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ABSTRACT. We establish that each orientable compact smooth manifold is
diffeomorphic to a component of fiber of a certain proper quadratic mapping. In
the opposite direction, it is shown that one can obtain consideratrle topological
information about the smooth fibers of a given proper polynomial mapping using
signature formulae for the mapping degree and Euler characteristic. We also dis-
cuss some related problems about fibers of proper polynomial mappings.
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l. Poll'nomial rnappines of real vector spaces constitute a natural and important class
of rnappings rvhich can be studied liom rnanv points of view. In particular. it is known that
the structure oltheir fibers is quite complicated and exhibits a lot of interesting phenom-
ena studied in real algebraic geometry and singularify theory [1,2].

Frot'tl the classical results of J.Nash and R.Tognoli it follows that each orientable
smooth compact manifold is diff'eomorphic to a regular (smooth) fiber of a certain poly-
nornial rnapping [3]. This establishes a fundamental intrinsic relation between differential
topology and real algebraic geometry and shows that in some sense the topological study
of general smooth rranifolds can be reduced to the investigation of fibers of polynomial
rnappings. In this note we develop some aspects of this relation suggested by recent
results of w.Thurston concerned with moduli spaces of planar linkages [4,5].

It turns out that those results of W.Thurston imply that in the aforementioned result
ol'J.Nash and R.'fognoli it is sufficient to consider only the fibers of proper real quadratic
mappings. Thus the study of real quadratic mappings becomes of special importance and
suggests some natural problems which are discussed in the sequel. In particular, in this
context it becomes especially desirable to have some effective methods for the topologi-
cal studv of their fibers.

The topology'of quadrics and their inrersections for a long time was (61, ch. l3) and
remains [7] an ob.ject of intensive study. In particular, A.Agrachev and R.Gamkrelidze devel-
oped an effective approach to the computation of Euler characteristics ol the fibers of
qLradratic rrappings [7]. The topology of fibers can be also studied using the signature
fornrulae for the mapping Euler characteristic (see, e.g., [8]). In the sequel we describe some
situations in which these approaches lead to quite effective results.

2. Recall that a polynomial mapping F : R'' + R/ is defined by a collection of /
polynomials in ,s variables with real coefficients. We say that s is the source dimension
while I is called the target dimension. The difference s-t is called the descent of F. The
mapping of zero descent (s: t) is called a polynomial endomorphism [g] or a polynomial
vector field [2]. For any y€R', rhe ser r'10) is called a fiber of F over the point 1.
Obviously, each fiber of a polynomial mapping is a (real) algebraic variety. It is well known
tl.rat each regular fiber (i.e., the one which does not contain singular points of tr) is a
srnooth rnanifold of dimension equal to the descent s-r.

As usual. a mapping F is called proper if preimage r'11,r1 olany compact set xis
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I ;r-L:i3;i i3r. For convenience and brevity, a proper real polynomial mapping F as above

il, , :( -.::-.j ro as a propomap. The fibers of a propomap are compact algebraic vari-
:src:. - -::*rond:neh. regular fibers of a propomap F are orientable compact smooth

mru" - :; 3'. Sard's lemma [3], the set of singular values of F is of measure zero so a
'g":6*c irer of F is a smooth manifold of dimension s-1. A natural question if each

iilmr:!,:: ;,osed {i.e.. without boundary) Smooth manifold can be represented as a regular

ftr- ;: : oropomap was given a positive answer in the works of J.Nash and R.Tognoli [3].
-lc - -suil can be formulated in terms of polynomial mappings as follows.

Theorem l. For each compqct closed smooth manifold M, there exists a polynomial
rir,l.i.",- ,:a .c such that M is dffiomorphic to a con.nected component af some fiber of F.

' : Jomponents of F are poll'nomials (not necessarily homogeneous) of algebraic

"8.- :: iri.. rhen F is called a quadratic rnap. Quadratic maps are the simplest nonlinear

:rm F,. *:3r trhich appear in many problems of analysis and geometry so it is natural to ask

*"r .- r-.or'rth manifolds can be represented as the regular fibers of a quadratic maps and

rrrr - :rnctlv the question to be addressed to in the sequel.

