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ABSTRACT. We introduce a class of random polynomials for which it is possible to
estimate the mean value of topological degree of the gradient mapping. In particular, we
estimate the rate of growth of mean gradient degrece as the algebraic degree of random
polynomial tends to infinity and in some cases find its exact value. Some applications aml
oeneralizations of these results are also discussed.
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1. Statistics of real roots of random real polynomials and systems of random polyno-
mial equations was actively studied for more than fifty years |1 - 5]. Recent results about
the statistical properties of real roots of random real polynomial systems [3 - 5] suggest
some natural topological problems concerned with the fibers of random real polynomial
mappings. Results of [3 - 5] were basically concerned with computing the expected num-
mer of real roots of random real polynomial systems with a certain Gaussian distribution of
coclTicients introduced in |3] but in those papers there were no attempts to deal with
topological invariants,

Taking into account that some topological characteristics of real polynomials and
polynomial endomorphisms (¢.g.. Euler characteristic of levels, mapping degree) can be
defined by properly counting real roots of polynomial systems, we decided to  consider
some related problems of topological flavour lor random polynomials. For example, given
a4 Gaussian random polynomial system as in [3] one may wish to estimate the expeeted
algebraic number of its real roots [6], in other words the mean topological (mapping)
degree of the corresponding random pelvnomial endomorphism [7]. Natural as it seems,
this problem appears Lo remain practically uninvestigated (only some clementary results
for #~2 may be found in [8]) and our aim is to shed some light on this and related
problems,

Another natural problem is to cstimate the mean Euler characteristic of the fibers ol'a
randon real mapping with arbitrary nonnegative fiber dimension. This problem also re-
mains largely uninvestigated despite interesting results on the mean.

Fuler characteristic of Gaussian random hypersurfaces were obtained in [9]. Notice
that the second problem in principle can be reduced to the first one, since the Euler
characteristic of an aleebraic sct can be expressed through the local degree of the gradient
of an auxiliary polynomial using the formulac presented in [7].

So we concentrate on the mean topological degree and describe some cases in which
one can compute or estimate it in terms of the algebraic degrees of the given random
polynomials. In particular, we find the asymptotic of the mean value of the absolute wopo-
logical degree of gradient mapping of random real polynomial ol algebraic degree m with
rotation invariant Gaussian distribution of coefficients introduced in |3]. We also present
some related results and Tormulate several open problems which seem to be tractable by
the methods described in this paper.

2. We begin with presenting some definitions and auxiliary results concerned with
polynomial mappings and random polynomials. I1'a real polynomial mapping F is defined
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by a collection of ¢ polynomials in s variables with real coefficients, we say that s is the
source dimension while ¢ is called the target dimension. We will only deal with situations
when s<7 and in such cases the difference y— is called the fiber dimension of £ A mapping
with vanishing fiber dimension (s = 1) is called a polynomial endomorphism or a polyno-
mial vector fleld [6.7]. One may somehow think of a vector field as a sort of drift and we
use this word in the scquel.

The full preimage 7! of a point y is called the fiber over v A mapping F is called
proper if the full pretmage of any compact set is a compact set. For convenience and
brevity, a proper real polynomial mapping £ as above will be referred to as propomap.
Correspondingly. a proper polynomial endomorphism will be called a propedrifi. We only
deal with real polvnomials and mappings.

Obviously, regular fibers of a propomap £ are compact smooth manifolds. By Sard's
lemnta [6]. the set of singular values of F has measure zero so a "generic" fiber of Fis a
smooth compact manilold of dimens:on s - ¢,

In particular. it s=¢ then cach fiber is finite. In this case it appears reasonable to
consider the algebraic number of preimages of a regular value, or the mapping degres £
Recall that for a propodrift £ its topolozical (mapping) degree Deg F can be computed as

tDeg F=Zsigndet/F(x)
where sign denotes the sign of a real number. JF is the Jacobi matrix of / and y is an
arbitrary regular value of /2

The sum in the right hand side does not depend on y and Deg F is invariant under
proper homotopies of £, From the results of [7] it follows that the degree of a given
propodrift can be computed in a purcly algebraic way as the signature of a certain
nondegenerate quadratic form which i1s explicitly constructible using the Taylor coeffl-
cients of components of £ This implies that the Fuler characterisic of a given real alge-
braic set can also be computed in a purcly algebraic way from the coefficients of defining
equations [7].

