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ABSTRACT. We present several results on the structure of zero-set of a quaternionic
polynomial, In particular, it is shown that the Euler characteristic of the zero-set is equal
1o its algebraic degree, which may be considered as a generalization of the Fundamental
Theorem of Algebra. We also indicate an effectively verifiable sufficient condition which
guarantees that the zero-set is finite, :

Key words: quaternionic polynomial in standard form, Jacobian matrix, Euler charac-
teristic, mapping degree, signature of a quadratic form.

1. We consider the zero-sets of polynomials of one variable over the algebra of quater-
nions H [1]. More precisely, we deal with the so-called monic polynomial of algebraic
degree n in standard form |

Ploi=Tdad, a,.. .=l eH.
The highest coefficient a, is always set to be equal to one and P is referred to as a
standard quaternionic polynomial of degree 7.

As was proved by S.Eilenberg and I Niven [2] such a pelynomial always has a root in
H (sec also [3]). At the same time, it is well known that the set of roots of such a polyno-
mial can be infinite. For example, the zero-sct of polynomial P(q) = q2 + 1 consists of all
purely imaginary quaternions of modulus one which form the unit two-dimensional sphere
i the hyperplane {Re ¢ = 0}. It is also easy to produce examples where the zero-set
contains isolated points as well as infinitc components. One may wonder, how to detect
such cases and what is a proper way of counting roots of such polynomials. In this note
we explain how one can do that using some concepts from topology and algebraic gcom-
<iry. Some results in this direction were also obtained in [31.

2. Let us first give an effectively verifiable sufficient condition of the finiteness of zero-set
Z=Z(P). Consider P as a polynomial endomorphism of a four-dimensional Eulcidean space and
denote by J its Jacobian matrix, As is well known, its determinant j (Jacobian of P) is a
nonnegative polynomial [2,3]. By inverse finction theorem, if g, is a root of P and Mg =0,
then Pis alocal diffeomorphism at g, and in particular g, is an isolated root of P, Thus ii; docs
not vanish on the zero-set of P we can be sure that the zero-set consists of isolated points,

Notice that the endomorphism defined by £ is proper, i.e., full-preimage of any compact
s<t is compact [3]. Thus the set of isolated zeroes cannot be infinite because otherwise they
should accumulate at infinity which would contradict properness of P. Actually, the amount
of isolated roots cannot exceed 1, Indeed, as was proved in [2] and [3] the (global) topologi-
<2l degree of P is equal to . Recalling the definition of mapping degree in terms of Jacobian
4] one gets that, if all roots are simple then each of them is counted with plus sign (since;
is nonnegative everywhere) so the amount of such zeroes exactly coincides with the value
of degree equal to n. If some of isolated roots are multiple, this means that some of simple

roots have collided at these points so the total amount of isolated roots cannot cxceed n.
I Eealdy", ¢, 165, M3, 2002
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Thus if we have somehow established that 7 does not vanish on . we may be sure that More preciscly, we use the Euler charac:
7 is finite. Notice that this is actually a question about exislence of common real roots of five aig;braic subsct which plays considerable rol
polynomials on R‘L. four of them P, P, P, P, being components of P and the fifth is j. This becomes possible since in our case the z=
Recall now that there cxists the so-called signature technique of counting real roots [4] 2lzebraic sct. In order to show that. notice
which cnables onc {o effectively solve such problems. Under an effective solution as usual - complex spacc, P defines a polynomial endom
it is nnderstood that the answer is obtained using a finite number of algebraic and logical -5 n’“$ the zero-set Z can be represented as th
operations over the coefficients of given polynomials (in our case, over coefficients of ) [4]. = P=211ng as the components of the complexific
Actually, one can give an explici( formmla for the number of rcal solutions of such a system, Notice that in the case of a smooth subss

To this end introduce five auxiliary polynomials of five variables s=duces to the usual Euler characteristic of the

{
bt b)) Pt e ), F1334 =S 0 -S) - &=nric point. In our situation this is the s
ed D= () Plex..x, o) i=1.2.3.4. U (#) (x) c I}n'mdlnplu:rly of a two-sphere appearing as;m
|

As was proved in [4], polynomial 7, has an isolated critical point at the origin of R’ s0 ifall i
- E Fpr cxample, if all isolated roots and two-d
- “picity one) then the value of this Euler chas

that the local topological degree of its gradient at the origin. deg, grad /7, is well-defined.
Theorem 1. If deg, erad H, = I then the zero-set of P is finite. This condition may he :
[fdeg, g t 1 P ; | points Qlus_ two times the number of two-sphe
B¢ multiplied by the correspm{ding nultiplics

effectively verified using a finite number of algebraic and logical operations over coef-

ficients of P. aoparently coincides wi i
This follows from the explicit formula for the cardinality A/ of the common real roots in Ty lﬂfsl “f"llh the algebraic degres
R" given in Theorem 8.2 of [4] which, for n=4, rcads : ' Resitciticitio isili ﬂ;:’ﬂ;lg:ioir}ili)gmeﬁ of
S = 1- sl T \ : mappin
24/ = 1- deg, grad /1, 2 fundamental theorem of Grothendieck this i

