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Abstract

It is shown that geodesic motion on theGL(n,R) group manifold endowed with the bi-invariant metricds2 = tr(g−1dg)2

corresponds to a generalization of the hyperbolicn-particle Calogero–Moser–Sutherland model. In particular, considering the
motion on principal orbit stratum of theSO(n,R) group action, we arrive at dynamics of a generalizedn-particle Calogero–
Moser–Sutherland system with two types of internal degrees of freedom obeyingSO(n,R) ⊕ SO(n,R) algebra. For the
singular orbit strata ofSO(n,R) group action the geodesic motion corresponds to certain deformations of the Calogero–Moser–
Sutherland model in a sense of description of particles with different masses. The mass ratios depend on the type of singular
orbit stratum and are determined by its degeneracy. Using reduction due to discrete and continuous symmetries of the system a
relation to IIAn Euler–Calogero–Moser–Sutherland model is demonstrated. 2002 Published by Elsevier Science B.V.
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1. Introduction

Almost twenty years ago a possibility was discov-
ered to maintain the integrability of Calogero–Moser–
Sutherland models [1] (classification and description
can be found in [2]) supposing that the particles mov-
ing on a line have additional internal degrees of free-
dom [3,4]. Later it was shown [5,6] that the generic el-
liptic Calogero–Moser–Sutherland type system, which
consists ofn particles on a line interacting with pair-
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wise potential in the form of Weierstrass elliptic func-
tion V (z) = ℘(z), admits the following generaliza-
tion:

(1)H = 1

2

n∑
i=1

p2
i + 1

2

n∑
i �=j

fij fji℘ (xi − xj ).

Here apart from the canonical pairs(xi,pi), describ-
ing the position and the momenta of particles and
obeying nonvanishing Poisson brackets

(2){xi,pj } = δij ,

the “internal” degrees of freedomfab which satisfy the
algebra

(3){fab, fcd } = δbcfad − δadfcb
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are included. The recent comprehensive discussion
of the integrability of generic spin Calogero–Moser–
Sutherland systems can be found in the papers [7,8].
One of the most effective and transparent way to con-
vince in the integrability of a Hamiltonian system is
to find a known higher-dimensional exactly solvable
model, whose dynamics on a certain invariant subman-
ifold coincides with the dynamics of the given Hamil-
tonian system. This method is known as symplectic
reduction method [9–11]. The Calogero–Sutherland–
Moser systems with the so-called degenerate cases
of the potential, when the Weierstrass elliptic func-
tion ℘(z) reduces to 1/sinh2 z, 1/sin2 z or to the ra-
tional function 1/z2, have a well-known interpreta-
tion as symplectic reductions of geodesic motions on
symmetric spaces [12,13]. Furthermore, it was argued
in [14] that symplectic reduction relates the elliptic
Calogero–Moser–Sutherland system with certain inte-
grable Hamiltonian system on the cotangent bundle to
the central extension of two-dimensional Lie algebra
of SL(n,C)-valued currents on the some elliptic curve.
New types of generalizations of the spin Calogero–
Moser–Sutherland systems with nonstandard spin in-
teractions have been constructed in [15] using discrete
symmetries of the model.

In the present Letter we shall exploit the idea
of symplectic reduction considering certain gener-
alization of the Calogero–Sutherland–Moser model.
Namely, we shall consider the integrable finite-dimen-
sional model corresponding to the geodesic motion
on the general linear matrix group with a positive
determinantGL+(n,R),1 endowed with the left- and
right-invariant metricds2 = tr(g−1 dg)2, whereg ∈
GL(n,R). In terms of this bi-invariant metric on
GL(n,R) group manifold the equations of motion for
the corresponding dynamical system are encoded in
the Lagrangian [9,10]

(4)LGL = 1

2
tr
(
g−1ġ

)2
,

where overdot denotes differentiation with respect to
time. Bellow we shall represent the Hamiltonian cor-
responding to Lagrangian (4) in terms of a special pa-
rameterization, adapted to the action ofSO(n,R) sym-
metry group of the system. We shall demonstrate that

1 Hereafter we shall omit the upper index+ to simplify the
expressions.

on the principal orbit stratum ofSO(n,R) group action
the resulting Hamiltonian defines a new generaliza-
tion of the Calogero–Sutherland–Moser model by in-
troducing two internal variables “spin” and “isospin”.
Furthermore, performing the Hamiltonian reduction
owing to two types of symmetry: continuous and
discrete, we show how to arrive at the conventional
Hamiltonian of Euler–Calogero–Sutherland model

(5)H = 1

2

n∑
i=1

p2
i + 1

8

n∑
i �=j

l2ij

sinh2(xi − xj )

with internal variables lab = −lba , obeying the
SO(n,R) Poisson bracket algebra

(6){lab, lcd } = δaclbd − δadlbc + δbd lac − δbclad.

