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ABSTRACT. We establish that each orientable compact smooth manifold is
diffeomorphic to a component of fiber of a certain proper quadratic mapping. In
the opposite direction, it is shown that one can obtain considerable topological
information about the smooth fibers of a given proper polynomial mapping using
signature formulae for the mapping degree and Euler characteristic. We also dis-
tuss some related problems about fibers of proper polynomial mappings.

Key words: smooth manifold. proper polynomial mapping, bifurcation diagram. iso-
lated singular point, mapping degree. Euler characteristic

[. Polvnomial mappings of real vector spaces constitute a natural and important class
of mappings which can be studied from many points of view. In particular. it is known that
the structure of their fibers is quite complicated and exhibits a lot of interesting phenom-
ena studied in real algebraic geometry and singularity theory [1,2].

From the classical results of I.Nash and R Tognoli it follows that each orientable
smooth compact manifold is diffeomorphic to a regular (smooth) fiber of a certain poly-
nomial mapping [3]. This establishes a fundamental intrinsic relation between differential
topology and real algebraic geometry and shows that in some sense the topological study
of general smooth manilolds can be reduced to the investigation of fibers of polynomial
mappings. In this note we devclop some aspects of this relation suggested by recent
results of W.Thurston concerned with moduli spaces of planar linkages [4,5].

It turns out that those results of W.Thurston imply that in the aforementioned result
0l J.Nash and R.Tognoli it is sufficient to consider only the fibers of proper real quadratic
mappings. Thus the study of real quadratic mappings becomes of special importance and
suggests some natural problems which are discussed in the sequel. In particular, in this
context it becomes especially desirable to have some cffective methods for the topologi-
cal study of their (bers.

The topology of quadrics and their intersections for a long time was ([6]. Ch.13) and
rermains [7] an object of intensive study. In particular, A Agrachey and R Gamkrelidze devel-
oped an cffective approach to the computation of Euler characteristics of the (ibers of
quadratic mappings [7]. The topology of fibers can be also studied using the signature
formulae for the mapping Euler characteristic (see, e.g., [8]). In the sequel we describe some
situations in which these approaches lead to quite effective results.

- Recall that a polynomial mapping 7 :R* — R' is defined by a collection of ¢
po]\nonna]s in s variables with real coefficients. We say that s is the source dimension
while ¢ is called the target dimension. The difference s-t is called the descent of £ The
mapping of zero descent (s = ¢) is called a polvnon’na] endomorphism [8] or a polynomial

veetor field [2]. For any ye R, the set /7 (p) is called a fiber of F over the point y.

Obviously. each fiber of a polynomial mapping is a (rcal) algebraic variety. It is well known
that each regular fiber (i.e., the one which does not contain singular points of F) is a
smooth manifold of dimension equal to the descent s-r.

As usual, a mapping F'is called proper if preimage F'tx) of any compact set X is
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et et For convenience and brevity, a proper real polynomial mapping F as above
% = referred 10 as a propomap. The fibers of a propomap are compact algebraic vari-
o omrespondingly, regular fibers of a propomap F oare orientable compact smooth
e ooos By Sard's lemma [3]. the set of singular values of £ is of measure zero so a
“wenerc fiber of £ s a smooth manifold of dimension s-f. A natural question il each

closed (i.e.. without boundary) smooth manifold can be represented as a regular
e o = propomap was given a positive answer in the works of J.Nash and R.Tognoli [3].
o cesult can be formulated i terms of polynomial mappings as follows.

Theorem 1. For each compact closed smooth manifold M, there exists a polymomial
e e B osuch that M is diffeomorphic (o a connecied component of some fiber of F

=1 components of F are polynomials (not necessarily homogeneous) of algebraic
oo two then F s called a quadratic map. Quadratic maps are the simplest nonlinear
= =2ns which appear in many problems of analysis and geometry so it is natural to ask
= <mooth manifolds can be represented as the regular fibers of a quadratic maps and
v oenactly the question to be addressed to in the sequel.

© 7o this end we need to recall some constructions from the theory of linkages [4.5].
© =iaze (L) is defined as a graph L with a positive real number /(¢) assigned to each
“ioo - We assume that there is chosen a distinguished oriented edge e* in L and in such
o o speak of a bascd linkage. The planar moduli space M(£) of a based linkage L is
o == as the set of all maps from the vertex set V of L into the Huclidean plane such that
o mage of edge e* coincides with the segment [(0.0), (/(¢*).0)] and the distance be-
“woon the images of each pair of vertices joined by an edge ¢ is equal to /(e) [5].

I+ s easy to sce that M(L) comes with a natural topology inherited from the Euclidean
=m: As is well known, for a generic linkage L the (planar) moduli space M(L) is an
~~=ntable compact smooth manifold of the dimension 24 - m -3, where # is the number
~ ertices of £ and m is the number of its edges [5]. Moduli spaces of linkages were
~-din various contexts. In particular, W.Thurston proved that for any orientable smooth
~—nact manifold M there exists a linkage I such that its planar moduli space is
"“""'—-r\morphit, to a disjoint union of a number of copies of M. In other words, M is

~~omorphic 1o some (actually any) connected component of M(L). In many cases L can
~- _hosen so that M(£) is connected and is itself diffeomorphic to M.

