source φ̂asµν . To do this, we

first choose φ̂a = δa3. In the context of the present calculation this can be considered as

a gauge fixing. Having found the classical solution for this source, baµ, the solution for a

general φ̂ is found by gauge transforming it:

Aa
µcl = U †bµU +

i

g
U †∂µU , (3.5)

where the matrix U is determined by the Higgs field via

σaφ̂a = U †σ3U (3.6)

with σa the Pauli matrices.

The problem of minimizing the action with the source is similar to that in the abelian

theory. There it is known that the solution is a pointlike Dirac monopole. In the present

case this is not entirely obvious. After all, we know that the SU(2) theory has finite

action solutions for monopoles with magnetic charge double that of the elementary Dirac

monopoles. If this also were true for the case at hand, such a finite action solution would

– 7 –
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be preferred over the pointlike Dirac monopole whose action is linearly divergent in the

UV. To put it another way, we know from the effective theory calculations in the Higgs

regime [8], that the leading behaviour of the VEV in eq. (3.4) is exp
(

−2π λ
g2

)

. What the

effective theory can not tell us is whether the scale λ is the UV cutoff of the effective theory

(the mass of the W -boson MW ), or the genuine UV cutoff Λ. The only way to settle this

question is to solve the classical equations of the underlying SU(2) gauge theory.

We will show now that the classical solution which minimizes the action is the pointlike

Dirac monopole, and that it has the action which diverges linearly in the infinite cutoff

limit.

It is useful to perform the calculation using the spherical coordinates

x1 = r cosφ sin θ , x2 = r sinφ sin θ , x3 = r cos θ . (3.7)

It is known [16] that for monopoles with even magnetic charge classical solutions do not

always have spherical symmetry, but are rather axially symmetric. We thus take for our

solution the general (up to a gauge rotation around the third axis) axially symmetric ansatz

g baµ σ
a = A(θ, r)∂µφ σ1(nφ) +B(θ, r)∂µθ σ

2
(nφ) + C(θ) ∂µφ σ3 , (3.8)

where A,B and C are scalar functions, n is an integer and

σ1(nφ) = cos(nφ) σ1 + sin(nφ) σ2 , σ2(nφ) = cos(nφ) σ2 − sin(nφ) σ1 . (3.9)

The dual field strength F̃ a
µ = 1

2εµνλF
a
νλ for this ansatz is

gF̃ a
µ σa =

(

πδµ3[Θ(x3)C(0) + Θ(−x3)C(π)]δ(x1)δ(x2) + [C ′ −AB]εµνλ∂λφ∂νθ
)

σ3 +

+
(

εµνλ∂νr∂λφ
∂A

∂r
+ εµνλ∂νθ∂λφ [A

′ + (n+ C)B]
)

σ1(nφ) +

+εµνλ∂νr∂λθ
∂B

∂r
σ2(nφ) . (3.10)

Here Θ(x) is a step function and the prime over a function denotes its derivative with

respect to θ. Clearly, in order to cancel the string contribution in eq. (3.4) the function C

must satisfy

C(θ = 0) = 0 , C(θ = π) = 1 . (3.11)

For the sake of generality we will for now take the string contribution sµν in eq. (3.4) to

have the strength ν, and thus take

C(θ = π) = ν . (3.12)

Eventually we are interested in ν = 1. In eq. (3.10) we have assumed that

A(r, θ = 0) = 0 , A(r, θ = π) = 0 , (3.13)

as otherwise there would be an extra string like singularity along the x3 axis in a σ1(nφ)
component of the field strength.

– 8 –
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Note, that in order to have the action of this configuration ultraviolet finite, one needs

[

C ′(θ)−A(r, θ)B(r, θ)
]

|r=0= 0 . (3.14)

However, this condition can be satisfied only for an even values of ν. Therefore, instead

of imposing this condition we calculate the action for the ansatz eq. (3.8) and minimize it

with respect to variational functions A,B and C as well as the integer parameter n. The

leading piece in the action is the UV divergent integral

S ∼ Λ

∫ π

0

dθ

sin θ
{[C ′ −AB]2 + [B(C + n) +A′]2} , (3.15)

where the functions A and B are evaluated at r = 0. It turns out that the minimization

equations with respect to A and B can be solved exactly at given C (see appendix). The

solution is

B =
AC ′ −A′(C + n)

A2 + (C + n)2
, (3.16)

A2 + (C + n)2 = (1− a cos θ)2b2 . (3.17)

Imposing the boundary conditions at θ = 0 and θ = π, we find that

n2 = (1− a)2b2 , (3.18)

(ν + n)2 = (1 + a)2b2 . (3.19)

There are two types of solutions to these:

a =
ν

2n+ ν
, b = ±2n+ ν

2
, (3.20)

and

a =
2n+ ν

ν
, b = ±ν

2
. (3.21)

The divergent part of the action can now be calculated for both solutions. It turns out to

be independent of C(θ)

S ∼ 2a2b2Λ . (3.22)

For the two possible solutions

S1 =
1

2
ν2 Λ , (3.23)