Another interesting systems arise when the dy-
namics takes place on the singular orbit strata of the
SO(n,R) group action. We found in this case new
models representing a certain class of mass-deformed
Calogero–Moser–Sutherland models. In particular, for
the case ofGL(3,R) group, our analysis shows that
the dynamics on singular orbit stratum with isotropy
group SO(2) ⊗ Z2 corresponds to Calogero–Moser–
Sutherland model, describing two particles, whose
mass ratios ism1 : m2 = 2 : 1 (see Eq. (68)). The ques-
tion of integrability of the mass-deformed Calogero–
Moser–Sutherland models has been discussed in [16]
and references therein.

2. Geodesic motion on the principal orbit stratum

2.1. Symmetries and dynamics

If we choose the elements of the matrixg ∈
GL(n,R) as n2 Lagrangian coordinates, the Euler–
Lagrange equations obtained from Lagrangian (4) can
be represented in the form of current conservation

(7)
d

dt

(
g−1ġ

)= 0.

This form allows to find the general solution, i.e., the
geodesics of the bi-invariant metric are given by

(8)g(t) = g(0)exp(tJ ),

whereg(0) andJ are two arbitrary constant matrices.
The special choice of these matrices corresponds to the
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particular solutions describing the motion on a certain
invariant submanifold.

To show that (7) are equations of motion of many-
particle system representing a certain generalization
of the Calogero–Moser–Sutherland model, it is useful
to pass to the Hamiltonian form of the geodesic
motion on GL(n,R) group. Performing Legendre
transformation of Lagrangian (4)

(9)πT
ab = ∂LGL

∂ġab
= (

g−1ġg−1)
ab

we arrive at the canonical Hamiltonian

(10)HGL = 1

2
tr
(
πT g

)2
generating the Hamilton equations of motion

(11)ġ = {g,HGL} = gπ̇T g,

(12)π̇ = {π,HGL} = −πgT π.

The nonvanishing Poisson brackets between the fun-
damental phase space variables(gab,πab) are

(13){gab,πcd} = δacδbd .

From now on the purpose of the present Letter will
be to rewrite this Hamiltonian in terms of coordinates,
adapted to the symmetry possessing the system. At
first we would like to analyze the following symmetry
action of theSO(n,R) group onGL(n,R):

(14)g 
→ g′ = Rg,

with time-independent orthogonal matrixR. In order
to consider the configuration space as manifold with
orbit and slice structure with respect to this action, it
is convenient to use the polar decomposition [17] for
an arbitrary element of theGL(n,R) group. For the
sake of technical simplicity we investigate in details
theGL(3,R) group hereinafter, i.e.,

(15)g = OS,

whereS is a positive definite 3× 3 symmetric matrix,
andO(φ1, φ2, φ3) = eφ1J3eφ2J1eφ3J3 is an orthogonal
matrix with SO(3,R) generators in adjoint represen-
tation (Ja)ij = εiaj . Since the matrixg represents an
element ofGL(3,R) group, we can treat the polar de-
composition (15) as a uniquely invertible transforma-
tion from the configuration variablesg to a new set
of Lagrangian variables: six coordinatesSij and three

coordinatesφi . In terms of these new variables La-
grangian (4) can be rewritten as

(16)LGL = 1

2
tr
(
ΘL + ṠS−1)2,

whereΘL := O−1Ȯ is a left-invariant 1-form on the
SO(3,R) group. To find the corresponding Hamil-
tonian we note that the polar decomposition (15) in-
duces the point canonical transformation from vari-
ables(gab,πab) to new canonical pairs(Sab,Pab) and
(φa,Pa) obeying the nonvanishing Poisson bracket re-
lations

(17){Sab,Pcd } = 1

2
(δacδbd + δadδbc),

(18){φa,Pb} = δab.