I Tur rhis end we need to recall some constructions from the theory of linkages [4,5].
! --.rge (f.D is defined as a graph a with a positive real number /(e) assigned to each

r;r,i : . \\'e assume that there is chosen a distinguished oriented edge e* in L and in such

-{.,: ,: speak of a based linkage. The planar moduli space M(L) of a based linkage z is
;i"--.: as the set of all maps flom the vertex set V of L into the Euclidean plane'such that

,i!,: -::ge of edge e* coincides with the segment [(0,0), (/(e*),0)] and the distance be-

'*::- ihe images of each pair of veftices joined by an edge e is equal to i(e) [5].
-: is easy to see that M(l) cornes with a natural topology inherited from the Euclidean

: ,. : .\s is well known, for a generic linkage t the (planar) moduli space M(I) is an

:r:::able compact smooth manifold of the dimension2n - m'3, where n is the number

' .::lices of I and n is the number of its edges [5]. Moduli spaces of linkages were
' - : :J in various contexts. In particular, W.Thurston proved that for any orientable smooth

- --r3ct manifold M there exists a linkage I such that its planar moduli space is

: ":.\morphic to a disjoint union of a number of copies of M. ln other words, M is

- '':,rnrorphic to some (actually any) connected componentof M(L).ln many cases I can

:-: :lrosen so that M(L) is connected and is itself diffeomorphic to M.

\\'e want to use this result to show that each compact smooth manifold can be rep-

"::.rred as a regular fiber of a propomap. To this end let us take into account that each

: i-rar rroduli space M(L) has actually a natural structure of a real algebraic variety.
-::ed. if one writes down the condition that the square length between the images of ends

' :rch edge e is equal to the square of /(e) then in terms of Euclidean coordinates in the
' .:e then it turns out that the moduli space is exactly the fiber over the origin of a certain

:-,romap p '. p2tt-4 -, R'' l. Moreover, all components of this map are easily seen to be

- -:dratic polynomiats. This means that we can actually represent M(L) as a fiber of a

::,rper quadratic map Q which is called the map associated with I. Taking into account the

- :ed result of W.Thurston we come to the following improvement of Theorem L

Theorem 2. For each compact closed smooth manifold M, there exists q proper

- t"trJratic mapping Q such that M is dffiomorphic to a connected component of some
' ^Lr ,tf Q

Actually, by applying the argurnent which,was used by A.Tognoli [9] to elaborate the

-rriginal result of J.Nash [3], one can show that there exists a quadratic rnapping Q such

'.:at 1.4 is diffeomorphic to a (whole) fiber of p. In such situation we say that p exhibits

t/ lf rnoreover quadratic map Q is associated with a planar linkage I in the way described

,..bove. we say that p exhibits M. Notice that there is no natural way of constructing a
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C Khirrshiashvili On the Fiber-. of P

quadratic map or linkage u'hich erhibit a given manifold so a number of natural problems
can be formulated in this sening.

For exarnple. it is prern clear that there exist many quadratic maps exhibiting a given
manifold M and Lrne mar uonder what is the simplest possible choice. In other words, what
can be the minimal ralues of the source and target dimension of such quadratic map e.

Some easr rlbsen ations are immediate. For example, the cases when F I are very rare
.ir;< :ne x-,si:ble topological fypes of a real quadric are well known for all source
:r:-3:s:.-1s So in most case we have really to deal with intersections of several quadrics.
r'!":i a narural approach to the above problem is to classi! possible toplogical types of
;ii.rdratrc mappings with fixed values of .s and r. Many results are known for t:2 (t6], ch.
: l- [7J). In general case, Euler characteristics of the fibers can be estimated using the
sisnarure formulae from 

[81
For example a torus 7* cannot be diffeomorphic to a quadric.but one can easily verif,

that it can be represented as an intersection of two quadrics in Ra so it is exhibited by thl
corresponding quadratic mapping into Rl. Obviously, two is the minimal possible source
dirnension in this case. one can add that the sought map e can be chosen homogeneous.