S2 =
1

2
(2n+ ν)2 Λ . (3.24)

Thus for even values of ν, which correspond to ’t Hooft-Polyakov monopoles, the action is

minimized by choosing the solution eq. (3.21) and n = −ν/2, and it is UV finite. On the

other hand in the case of interest to us, ν = 1, the action is minimized with eq. (3.20) for

any n as well as for eq. (3.21) with n = 0 and n = −1, but is UV divergent.
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Note that for ν = 1 a simple representative of the class of configurations with minimum

action is given by

C(θ) =
1

2
(1− cos θ) , A = 0 , B = 0 . (3.25)

This is precisely the abelian Dirac monopole solution.1

We conclude from this discussion that a classical configuration that minimizes the

action in the unitary gauge is the abelian Dirac monopole

baµ =
1

g
δa3(1− cos θ) ∂µφ . (3.26)

The action for this configuration is the same as in QED, as all the nonabelian components

of the gauge field vanish. The VEV of the vortex operator in the Georgi-Glashow model

in the leading perturbative order is thus

〈V 〉0 = e
− π

2g2
Λ
. (3.27)

Our next step is to consider the one loop corrections. To this end we write the vector

potential as the sum of the classical solution and the fluctuation field

Aa
µ = Aa

clµ + aaµ , (3.28)

with Aa
clµ defined in eq. (3.5). In this expansion we consider the classical field to be of

order 1/g, while the fluctuation field to be of order one. The Higgs field is also considered

to be of order one. For a one loop calculation we need to expand the action in eq. (3.4) to

order one. Note that the relation between the classical solution and the Higgs field is such

that

Dab
µ (Acl)φ̂

b = 0 . (3.29)

Writing the Higgs field in terms of its modulus ρ and the unit vector φ̂a we find that

Dab
µ (Acl)φ

b = φ̂a∂µρ . (3.30)

Thus to order one the action in eq. (3.4) is

π

2g2
Λ +

1

2
(Dab

[µ (Acl)a
b
ν])

2 + εabcF a
µν(Acl)a

b
µa

c
ν + (∂µρ)

2 +M2ρ2 . (3.31)

Although the classical vector potential Acl depends on the direction of the field φ,

the integral over aaµ in eq. (3.4) does not depend on it. Thus the integration over aaµ and

φ factorizes. The part of the action that contains φ does not know anything about the

monopole field and thus is unaffected by the presence of the vortex operator in the path

integral.

1Although our minimization procedure has only established that A and B vanish at the origin, it is a

straightforward matter to show that in this case they will also vanish at all values of r. Any nontrivial

r-dependence of either A or B immediately increases the energy due to the square of the last two terms in

eq. (3.10).
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One should be a little careful with the analysis just presented, as it involves a per-

turbative calculation in the glue sector. This part of the calculation is in fact infrared

divergent. The integration over the vector potential aaµ is very similar to the integration

over the Higgs field in the QED case — both are charged fields coupled to a monopole.

Thus the result of the integration over aaµ will be formally similar to eq. (2.27), except that

the power in the last factor may be somewhat different. The important difference though

is that the vector field is massless, and so instead of M as in eq. (2.27), here we will in fact

have zero. This zero is the infrared divergence of the one loop correction to the monopole

action.

This divergence however does not invalidate our conclusion. An expectation value of

any local operator is not calculable perturbatively in a Yang-Mills theory, because it in-

evitably involves the knowledge of the infrared modes which are nonperturbative. However

one can certainly calculate perturbatively a correlation function of any two such operators

as long as the separation between them is smaller than the inverse coupling constant. If

instead of an expectation value 〈V 〉 we consider the correlation function 〈V ∗(x)V (y)〉, the
infrared cutoff in the calculation of the one loop correction will be provided by the sepa-

ration |x − y|. On the other hand this will not change any of the important features of

our calculation. The leading classical configuration will still be abelian — this time an

abelian monopole-antimonopole pair. For this classical background eq. (3.29) still holds,

and thus the Higgs field decouples from the background. The integration over the Higgs

field therefore does not involve the background and the result knows nothing about |x− y|

〈V (x)V ∗(y)〉 = e
− π

g2
[Λ− 1

|x−y|
]
(

1

Λ2(x− y)2

)γ

, (3.32)

where the constant γ is determined by the integration over the fluctuations of the gluon

field. Thus the vortex-antivortex correlation function is not affected by the Higgs field to

one loop order, as long as perturbation theory can be applied, i.e. g2 ¿M , g2 ¿ |x−y|−1.
We conclude this discussion with the observation that in the infinite Higgs mass limit,

the Higgs field can be integrated exactly in the path integral eq. (3.4). In this limit the

Higgs integral is dominated by the field configurations with vanishingly small action. The

only appearance of the Higgs then is in the source term φ̂asµν . The Higgs integral then

degenerates into the form that allows the explicit calculation using the expression for the

so-called Harish-Chandra-Itzykson-Zuber integral [17, 18] over the unitary group U(N):

∫

U
[dU ]e

1
g
tr(AUBU) =

(

N−1
∏

n=1

n!