The expression of the oldπab as a function of the new
coordinates is

(19)π = O(P − kaJa),

where

(20)ka = γ−1
ab

(
ηLb − εbmn(SP )mn

)
,

γik = Sik − δik trS and ηLa are three left-invariant
vector fields onSO(3,R) group:

(21)ηL1 = sinφ3

sinφ2
P1 + cosφ3P2 − cotφ2 sinφ3P3,

(22)ηL2 = cosφ3

sinφ2
P1 − sinφ3P2 − cotφ2 cosφ3P3,

(23)ηL3 = P3.

Hence, in terms of the new variables, the canonical
Hamiltonian (10) takes the form

(24)HGL = 1

2
tr(PS)2 + 1

2
tr(JaSJbS)kakb,

where the canonical variables(Sab,Pab) are invariant
under transformation (14), while the angular variables
(φa,Pa) undergo changes generating by the right-
invariant Killing vector fieldsηRa :

ηR1 = −sinφ1 cotφ2P1 + cosφ1P2

(25)+ sinφ1

sinφ2
P3,

ηR2 = cosφ1 cotφ2P1 + sinφ1P2

(26)− cosφ1

sinφ2
P3,

(27)ηR3 = P1,
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whose Poisson brackets with the left-invariant vector
fieldsηLa vanish{ηLa , ηRb } = 0.

Now we pass to analysis of another type of symme-
try action of the orthogonal group. Lagrangian (4) is
invariant under the transformations

(28)g 
→ g′ = RT gR

with constant orthogonal matrixR ∈ SO(3,R). After
implementation of the polar decomposition the sym-
metry transformation reads

(29)S′ = RT SR, O ′ = RT OR.

The orbit space of the actionS 
→ RT SR of the
SO(3,R) group in the space of 3×3 symmetric matri-
cesS is given as a quotientS/SO(3,R). The quotient
spaceS/SO(3,R) is a stratified manifold; orbits with
the same isotropy group are collected intostrata and
uniquely parameterized by the set of ordered eigenval-
ues of the matrixS :x1 � x2 � x3. The strata are clas-
sified according to the isotropy groups which are deter-
mined by the degeneracies of the matrix eigenvalues:

(1) Principal orbit-type stratum, when all eigenvalues
are unequalx1 < x2 < x3, with the smallest
isotropy groupZ2 ⊗ Z2.

(2) Singular orbit-type strata forming the boundaries
of the orbit space with
(a) two coinciding eigenvalues (e.g.,x1 = x2),

when the isotropy group isSO(2)⊗ Z2;
(b) all three eigenvalues are equal (x1 = x2 = x3);

here the isotropy group coincides with the
isometry groupSO(3,R).

To write down the Hamiltonian describing the
motion on the principal orbit stratum, we introduce
coordinates along the slicesx and along the orbitsχ .
Namely, since the matrixS is positive definite and
symmetric, we use the main-axes decomposition in the
form

(30)S = RT (χ)e2XR(χ),

whereR(χ) ∈ SO(3,R) is an orthogonal matrix pa-
rameterized by three Euler anglesχ = (χ1, χ2, χ3),
and the matrixe2X is diagonale2X = diag‖e2x1, e2x2,

e2x3‖. The momentapi andpχi , canonically conju-
gated to the eigenvaluesxi and the anglesχi corre-
spondingly,

(31){xi,pj } = δij , {χi,pχj } = δij ,

can be found using the condition of canonical invari-
ance of the symplectic 1-form

(32)
3∑

i,j=1

Pij Ṡij dt =
3∑

i=1

pi ẋi dt +
3∑

i=1

pχi χ̇i dt.

The original momentaPij are expressed in terms of
the new canonical pairs(xi,pi) and(χi,pχi ) as

(33)P = RT e−X

(
3∑

a=1

P̄aᾱa +
3∑

a=1

Paαa

)
e−XR,

with

(34)P̄a = 1

2
pa,

Pa = − ξRa

4 sinh(xb − xc)

(35)(cyclic permutationa �= b �= c).