We wanl to use this result to show that each compact smooth manifold can be rep-
~-=nted as a regular fiber of a propomap. To this end let us take into account that each
= nar moduli space M(L) has actually a natural structurc of a real algebraic variety.
~eed, i one writes down the condition that the square length between the images of ends

© cach edge e is equal to the square of /(e) then in terms of Euclidean coordinates in the
~ .nz then it Lurns out that the moduli space is exactly the fiber over the origin of a certain

~opomap F:R¥ " — R"™'. Moreover, all components of this map arc easily seen to be
.adratic polynomials. This means that we can actually represent M{/) as a fiber of a
~roper quadratic map O which is called the map associated with L. Taking into account the
~ted result of W.Thurston we come to the following improvement of Theorem 1.

Theorem 2. For each compact closed smooth manifold M, there exists a proper
suadratic mapping Q such that M is diffeomorphic to a connecled component of some
fher of 0.

Actually, by applying the argument which was used by A.Tognoli [9] to elaborate the
original result of J.Nash [3], one can show that there exists a quadratic mapping O such
that M is diffeomorphic to a (whole) fiber of Q. In such situation we say that O exhibits
A1 If moreover quadratic map ¢ is associated with a planar linkage £ in the way described
Jhove, we say that ¢ exhibits M. Notice that there is no natural way of constructing a
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quadratic map or linkage which exhibit a given manifold so a number of natural problems
can be formulated in this setting.

For example. it is pretty clear that there exist many quadratic maps exhibiting a given
manifold M and one may wonder what is the simplest possible choice. In other words, what
can be the minimal values of the source and target dimension of such quadratic map (.
bservations are immediate. For example, the cases when /-1 are very rare
sinee the possiole topological types of a real quadric are well known for all source
mensions So i most case we have really to deal with intersections of several quadrics.
“us @ natural approach to the above problem is to classify possible toplogical types of
Juadrance mappings with fixed values of s and 7, Many results are known for 2 ([6], Ch.
‘= [710 In general case. Euler characteristics of the fibers can be estimated using the
signature formulae from [§].

For example a torus 7~ cannot be diffeomorphic to a quadric but one can easily verify
that it can be represented as an intersection of two quadrics in R so0 it is exhibited by the
corresponding quadratic mapping into £ . Obviously, two is the minimal possible source
dimension in this case. One can add that the sought map O can be chosen homogeneous,

When we have already found a proper quadratic map O exhibiting M it is natural to
have a look at other regular (smooth) fibers of Q. The corresponding smooth manifolds
can be called quadratically adjacent to M. The same notion makes sense for homeomorphy
(diffeomorphy) types of those fibers. One can now wonder what are the smooth manifolds
quadratically adjacent to a given manifold M or what is the maximal possible number of
pairwise nonhomeomorphic fibers exhibited by quadratic maps with fixed values of source
and target dimension. Obyiously this is closely related to the possible topological changes
happening in the fibers of a given quadratic mapping.

A natural approach is to describe the possible types of bifurcation diagrams [2] of
quadratic mappings with the fixed source and target dimension. Another interesting aspect
is related with the minimal possible number of monomials entering in the components of
quadratic maps exhibiting a given manifold.

All these questions can be answered for quadratic mappings in low dimensions but we
will not dwell upon them in short note like this one. We only point out that these problems
become especially visual and attractive in the context of planar linkages exhibiting a given
manifold and we wish to present some brief remarks on the latter issue.

4. An arbitrary quadratic mapping nced not be associated with a planar linkage so it
also makes sense to ask whal is the "simplest” linkage exhibiting a given M. As a natural
measure of "simplicity” one can take the number of vertices of a linkage exhibiting M This
problem can be easily solved for one-dimensional M but already the case of a two-
dimensional compact closed surface A appears nontrivial. We suggest a universal ap-
proach to this problem based on signature formulae for topological invariants [8].

For any nonnegative integer M let M(g) denote the orientable compact closed two-
dimensional surface of genus g ("two-sphere with ¢ handles") and let n(g) denote the
minimal value of integer » such that there exists a planar graph with » vertices and con-
liguration space homeomorphic (hence diffeomorphic) to M(g). In other words, s(g) is
the minimal cardinality of vertices among the linkages exhibiting M(g). In view of said
above. the number n(g) is well-defined and it is desirable to compute it as a function of
g or at least find some estimates which give its rate of growth as g tends to infinity.

By a bifurcation diagram argument in the spirit of [2] it is easy to show that, for each fixed
n, there exist a finite set of values of g such that M(g) s homeomorphic to the configuration
space ol a planar linkage with n vertices, Hence n(g) certainly cammot remain hounded as g
tends to infinity. In fact. #(g) exhibits rather nonregular behaviour as function of g, as will
become clear from our next result. However one can consecutively find it as follows.
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. 2 number 72 and consider all connected linkages with n vertices and 2»-5 edges
. = fived combinatorial type. Obyiously the number of such combinatorial types is
- -ach fixed # one can find the associated quadratic mapping and its bifurcation
.~ o0 21l of them and get a finite list of possible homeomorphy types according to
3 1= of the complements to bifurcation diagrams. Then one determines the topo-
-+ npe of regular fiber in each case by computing its Euler characteristic using
2= rom [8] and ends up with the finite list of two-dimensional surfaces exhibited
5 o.ozces with s vertices. In virtue of Thurston's theorem, each M(g) will appear in this
w0 cerain step and the number of this step is exactly n{g). Notice that as a by product
w2 also get the tables of quadratic adjacency for small values of g.

-~ =xvample, for n—4 one can exhibil two-torus i by taking a three-arm (open chain
ot eee sides) so m(1)=4. We also managed to study the case n=S5.

Theorem 3. One has: nigl=3 for n=234.

“soiving the same strategy. we can prove for example that n(5)=6 and n(6) does not
enosad 7.
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