The compactness condition needed in that theorem is fulfilled due to the properness of  soriqy;
4 . § Tistic of the st : o
P. We would like to add that nowadays there already exist computer algorithms for calculat- " account that in Ofﬂc;;;:lﬂs_he?f 10f pre-image *
ing the local topological degrec [5] so this condition can be casily verificd using a COMPUICT. { gy it is equal 1o # for eﬁggfliégle lusuaI]Eulcrc
2 uiar value w @

el 10w invesli s of zero-set when it is infinite. Some properties o
; et 1S oW 1y esugale_the st{uclu_rs:: _of 7C10 set w he it1s te. Some propert : Theorem 3. The Euler characteristio o
of such zcro-sets were established in |3], in particular it was shown that such phenom-' =ornomiaf is ¢ il i s Bl 2
enon takes place for polynomials with real coefficients which possess non-real roots. In. Generically the rools ha\«'fm Nl;fal' ?f’\f'ee_

- i) ' 1CIY one.

that case cach nonreal root gave risc to a two-dimensional sphere of roots due to the swiared roots plus two times the number of
process of . .cloaning™ roots by means of conjugation by purcly imaginary quaternions Of‘ ner it is possible to show that rfl ller : Sph
unit length [3]. It is straightforward to check that each pair of complex-conjugate rools subalesbra of H then all roots arl: jgéqléﬁe g}fl
produces a whole two-dimensional sphere of quaternionic roots of P. “eual to n, which is apparently a refon;mlazio;; .

More precisely, it is casy to scc that every complex number z = a+ ib is «quaternion It is instructive to have a closer look at I_hl:
conjugate” 1o its complex conjugate a - ib. Thus in such case the zcro-set consists of s=a! numbers. If such a P has 5 real roots u,fg
isolated points and several smooth two-dimensional spheres. In other words, the zero-set &vial. If among the roots appear some compl
consists of several smooth submanifolds and (his can be proved in gencral by a direct above, each complex conjugatc pair generate
arguriient using properties of jacobian matrixJ. ~cloaning” of roots by conjjugations (see [3]). A

indeed. by a dircet inspection of such matrices it is possible to prove that their ranks B exactly such as predicted by Theorem 3
at the roots of P can only take three valucs: 0, 2, 4. The first one is excluded for a non-zcro 4. We would like to conclude by exp]ainjn.ﬂ by
polynomial P, while the third one corresponds to an isolated root. Tn remaining case when 3 without referring (o gencral results of alé:r
sk J = 2, by implicit function theorem ong concludces that the zero-set necar such a point ig@%emative approach to criterion of finiteness. dﬁ

a smooth two-dimensional surfacc. ‘e=siralizer (commutant) C(P) of polynomial 7 &
Theorem 2. Eachscomponent of the zero-set of a standard quaternionic pol lynomial = =) of all of its coefficients. As is casy to see. (-
is a compact smooth submanifold of dimension zero or fivo. The latter casc just means that all coefficie

Actually, one can show that the zero-sct is always a nnion of a finile set of points andst=dy this case using the signature technique £
soveral smooth copies of iwo-dimensional sphere S This suggests that in this case onet™< set of roots is finite if and only if all roots =
should find a way of properly counting components of the zero-set and this would lead te®sing signaturc formulae for the rc')pological deg
a generalization of the Fundamental Theorem of Algebra. Tt turns oul that this can be dong@Poly the aforementioned analysis and see that
using an appropriate version of the concept of Eunler characteristic. If dim C(P) = 2, then it is easy to sce that 2
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- SRS
be sure that More preciscly, we usc the Euler characteristic of the structural sheaf of a complex
roots of five ~ '2ebraic subset which plays considerable rolc in many topics of algebraic geomctry [6].
he fifih is /. This beg;omes possible since in our case t}le zero-scl Z has a nat.ur_a,l structure 01: a cor:_lplcx
ﬁl roots [4] alzebraic set. In order to show 1hatw_ notice that 'b)‘-' mterpr(_;ling Hasa lwq~dnmg151onal
ion as usual ~ —-mplex space, P defines a polynomial cndomorphism of € called complemﬁca.u'gn of P.
- and logical Thus_ the zero-set Z can be represented as the _?Jcro-set of two complex polynomials ap-
ats of P) [4],  P=2ring as the components of the complexification of P,

bh 5 sysicm Notice that in the case of a smooth subset. the sheaf-theoretical Euler charactcristic
777 seduces to (he usual Euler characteristic of this subset multiplied by the multiplicity of its
b4 zcneric point. In our situation this is the usual multiplicity of an isolated root or the

multiplicily of a two-sphere appearing as a component of 7.