In representation (33), we introduced the orthogonal
basis for the symmetric 3× 3 matricesαA = (ᾱa, αa),
a = 1,2,3, with the scalar product

tr(ᾱaᾱb) = δab, tr(αaαb) = 2δab,

(36)tr(ᾱaαb) = 0

and theSO(3,R) right-invariant Killing vectors

ξR1 = −sinχ1 cotχ2pχ1 + cosχ1pχ2

(37)+ sinχ1

sinχ2
pχ3,

ξR2 = cosχ1 cotχ2pχ1 + sinχ1pχ2

(38)− cosχ1

sinχ2
pχ3,

(39)ξR3 = pχ1.

Thus, after passing to main-axes variables(xi,pi) and
(χi,pχi ), the canonical Hamiltonian reads

HGL = 1

8

3∑
a=1

p2
a + 1

16

∑
(abc)

(ξRa )2

sinh2(xb − xc)

(40)− 1

4

∑
(abc)

(Ramη
L
m + (1/2)ξRa )2

cosh2(xb − xc)
.

Here (abc) means cyclic permutationsa �= b �= c.
Hence we conclude that the integrable dynamical sys-
tem describing a free motion on the principal or-
bit stratum can be interpreted in the adapted ba-
sis as generalized Euler–Calogero–Moser–Sutherland
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model. The generalization consists in the introduction
of two types of internal dynamical variablesξ andη—
“spin” and “isospin” degrees of freedom. From their
explicit expressions (see Eqs. (21)–(23) and (37)–(39))
it follows that they satisfySO(3,R) ⊕ SO(3,R) Pois-
son bracket algebra:

(41)
{
ηLa , η

L
b

}= −εabcη
L
c ,

(42)
{
ξRa , ξRb

}= εabcξ
R
c ,

(43)
{
ηLa , ξ

R
b

}= 0.

2.2. Lax pair for the generalized
Euler–Calogero–Moser–Sutherland model

In order to find a Lax representation for the gener-
alized Euler–Calogero–Moser–Sutherland model (40)
let us consider the integrals of the geodesic motion on
the principal orbit stratum. The integrals of motion can
be written in Hamiltonian form, following from (7), as

(44)Jab = (
πT g

)
ab
.

The algebra of this integrals realizes on the symplectic
level theGL(n,R) algebra

(45){Jab, Jcd } = δbcJad − δadJcb.

After the transformation to scalar and rotational vari-
ables (30), the expression for the currentJ reads

(46)J = 1

2

3∑
a=1

RT (paᾱa − iaαa − jaJa)R,

where

ia =
∑
(abc)

1

2
ξRa coth(xb − xc)

(47)+
(
Ramη

L
m + 1

2
ξRa

)
tanh(xb − xc)

and

(48)ja = Ramη
L
m + ξRa .

Using expressions (46) for the integralsJab the clas-
sical equations of motion for generalized Euler–Calo-
gero–Moser–Sutherland model can be rewritten in the

Lax form2

(49)L̇ = [A,L],
where the 3× 3 matrices are given explicitly as

L =

 p1 L+

3 L−
2

L−
3 p2 L+

1
L+

2 L−
1 p3


 ,

(50)A = 1

4

( 0 −A3 A2
A3 0 −A1

−A2 A1 0

)
.

EntriesAa andL±
a of matrices (50) are given as

L±
a = −1

2
ξRa coth(xb − xc)

−
(
Ramη

L
m + 1

2
ξRa

)
tanh(xb − xc)

(51)± (
Ramη

L
m + ξRa

)
and

(52)Aa = ξRa

2 sinh2(xb − xc)
− Ramη

L
m + (1/2)ξRa

cosh2(xb − xc)
,

where(a, b, c) means cyclic permutations of(1,2,3).
Below relations to the standard Euler–Calogero–

Moser–Sutherland model (5) will be demonstrated.

2.3. Reduction to
Euler–Calogero–Moser–Sutherland model

2.3.1. Reduction using discrete symmetries
Now we shall demonstrate how the IIA3 Euler–

Calogero–Moser–Sutherland model arises from the
canonical Hamiltonian (10) after projection onto a
certain invariant submanifold determined by discrete
symmetries. Let us impose the condition of symmetry
of the matricesg ∈ GL(3,R):

(53)ψ(1) = g − gT = 0.

In order to find an invariant submanifold, it is neces-
sary to supplement the constraints (53) with the new
ones

(54)ψ(2) = π − πT = 0.

