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ABSTRACT. We introcluce a class of random polynomials for which it is possible to

estimate the mean value of topological degree of the gradient mapping. In particular, rve

estimate the rate of growth of mean gradient degree as the algebraic degree of random

poiynomial tends to infinity and in some cases find its exact value" Some applications and

generalizations of these results are also discussed.

Kev words: Gaussian randorn variable. randotn pol,v"nomial. gradient mapping. Jaco-

iran. topological degree. Euler characteristic.

l. Statistics of real roots of randorn real polynornials and systelrs of random polyno-

rlriii equations was actively studied tbl more than fifty years Il - 5]. Recent results about

r[e statistical propetlies of real roots of randonr real pol]'nolrial systerns [3 - 5] suggest

some natural topological problems concerned r,r,ith the f-rbers ol random real polynornial

rnappings. Results of [3 - 5] rvere basicaliy concerned r,vith computing the expected nitm-

l:rer o1'real roots of randonr real polynomial systems r.vith a certain Gaussian distribution of
eoelllcients introduced in [3] but in those papers there were lto atteirpts to deal witlt

topological invariants.
l-aking into account that some topologicai characteristics ol reai polynornials and

pol,vnomial endorrorphisms (e.g.. Euler characteristic of leveis, mapping degree) can be

.leflned by prooerly counting real roots of polynomial s1,'stems, lve decided to consider

)r)u1e relatecl problems of topological flavour for landom poiynomials. For exan.rple, given

.r (laussian randorr polynornial system as in [3] one may lvish to estimate the expected

.Llgebraic nuntber of its real roots [6], in other words the uean topological (mapping)

.legree of the corresponcling randorn pol_,vnorlial endomorphisrn [7]. Natural as it seems,

r[is ltrobler- appears to remain practicalll uninvestigated 1on11' sotne eletnentarl' results

for n-r urav be fbund in f8]) and our ainr is to shed sorne light on this and related

i. rol.Ic tn s.

,A.nttther natural probleur rs to estimaie the rneatt Euler ciraractcrisfic ol'the f'lbcrs of a

lanilon.r real nrapping with arbitrarl,- nonnegative fiber dimension. Tiiis problern also re-

rlains largel-v r.rninvestigated despite interesting results on the mean.

[:Lrler characteristic of Gaussian random hypersurfaces rvere obtairred in i9i. Notice

rhat the second problern in principle can be redr-rceci to the first one. since the Euler

iltiiracterrstic of an algebraic set can be expressecl through the locai degrce oltire gradient

of ari aurilian polvnotrial Lrsing the fbnnulae presented in [7].
So ue concentrate on the rnean topological degree and describe solne cases in which

ole call compute or estirtrate it in ten.ns o1' the algebraic degrees ol'tlle given random

poli,nomials. In parlicular. r,ve find the asymptotic of the mean value of the absolute topo-

,,gical clegree of gradient rrapping of randonr real pol,vnol.nial of algebraic degree irr with
'uiatiop invarianl Caussian distribution o1'coelficients introduced in [31. We also present

-rrne related results and fbrr.nr-rlate several open problems which seelr to be tractable by

:he urethods described in this paper.

2. We begin r.i,ith presentinq sotre definitions;rnd auxiliarv results cotrcerned r,vitl.l

ltolvnotnial urappings and randr:m poll,nonrials. li'a real pol-v- pomral srappiilg l"is defiled



h (i Khirnshiashvili

b1' a collection ol I polynomials in s variables with real coefficients, we say that s is the
source dimension rvhile I is called the target dimension. We rvill only deal with situations
rvhen s<r and in such cases the difference.s-l is called the fiber dimension of I A mapping
with r,anishirtg fiber dimension (s - l) is called a polynornial endomorphisrir or a polyno-
mial vector fteld [6.71. One may sotnehow think of a vector field as a sort of drift and we
use this word in the sequel.

'Ihe ftrll preimage y-l of a point y is called the fiber over y. A mapping F is called
proper if the full preimage of any compact set is a compact set. For convenience and
brevitv. a proper real polynomial mapping F as above will be referred to as propomap.
Correspondingly. a proper polynomial endomorphism will be called a propodrift. We only
deal with real polynomials and mappings.

Obviously. regular fibers of a propolxap F are compact smooth manifolds. By Sard's
letnrna [6]. the set of sin,eular values of F has rrreasure zero so a "generic" fiber of F is a
sr.nootl.r cornpact manifbld of dirnension.r - t.

In particr-rlar, if .r:l tlien each fiber is finite. In this case it appears reasonable to
consider the algebraic number of preimages ol a regular value, or the mapping degree .[
Rcrrrll thal lbr a propodrift [ its topological (rnapping) degree Deg Fcan be computed as

tDeg t':Isigndet,/F(-r)
where sign denotes the sign of a real number, JF is the Jacobi matrix of f, and y is an

arbitrary regular value of E
-l-he 

surn in the right hand side does not depend on y and Deg F is invariant under
proper homotopies ol tr. From the results of [7] it fbllows that the degree of a given
propodrilt can be conlpLlted in a purely algebraic way as the signature of a certain
nondegenerate quadratic form which is explicitly constructible using the Taylor coeffi-
cients of cornponents of F This implies that the Euler characterisic of a given real alge-
braic set can also be computed in a purely algeblaic way from the coefficients of defining
eqlrations [7].