For example, if all isolated roots and two-dimensional components are simple (of mul-
“plicity one) then the value of this Euler characteristic is equal (o the number of isolated
oomts plus two times the number of two-spheres. Tn general casc each summand should
o¢ multiplied by the corresporiding multiplicity. If all roots arc simple and isolated this
spparently coincides with the algebraic degree ». -

Notice now that from the properness of standard polynomials it follows that ifs
<omplexification is a flat holomerphic mapping in the sense of algcbraic geometry [6]. By
| 2 fundamental theorem of Grothendieck this implies that, for every weH, the Euler charac-
properness of ' w—stic of the structural sheaf of pre-image P (w) remains unchanged [6]. Taking into
s for caleulat- " secount that in our case this is the usual Euler characteristic counted with multiplicity and
\2 a COMPULeT. * shay it is equal to # for every regular value w of P, we arrive to the main resull.

e propertics Theorem 3. The Euler characteristic of the zero-sei of a standard quaternionic
such phenom- = 5nomial is equal to its algebraic degree.
-real roots. In Generically the roots have multiplicity one, and this results implics that the number of
° ssolated roots plus two times the number of spheres is cqual to the algebraic degree. More-
L ower it is possible to show that, if all coefficients of P lie in the same two-dimensional
subalgebra of H then all roots are isolated, lie in (he same subalgebra. and their amoun ig
to n, which is apparently a reformmlation of the Fundamental Theorem of Algebra [1].
[t is instructive to have a closer look at this result in the case when all cocfficients are
numbers. If such a P has # real roots then there are 1o other roots and the resali is
sal If among the roots appear some complex conjugate pairs then, as was explained
. cach complex conjugate pair gencrates a two-dimensional sphere of roots via
ing” of roots by conjugations (see [3]). Apparently the amount of two-spheres will
exactly such as predicted by Theorem 3.
+. We would like to conclude by explaining how one can obiain a direct proofl of Theorem
without referring to gencral results of algebraic geometry. To this end one can use an
tive approach (o criterion of finiteness developed by N.Topuridze |3]. Recall that the
ralizer (commutant) C(P) of polynomial P is defined as the interscotion of centralizers
a,) of all of its coefficients. As is easy to see, C() can have dimension 1,2, or4[3].
The latter case just means that all coefficients of P are real and onc can successfully

rigin of R so
well-defined.
fition may be
ns over coef-

n real rools in

et of points ar v this case using (he signature technique for counting real roots [5]. Tt follows that
this case 0 set of roots is finite if and only if all roots arc real and this can be effectively checked
would lead t¢#sing signature formulac for the topological degree | 5]. If there are non-real roots, one can

Iy the aforementioned analysis and scc that Theorem 3 holds in this case.
I dim C(P) = 2, then it is easy to sec that all coefficients a, belong to the same two-
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dimensional subalgebra isomorphic to €. By the Fundamental Theorem of Algebra, there
cxist # roots (counted with multiplicites) of P belonging to the same subalgebra. Using the
fact that Jacobian of P is nonnegative one can show that there can be no isolated roots

outside this subalgebra (otherwise the value of deg P would exceed n). Some pairs of Z. Tediasg

roots can again generate two-dimensional spheres by ,.cloaning” but it is not difficult to = . )

verify that the amount of those spheres is exactly such as stated in Theorem 3. So the Uniqueness for Two-Dimensional D

theorem remains true also in this casc. ) of the Potens:
The most troublesome is the case when dim C(P) = 1. As was explained in [3] one can

use homotopies preserving dim C(P) to reduce the whole matter to the case of trinomials. Presented by Corr, Member of the Acad

So it remains to verify Theorem 3 for an arbitrary trinomial, which can be done by a direct ABSTRACT I
application of signature formulac [5]. Details of the argument will be published elsewhere. o "~~~ nverse problems of the potes
These results may be generalized in several directions of which we mention only two. g, The uniqueness theorems ar
First, one can analogously treat standard polynomials over an arbitrary finite-dimensio: Suwadaries of the domains and densities of o
asgocia?ivc algebra. E‘_ffcctive criteria for the finiteness of the zero-set are algain availflblt;l Key words: inverse problems, potential thex
using signature technique. It would be interesting to find some geometric intcrpretations y 1
in the case of a Clifford algebra [1]. ' . In the inverse problems of the potential
Another natural possibility is to consider arbitrary noncommutative polynomials whicl S5 of a body (or one of them) if the cuter 5
are by definition the finite sums of finite ,,words” of the form agbgcq..... It is known thé oSt principal question in the study of thess il
such polynomials need not always have a root in H, which may be observed already fo ==
linear equations of the form ag + bg =c. At the same time, if such a polynomial contai oo o R
only one word of the maximal length, then it has a quaternionic root [1]. In such case oti a:_l:; ,feb;ls.:_m? (boujnded domain in R” ;
can again apply the result of Grothendieck and obtain the constancy of the Euler charac Y "¥Vi<é} is an open ball ceas
teristic of the structural sheaf of zero-set.
However, this result is less illuminating because it is not a priori known what can b
the components of zero-set in this case so it is not clear if one can obtain a vi
state_mnt like Theorem 3 i}l this case. Corre;pondingly, it would be very interesting‘ W o )x)= J' K(x,»)u( y)dSy is a single laver >
obtain some general conclusions about the possible structure of zero-set of noncommutati 2 i

V)

1
E;Iﬂ’x—y[ stands for the fundzme

quaternionic polynomials.
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