2 We set here aside the constructions of the Lax pairs with a spec-
tral parameter. The Lax representations with a spectral parameter
for the spin Calogero–Moser–Sutherland models associated with the
root systems of simple Lie algebras were constructed in [7,8,18].
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Indeed, using the Hamilton equations (11) and (12),
one can check that the surface defined by the set of
constraintsΨA = (ψ(1),ψ(2)) represents an invariant
submanifold in theGL(3,R) phase space

(55)ψ̇(1)|ΨA=0 = 0, ψ̇(2)|ΨA=0 = 0,

and the dynamics of the corresponding induced system
is governed by the reduced Hamiltonian

(56)HGL(3,R)|ΨA=0 = 1

2
tr(πg)2.

The matricesg andπ are now symmetric nondegen-
erate matrices, and one can be convinced that this ex-
pression leads to the Hamiltonian of the IIA3 Euler–
Calogero–Moser–Sutherland model. To prove this, it
is necessary to note that the Poisson matrixCAB =
‖{ψ(1),ψ(2)}‖ is not degenerate and after projection
on the invariant submanifold, the canonical Poisson
structure is changed according to the Dirac prescrip-
tion

(57){F,G}D = {F,G}PB − {F,ψA}C−1
AB{ψB,G}

for arbitrary functionsF andG. The resulting funda-
mental Dirac brackets are

(58){gab,πcd}D = 1

2
(δacδbd + δadδbc).

If now we introduce as in Section 2.1 the main-
axes variables(xa,pa) and (χa,pχa ) instead of the
symmetric variables(gab,πab) and use representa-
tions (30) and (33), then one can convince that pro-
jected Hamiltonian (56), up to the time rescalingt 
→
4t , governs the same dynamics as Hamiltonian (5) of
IIA3 Euler–Calogero–Moser–Sutherland model with
the intrinsic spin variableslij = εijkξ

R
k .

2.3.2. Reduction due to continuous symmetry
Let us now derive a reduced Hamiltonian sys-

tem employing certain continuous symmetries of the
model. For Hamiltonian (10) all angular variables are
gathered in the three left-invariant vector fieldsηLa and
thus the corresponding right-invariant fieldsηRa (25)–
(27) are integrals of motion:

(59)
{
ηRa ,HGL

}= 0.

The surface in the phase space determined by the
constraints

(60)ηRa = 0

defines an invariant submanifold. These constraints
obey the algebra{ηRa , ηRb } = εabcη

R
c and according

to the Dirac terminology [19,20] are first class con-
straints; this means that after projection on the con-
straint shell (60), the corresponding cyclic coordinates
disappear from the projected Hamiltonian. To prove
this one can use the relationηRa = Oabη

L
b between the

left- and the right-invariant Killing vector fields. Then,
after projection to the constraint surface (60), Hamil-
tonian (40) reduces to

(61)

HGL|ηRa =0 = 1

8

3∑
a

p2
a + 1

4

∑
(abc)

(ξRa )2

sinh2 2(xb − xc)
.

After rescaling of the variables 2xa 
→ xa , one can
be convinced that the derived Hamiltonian coincides
with the Euler–Calogero–Moser–Sutherland Hamil-
tonian (5), where the intrinsic spin variables arelij =
εijkξ

R
k .

As it was outlined in Section 2.2 apart from the in-
tegralsηRa system (10) possesses integrals (46). Us-
ing these integrals one can choose different invariant
submanifold and to derive the corresponding reduced
system. Here we would like only to mention that after
performing reduction to the surface defined by the van-
ishing integralsja = 0, we again arrive at the Euler–
Calogero–Moser–Sutherland system.

3. Geodesic motion on the singular orbit strata

In the previous sections we have investigated the
geodesic motion on the principal orbit stratum, i.e., un-
der the supposition that the symmetric matrixS in the
polar representation (15) has three different eigenval-
ues. We now turn our attention to dynamical system
corresponding to the geodesic motion on the singu-
lar orbit strata. For the sake of technical simplicity,
we restrict ourselves to invariant submanifold of the
phase space defined byηR = 0 and consider a geo-
desic motion on the singular orbit stratum with two
coinciding eigenvalues of the matrixS in the case of
GL(3,R) group. Below we use two alternative meth-
ods. At first a special parameterizations of the sub-
space of 3× 3 symmetric matrices with two coincid-
ing eigenvalues are exploited and as a result we find
that the Hamiltonian system describing the geodesic
motion on the 4-dimensional singular orbit stratum is



528 A. Khvedelidze, D. Mladenov / Physics Letters A 299 (2002) 522–530

IIA2 Calogero–Moser–Sutherland model with particle
mass ratiom1 : m2 = 2 : 1. Afterwards, based on the
observation that the singular orbits of the configuration
space represent the boundary of Principle orbit, using
appropriate limiting procedure we derive from Hamil-
tonian (40) again a mass-deformed IIA2 Calogero–
Moser–Sutherland model with the same particle mass
ratiom1 : m2 = 2 : 1.