We recall now some concepts and results concerned with Gaussian random polynomi-
als. Speaking of such poll,nomial simply rreans that its coefficients are real random vari-
ables and have rnultivariate nonrral distribr-rtion [2,3]. The term "random polynomial" al-
lvavs ref'ers to this sitLration and we freely use standard concepts and results flom prob-
abilitv theor-v. I.et us orrlv mention that the word central indicates that the rrean value of
a rarrdorr variable is equal to zero. in other words this is a distribution with zero tnean. We
onlv deal with central Gaussian distributions.

-l [.e-t /) be a central Caussian randonr polynornial on Rs in the above sense. To

specitv this distribution it is sufflcient to indicate the covariance matrix of its coefficients.
F'or us especially important is the rotation invariant central Gaussian random polynomial
introduced in [3] which we call a convenient random polynomial.

It can be clescribed as follows. Denote by H(nt,n+1) -Hn(Rn+ 11 th. r.t of all real

lrorlogeneous poly'nonrials olalgebraic degree rr (m-fonns) in r+1 variable and considera
randorn hor.nogeneous polynomial F fiom H(nt,n+l) whose coeflcients are in dependent
nonlal randorn variables with zero mean and variances

Ltl 1

17,',,
./ -0

It was shown in [3] that such a random polynomial is invariant with respect to the
natural action of the group O(n+l) on H(.tn,n-1'1). It is worthv of noting that such random
polvnomials appear in sonte ltroblems of quanturn physics [4].

rul
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Consider now a central Gaussian random polynomial on R4+1 of algebraic degree M

such that each of its homogeneous components of degree m<N has a rotation invariant
central Gaussian distribution as above. [n such situation we speak of a convenient Gaussian
random polynomial of algebraic degree N. This is precisely the type of random polynomial
we wish to consider. The main reason for such choice is that in this case there exist
comprehensive results about the expected number of real roots [3,4] which can be used for
estimating other invariants of such random polynomials.

4. We can now give rigorous description of some of our results. Suppose we are given

a Gar-rssian random polynomial P in.s variables. Awhole series of nontrivial problems can

be formulated in terms of computing the rnean values of various topological invariants of
the fibers of random polynomial mappings associated with convenient random polyTromi-

als. For example, by taking s of such polynomials we obtain a random drift in R' .

It is easy ro show that such a driftF is ahnost surely (a.s.) proper so its fibers are a.s.

llnite and its topological (mapping) degree DegF is a.s. well-defined so one may wish to

compute the expectation E(Deg F) of this random variable and/or of its absolute value. We

call these mean values the mean topological degree of F and mean absolute degree of F.

respective ly.

For a canonical random drift associated with convenient Gaussian poiynomial as above,

the expected numberof real roots was computed in [3,4]. However itrernains unclearhow
to find an explicit forrnula for its mean topological degree or mean absolute degree. Below
rve estimate these invariants in a different setting.

Namely, we consider a random propodrift F:P'defined as the gradient rnapping of a

given random polynomial P, i.e., the components of P'are given by the parlial derivatives

of P. Notice that in this case the components of F are not independent. Such random

drifts were earlier considered in [8] We aim at finding the asymptotic of the mean gradient

degree as m tends to infinity. To this end let us assume that P is a convenient Gaussian p-

lolynomial as above.

Theorem l. The mean absolute gradient degree E(lDegP'l) of convenient Gaussian
riln(lttnt polt'nontiul in n'tl variahles of algebraic degree m, is asymptotically equivalent
t,, n-trri t as nt tend.s to inlinity.

Il tlre source is even-dimensional (notice that the source dimension in the above

erarnple is denoted by r+l) we can also find the mean gradient degree. So we suppose

nor,v that n is odd and P is again a convenient random polynomial of algebraic degree rr.

Introduce the nurnber M(n,m) by equality

At(n.nt)=!':*, where 1,,(,s)= 
'ltt-,'1i 

r,,
I ,,(l\ o

Theorem 2. For an odd nalural n, the average gradient degree E(Deg P') ofconve-

nient Gau,ssian randont polynomial P in n+l variables oJ algebraic degree m, is equal to

| -,\l1t t.tn 1.

Proofs of these theorems rely on the results obtained in [3,4,9] and suggest that

sirnilar results can be obtained for convenient random drifts which are not necessarily

eradient. For small odd n, it is easy to compute the average gradient degree by our

tbnnr-rla. For exarnple, for r:1 one gets E(DegP):1-^l m. which explicates the main

result of [8] and confirms that the rate of growth found in [8] was correct.

Using the aforementioned explicit fbrmulae fbr the Euler characteristic from [7], one

can obtain some estimates for the rate of growth of the rnean Euler characteristic of fibers

..icorrvenient randorn polynomial nrapping. The problem of computing the average topo-

louical degree fbr an arbitrary Gaussian random drift is open and seems very difficult.
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I here exrst rnany other problems of such kind which are quite interesting even in low

irnensions. For example, one may wish to flnd the expected number of cusps [6] of
rotation invariant Gaussian random drift of the plane and/or the mean linking number of
rwo Gaussian random curves in n' [Z] and/or the expected number of umbilic points on

Gaussian randorn surfaces appearing in optics [10]. ln atl these problems it appears crucial

to estimate the mean topological degree of an auxiliary mapping, so our results give some

estitrates fbr those invariants as well. These and other problems of such kind will be

considered in for-thcotning publications of the author.
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