When we have already found a proper quadratic map Q exhibiting M itis natural to
have a look at other regular (smooth) fibers of Q.The conesponding smooth manifolds
can be called quadratically adjacent to M. The same notion makes sense for homeomorphy
(diffeomorphy) types of those ftbers. One can now wonder what are the smooth manifolds
quadratically adjacent to a given manifold M or what is the maximal possible number of
pairwise nonhomeomorphic fibers exhibited by quadratic maps with fixed values of source
and target dimension. Obviously this is closely related to the possible topological changes
happening in the fibers of a given quadratic mapping.

A natural approach is to describe the possible types of bifurcation diagrams 12) of
quadratic mappings with the fixed source and target dimension. Another interesting aspect
is related with the minimal possible number of monomials entering in the components of
quadratic maps exhibiting a given manifold.

All these questions can be answered for quadratic mappings in low dimensions but we
will not dwell upon them in short note like this one. We only point out that these problems
become especially visual and attractive in the context of planar linkages exhibiting a given
manifold and we wish to present some brief remarks on the latter issue. '

4. An arbitrary quadratic mapping need not be associated with a planar linkage so it
also makes sense to ask what is the "siurplest" linkage exiibiting a given M. As a natural
measure of "simplicity" one can take the number of vertices of a linkage exhibiting M This
problern can be easily solved for one-dimensional M but already the case of a two-
dirrensional compact closed surface M appears nontrivial. We suggest a universal ap-
proach to this problem based on signature formulae for topological invariants [g].

For any nonnegative integer M let M(g) denote the orientable compact closed two-
dimensional surface of genus g ("two-sphere with g handles") and let r(g) denote the
minimal value of integer r such that there exists a planar graph with r veftices and con-
figuration space homeomorphic (hence diffeomorphic) to M(g). In other words, n(g) is
the minimal cardinality of vertices among the linkages exhibiting M(g). ln view of said
above, the number n(g) is well-defined and it is desirable to compute it as a function of
.g or at least find sorne estimates which give its rate of growth as g tends to infinity.

By a bifurcation diagram argument in the spirit of 12) it is easy to show that, for each fixed
r, there exist a finite set of values of g such that M(g) s homeomorphic to the configuration
space of a planar linkage with n vertices. Hence ir(g) certainly cannot remain bounded as g
tends to infinity. In fact, r(g) exhibits rather nonregular behaviour as function of g as will
become clear ffom our next result. However one can consecutively find it as follows.

For a number n>2 and consider all t
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I fn:n: '.or each fixed ,? one can trnJ $e
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On the Fibers of Proper Polynomial Mappings

Fr a number n>2 and consider all connected linkages with r vertices and 2r-5 edges

a fixed combinatorial type. Obviously the number of such combinatorial types is

:..r each fixed zl one can find the associated quadratic mapping and its bifurcation

L1r all of them and get a finite list of possible homeomorphy types accordingto

of the complements to bifurcation diagrams. Then one determines the topo-

I IFE of regular fiber in each case by computing its Euler characteristic using

*6g rrom [8] and ends up with the finite list of two-dimensional surfaces exhibited

h lr.:nages uith r vertices. ln virtue of Thurston's theorem, each M(g) will appear in this

h6 ;enain step and the number of this step is exactly n(g). Notice that as a by product

r {m also get the tables of quadratic adjacency for.small values of g'

Iorexample, for n:4 one can exhibittwo-torus I by taking a three-arm (open chain

ffi [Iree sides) so n{\:a. We also managed to study the case n:5'
Tlcorem 3. One has. n(g)-5 for n:2,3,4.
{ppl.v-ing the same strategy, we can prove for example that n(5)=6 and n(6) does not

rcJ 7-
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