3.1. Mass-deformed Calogero–Moser–Sutherland
model via explicit parameterizations of the singular
orbit stratum

The singular orbits have continuous isotropy groups
and this leads to the modification of geodesic motion.
For the case we are interesting in,GL(3,R) group and
two equal eigenvalues of the symmetric matrixS, it is
SO(2)⊗ Z2.

The linear space of the real symmetricn × n

matrices with two coinciding eigenvalues has a real
dimension [21]

(62)dimS(n) − dimS(2)+ 1.

Hence, we are able to parameterize such a subspace of
GL(3,R) group by four real independent parameters

(63)Sab = e2xδab − 2ex+y sinh(x − y)nanb,

wherena is a unit 3-dimensional vector

(64)na = (sinθ sinφ,sinθ cosφ,cosθ).

We infer from the expression for the bi-invariant
metric on theGL(n,R) group that the metric induced
on the 4-dimensional singular orbit stratum parameter-
izing according to (63) is

tr
(
S−1 dS

)2 = 8dx2 + 4dy2

(65)

+ 8 sinh2(x − y)
(
dθ2 + sinθ dφ2).

Therefore the LagrangianL = (1/2) tr(S−1Ṡ)2 on the
singular orbit stratum can be written as

(66)L = 4ẋ2 + 2ẏ2 + 4 sinh2(x − y)ṅ2,

where

(67)ṅ2 = θ̇2 + sin2 θ φ̇2.

The Legendre transformation gives the canonical Ham-
iltonian

(68)H
(2)
GL(3,R) = 1

16
p2
x + 1

8
p2
y + l2

16 sinh2(x − y)
,

where

(69)l2 = p2
θ + p2

φ

sin2 θ
.

Now taking into account thatl2 is a constant of motion
we convince that the geodesic motion with respect to
the bi-invariant metric on the 4-dimensional singular
orbit stratum corresponds to 2-particle mass-deformed
Calogero–Moser–Sutherlandmodel with particle mass
ratio m1 : m2 = 2 : 1. Following this interpretation of
the Hamiltonian system (68) in terms of particles, one
can say that the motion on this singular orbit stratum
corresponds to some “gluing” of two particles and
formation of a bound particle with double mass. It
is apparent that using the center-mass coordinates the
obtained 4-dimensional Hamiltonian system (68) can
be reduced to 2-dimensional integrable model.

3.2. Mass-deformed Calogero–Moser–Sutherland
model via limiting procedure from the free motion on
the principal orbit stratum

As it was mentioned above the singular orbits with
two coinciding eigenvalues form the boundary of the
principle orbit stratum. Based on this observation,
now we would like to extend Hamiltonian (40), given
on the principal orbit stratum, to its boundary by
introducing the constraints that force the dynamics
specially to the neighborhood of the boundary and
then use a limiting procedure. Since Hamiltonian (40)
has a singularities along the singular orbits, we impose
the following constraints on the phase space variables:

(70)χ(1) = x1 − x2 − ε, φ(1) = ξ3 − ε1+α,

with positive small parameterε � 1 and constant
α � 1. Whenε goes to zero the system tends to the sin-
gular orbit stratum with two coinciding eigenvalues.
Let us at first find the dynamical consistence of con-
straints (70) considering instead of Hamiltonian (40)
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the modified Hamiltonian3

H ′ = 1

8

3∑
a=1

p2
a + 1

16

∑
(abc)

ξ2
a V (xb − xc)

(71)+ u(x1 − x2 − ε)+ λ
(
ξ3 − ε1+α

)
,

with Lagrangian multipliersu and λ and V (x) =
sinh−2(x). The conservation in time of the constraints
χ(1) andφ(1) leads to the new constraints

(72)χ(2) = p1 − p2, φ(2) = ξ2,

while from the maintenance of (72), the Lagrangian
multipliers can be found:

(73)

u = 1

16

[
1

2
ξ2
1V

′(x2 − x3)− 1

2
ξ2
2V

′(x1 − x3)

− ξ2
3V

′(x1 − x2)

]
,

(74)λ = 1

8
ξ3
[
V (x2 − x3) − V (x1 − x2)

]
.