We recall now some concepts and results concerned with Gaussian random polynomi-
als. Speaking of such polynomial simply means that its cocllicients are real random vari-
ables and have multivariate normal distribution [2.3]. The term "random polyvnomial” al-
ways refers Lo this situation and we freely use standard concepts and results from prob-
ability theory. Let us only mention that the word central indicates that the mean value of
a random variable is equal Lo zero, in other words this is a distribution with zero mean. We
only deal with central Gaussian distributions. ]

30 Let P he a central Gaussian random polvnomial on ®® in the above sense. To
specity this distribution it is sufficient to indicate the covariance matrix ol its coellicients,
For us especially important is the rotation invariant central Gaussian random polynomial
introduced in [3] which we call a convenient random polynomial.

It can be deseribed as [ollows. Denole by Him,n+1) '—Hm(R”'*'l} the set of all real
homogeneous polvnomials of algebraic degree m (m-forms) in »' | variable and consider a
random homogencous polynomial & from H{m s+1) whose coefticients are in dependent
normal random variables with zero mean and variances

- m!
B, =—
H

[T

4=t

It was shown in [3] thar such a random polynomial is invariant with respect to the
natural action of the group Ot 1) on Him.at+1). It is worthy of noting that such random
polvnontials appear in some problems of quantum physics [4].
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Consider now a central Gaussian random polvnomial on ptL of algehraic degree v
such that each of its homogeneous components of degree m</ has a rotation invariant
central Gaussian distribution as above. In such situation we speak of a convenient Gaussian
random polynomial of algebraic degree A This is precisely the type of random polynomial
we wish to consider. The main reason for such choice is that in this casc there exist
comprehensive results about the expected number of real roots [3,4] which can be used for
estimating other invariants of such random polynomials.

4. We can now give rigorous description of some of our results. Suppose we are given
1 Gaugsian random polynomial £ in s variables. A whole series of nontrivial problems can
be formulated in terms of computing the mean values of various topological invariants of
the fibers of random polynomial mappings associated with convenient random polynomi-
als. For example, by taking s of such polynomials we obtain a random drift in R

I1 15 casy o show that such a drill/ 1s almost surely (a.s.) proper so its [ibers are a.s.
[inite and its topological (mapping) degree DegF is a.s. well-defined so one may wish to
compute the expectation £{Deg ') of this random variable andfor of its absolute value. We
call these mean values the mean lopological degree of # and mean absolute degree of I,
respeclively.

For a canonical random drift associated with convenient Gaussian polynomial as above,
the expected number of real roots was computed in [3,4]. However it remains unclear how
to find an explicit formula for its mean topological degree or mean absolute degree. Below
we estimate these invariants in a different setting.

Namely, we consider a random propodrift #=£' defined as the gradient mapping of a
siven random polynomial £, i.e., the components of P’ are given by the partial derivatives
of P. Notice that in this case the components of [ are not independent. Such random
drifts were earlier considered in [8]. We aim at finding the asymptotic of the mean gradient
degree as m tends to infinity. To this end let us assume that £ is a convenient Gaussian p-
Tolvnomial as above,

Theorem 1. The mean absolute gradient degree E(|DegP'|) of convenient Gaussian
random polyaomial in w1 variables of algebraic degree m, is asymptotically equivalent
ool as motends to infinity,

If the source is even-dimensional (notice that the source dimension in the above
example is denoted by 1 1) we can also find the mean gradient degree. So we suppose
now that # is odd and £ is again a conyenient random polynomial of algebraic degree m.
Introduce the number M(nm) by equality

ot

Min. ,-n_):.‘.{ﬁl_‘.fﬂl sobigie L) = J(l—rzj 24l
Ly - ;

Theorem 2. For an odd natural n, the average gradieni depree E(Deg P') of conve-
nient Caussian random polvaomial P in n—| variables of algebraic degree m, is equal to
=Vl m). '

Proofs of these theorems rely on the results obtained in [3.4,9] and suggest that
similar results can be obtained for convenient random drifis which are not necessarily
cradient. For small edd &, it is easy to compute the average gradient degree by our
‘ormula. For example, for n=1 one gets F(Deg Py=1— a/;?? . which explicates the main
result of [8] and confirms that the rate of growth found in [8] was correct.

Using the aforementioned explicit formulae for the Euler characteristic from [7], one
can oblain some estimates for the rate of growth of the mean Euler characteristic of fibers
o convenient random polynomial mmapping. The problem of computing the average topo-
‘neical degree for an arbitrary Gaussian random drift is open and seems very difficult.
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Phere exist many other problems of such kind which are quite interesting even in low

imensions. For example, one may wish o find the expected number of cusps [6] of
rotation invariant Gaussian random drift of the plane andfor the mean linking number of
two Gaussian random curves in i | 7] andfor the expected number of umbilic points on
Gaussian random surfaces appearing in optics [ 10]. In all these problems it appears crucial
to estimate the mean topological degree of an auxiliary mapping. so our resulis give some
estimates for those invariants as well, These and other problems of such kind will be
considered in forthcoming publications of the author.

Georgian Academy of Sciences
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