)

(

1

g

)−
N(N−1)

2 det ||e
1
g
aibj ||

∆(a)∆(b)
, (3.33)

where DU is the Haar measure, A and B are hermitian N×N matrices, ∆(a) and ∆(b) are

Vandermonde determinants expressed in terms of the corresponding eigenvalues ai and bi

∆(a) =
∏

1<i<j<N

(ai − aj) . (3.34)
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Exploiting the representation (3.6) for the unit vector Higgs field one can integrate

over φ̂a in eq. (3.4)

〈V 〉 = Z−1
∫

[dAµ] exp−
∫

d3x
1

4

{

F 2 + s2
(

1− g2

2π2Λ
ln

[

4π sinhF
F

])}

, (3.35)

where

F =
4π

gΛ

√

F̃ a
µ τµ(C)F̃ a

ν τν(C) . (3.36)

In eq. (3.35) the UV cutoff Λ is understood as the inverse of the discretization scale. This

representation for the vacuum expectation value of vortex operators can be further simpli-

fied, by noting that finite contributions to the path integral come only from configurations

for which F ∼ (Λ2/g), since only those have a chance of cancelling the UV and IR diver-

gence coming from the s2 term. For these fields only the positive exponent in sinh has to

be kept. Thus we arrive at

〈V 〉 = Z−1
∫

[dAµ] exp−
∫

d3x
1

4

{

F 2 + s2
(

1− g2

2π2Λ

[

F − ln
F
2π

])}

. (3.37)

This is the explicit gauge invariant expression for the vortex operator in pure gluodynamics

in 2+1 dimensions.

4. Conclusions

In this paper we have investigated the influence of dynamical matter fields on the ultraviolet

behaviour of the vacuum expectation value and correlator of vortex operators. We have

done this for two models in 2+1 dimensions and have seen very different effects. For

noncompact QED with a charged scalar field we have seen how the matter fields induces

power like factors in the VEV and correlator. Thus the ultraviolet behaviour of the vortex

operator in the theory with dynamical Higgs is different from that in the theory without

the Higgs particle at distance scales |r| < M−1. In contrast, for the SU(2) gauge theory

with the Higgs field in the adjoint representation, we have seen that the matter fields

have no effect at one-loop order in the perturbative regime. In this theory, therefore, for

M À g2 the vortex operator is insensitive to the presence of the dynamical Higgs as soon

as |r| ¿ g−2.

This is somewhat surprising, since generically one expects the presence of extra de-

grees of freedom to affect all observables. We may speculate that this is possibly related

to another unexpected observation that holds in the same theory. Namely, it has been

noted [19] that the spectrum of the 2 + 1 dimensional SU(2) gauge theory with adjoint

Higgs is separated into two very distinct parts. One part contains glueballs, whose masses

are almost completely independent of the Higgs mass as long as the Higgs is heavier than

the gauge coupling. The other part of the spectrum contains “bound states” of the Higgs

boson, and scales appropriately with the Higgs mass. The fact that the glueballs are not

affected by the mass of the Higgs does not have a simple and natural explanation. Our

finding is akin to this effect and suggests that the vortex operator correlation functions are

heavily dominated by the glueball intermediate states.
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A. Minimization of the monopole action

In this appendix we perform the minimization of the UV divergent part of the monopole

action:

SUV =

∫

dθ

sin θ

(

(C ′ −AB)2 + (B(C + n) +A′)2
)

. (A.1)

We now keep the function C(θ) fixed and minimize this functional with respect to A and B:

δSUV
δA

=
B(C ′ −AB)

sin θ
+

d

dθ

[

A′ +B(C + n)

sin θ

]

= 0 , (A.2)

δSUV
δB

= A(C ′ −AB)− (C + n)(A′ +B(C + n)) = 0 . (A.3)

Expressing B from eq. (A.3)

B =
AC ′ −A(C + n)

A2 + (C + n)2
, (A.4)

and substituting this expression into the first equation (A.2) we find after some simple

algebra:
(C + n)(AC ′ −A′(C + n))

A2 + (C + n)2
+A′ = A

C ′(C + n) +AA′

A2 + (C + n)2
. (A.5)

Now defining

Y =
d

dθ
ln
[

A2 + (C + n)
]

, (A.6)

we can write (A.5) in the form of a differential equation for the unknown function Y (θ):

dY

dθ
+

1

2
Y 2 − cot θ Y = 0 . (A.7)

In order to integrate this non-linear differential equation we introduce a new function Z

defined by

Z = cot θ Y , (A.8)

for which the equation (A.7) reduces to the simple form

dZ

dθ
+

(

Z +
1

2
Z2
)

tan θ = 0 . (A.9)

The general solution to this equation is

Z(θ) =
2a cos θ

1− cos θ
, (A.10)

where a is an integration constant. From this solution one finds ln[A2 + (C + n)] by

integrating Y in (A.6):

A2 + (C + n)2 = (1− a cos θ)2b2 , (A.11)

where b is a new constant of integration. Note that the constants a and b are subject of

the equations that follows from the boundary conditions eqs. (3.11) and (3.13).
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