Hence we conclude that the constraint surface de-
fined by (70) and (72) represents an invariant subman-
ifold for Hamiltonian (71). Because these constraints
are second class in the Dirac terminology [11,19,20]
we are able to replace the Poisson brackets by the
Dirac ones according to (57) and let the constraint
functions to vanish. One can easy verify that for the
canonical variables(x,p) the corresponding nonzero
fundamental Dirac brackets are

{xi,pj }D = 1

2
, i, j = 1,2,

(75){x3,p3}D = 1,

while for the angular variables we have

(76)
{
ξRa , ξRb

}
D

= 0, a, b = 1,2,3.

Projecting the HamiltonianH ′ to the constraint shell
and then taking the limitε → 0 we obtain

H(2) := lim
ε→0

HT |CS

(77)= 1

4
p2

1 + 1

8
p2

3 + ξ1
2

16 sinh2(x1 − x3)
.

The quantityξ2
1 in (77) is a constant of motion, that

is the reminiscent of conserved total momentumξ2
1 +

3 Here we again restrict consideration by the caseηRa = 0.

ξ2
2 + ξ2

3 for the Euler–Calogero–Moser–Sutherland
Hamiltonian (61). So, using the appropriate limiting
procedure from the principal orbit stratum we arrive
at mass-deformed Calogero–Moser–Sutherland model
corresponding to the singular stratum, labeled by two
coinciding eigenvalues of 3× 3 symmetric matrix.
Finally, we establish a relation between (77) and
Hamiltonian (68) derived before. To achieve this it is
necessary to rescale the momentump1 
→ 2−1p1 so
that variables(x1,p1, x3,p3) obey canonical Poisson
bracket relations instead of the Dirac brackets (75),
identify variablesx := x1, y := x3, and constants
l2 = ξ2

1 . As a result we arrive at Hamiltonian system
which coincides with the mass-deformed IIA3 Euler–
Calogero–Moser–Sutherland model, derived in the
previous section using explicit parameterizations of
the induced metric on singular orbit stratum.

4. Concluding remarks

Nowadays we have revival of the interest to ma-
trix models (see, e.g., [22]) connected with the search
of relations between the supersymmetric Yang–Mills
theory and integrable systems (for a modern review
see [23]). As it has been shown in the recent paper [24]
the Euler–Calogero–Moser–Sutherland model with
certain external potential describes the gauge invariant
long-wavelength approximation of theSU(2) Yang–
Mills field theory [25]. In the context of the consid-
eration of higher-dimensional gauge groups it is in-
teresting to explore the mechanics on the general lin-
ear group manifold. In the present Letter we have
considered the simplest version of geodesic motion
on GL(n,R) group manifold and and analyze the dy-
namics in the context of isometries of the bi-invariant
metric. Namely, we intensively exploit the slice struc-
ture of GL(n,R) based on the existence of the prin-
cipal orbit stratum and singular orbit strata of the
SO(n,R) group action. We demonstrated that the free
motion on the principal orbit stratum corresponds to
the integrable many-body system of free particles on a
line with two types of internal variables called “spin”
and “isospin”, which is a generalization of the Euler–
Calogero–Moser–Sutherland model. To clarify its re-
lation to the known integrable models we have im-
plemented two different types of reduction: due to
discrete symmetry and due to continuous symme-
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try. In both cases we derived IIAn Euler–Calogero–
Moser–Sutherland model. Concerning the singular or-
bit strata, it was shown that in this case the corre-
sponding dynamical system is the certain deforma-
tion of the Calogero–Moser–Sutherland model in a
sense of description of particles with different masses.
The masses of the particles are not arbitrary, their
mass ratios depend on the degeneracy of the given
singular orbit stratum. As example was considered
the case ofGL(3,R) group, restricted to the singu-
lar orbit stratum with two coinciding eigenvalues. In
this case the reduced system coincides with the IIA2
Calogero–Moser–Sutherlandmodel with particle mass
ratiom1 = 2m2.
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