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Counting Roots of euaternionic polynomials
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. ABSTRACT. We pnesent severttl ttsults on the structurr of zerc-set of a quaternionic
poll'nomial. In particulaq it is shorvn that the Euler characteristic of the zero-set is equal
ro its algebraic degree, which may be considered as a generalization of the tr'undamental
Theorem of Algebra. We also indicate an effectively verifiable sufficient con4ition which
zuarantees that the zero-set is finite.

Key words: quaternionic polynomial in standard form, Jacobian matrix, Euler charac-
:nstic, mapping degree, signature of a quadratic form.

i ' We consider the zero-sets of polynomials of one variable over the algebra of quater-
::ons H [1]. More precisely, we deal with the so-called monic polynomial of algebraic
:3sree n in standard form

rhe highest coeffrcient ,, ,:t3;*tr'J$'," i'; ;n.lfl"'Xr. uno p is rererred to as a.::ndard quatemionic polynomial of degree n.
As was proved by S.Eilenberg ancl LNiven [2] such a polynornial always has a root in

H 
' see also [3]). At the same time, it is well known that the iet of rools of such a polyno-

.:.:ai can be infinite. For example, the zero-set of pofynon iat ilrX'= ; + 1 consists of all: -relv imaginary quaternions of modulus one rvhiCh form the uriiirvoldimensional sphere:' ihe hyperplane {Re q = 0}. It is also easy to produce examples wlere the zero-set::nlains isolated points as uell as infinite coinponents. one rnay wonder, hor.v to detect.,:h cases and what is a proper way of counting roots of such ptlynomiars. In this note'' : explain how one can do that using som. corriepts from top"iogy and algebraic geom_..:r. Some results in this direction were also obtained in [3].
- - 

?- Let us first give an effectively verifiable suffrcient .ondition of the finiteness of zero-set
-=Z(P)'.ConsiderP as a po\'nomial endornorphism of a fbur-dimersional Eujcidean space and::note by-Iits Jacobian matrix. As is wef known. its determinantj eacobian of p) is a:'rnnegative polynomial [2,3] By inverse frmction flreore,r, if qo is a i*t orp andi(q, ) * 0,'-r:n P is a local di0leomorphism at qo and in parlicular qo is an isoiated .*t orP Thls i l'; does'':t ranish on the zero-set ofP rve ial be srue ftat the"zero-set consists of isolated points.

Notice that the endomorphism defined by p is proper i.e., fu[-prei,rage of any compact
':: is compact [3]. Thus the set ofisolated ,i.oe, .arrot be infinite because otherwise thev
, : ruld accumulate at infinio, which wourd contradict propemess 

"f 
p. ,;*1t 

-A; 
;;;:: :solated roots cannot exceedr. Indeed, a. *urp.oord in 121 ana [3] the (grobal) topologi-

; '. degree of P is equal to n. R.ecafling the definition of rnapping ddd;l; iJ""s orlacouli,:, one gets tirat, if all roots are simple then each of themli .*t-a with plus sign (sinceT
';-:lonnegative werywhere) so the amount of such zeroes exactly coincides with the vaiue:: Je-aree equal to r. If some of isolated roots are multiple, this means that some of simple::':'s hale collided at these points so the total amount of isolated roots cannot exceed r.- 'i::3b3", 0. 165, )&3, 2002
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Tlius if we have somehow established that/ does not vanish on Z, we may L'e sure that

Z is finite. Notice that this is actlally a question about existence qf common real roots of five

poll,nomials on R4, four of thern Pt, P2, P, P* being comporents of P and tire frftlt is7.

if.iutt no* that there exists the so-calied signature technique'of counting real roots [4]

wlich enables one to effectilely solve such problems. Under an effective solution as usual

it is understood that the ansr'rei is obtained using a finite number of algebraic and logical

operations over the coefficients of given polynornials (in our case, over coefficients ofP) [4].

Actually, one can give an erplicit fornrula for the nuruber of real solutions of such a system.

To this end introduce five auxiliary polynomials of five variable-s
' " 

l;A;, - ;Jt;'14;1-,*,',;ri, i= 1,2,3,4 - H r = ? 
(h,)2' 2.@ )2"*4. 

^ -sAs was iror.d in [ai, pol.vnorniat a"'nas att isolated critical point at the origin of R' so

that the local topologicai degiee ofits giadient at the origin. dego grad I1", is well-defined'

Theorem i. tTirgogria Hr: I then the zero-set of P is finite.This conditiort nmy be

effectively vnri1id uiig a finiie number of algebraic antl logical operations over coef-

ficients of P.

This follows from the explicit forrnirla for the cardinality i,/ of the common real roots in

Rl given in Theorem 8.2 of [4] rvhich, for n=4, reads

ZlvI = l'degrgrad Hr. 1

The cornpactness condition needed in that theorem is fulfilled due to the properness of
p. We would iike to add tliat nowadays there already exist computer algorithms for calculat-

ing tlie local topological degree [5] so tliis condition cal be easily verified using a computer.

3. Let us nov ilvestigate the structure of zero-set rvhen it is infinite. Sorne properties

More precisely, we use the Euler charm
algebraic subset which plays considerable rd
This becomes possible since in our case tle a
elgebraic set. In order to show that. notice rl
omplex space. P dehnes a polynornial endom
Thus the zero-set Z canbe represented as lh
pearlngas the cbmponents of the comple-xifc

Notice that in the case of a srnooth subs
reduces to the usual Euler characteristic ofthi
gsneric point. In our situation this is the us
mdtiplicity of a two-sphere appearing as a oo

For example, if all isolated roots and nro-d
qlicity one) then the value of this Euler char
pomts plus two lirnes lhe nurnbgr of trvo_soh
be mult ipl ied b1. t he correspo,fAi ng nrul upiio
aparently coincides with the algebraic degrer

Notice now that from the prope.ness d
omplexification is a flat holomorphic mapflq
r fimdamental theorern of GrothenOiect< ttrii im

of such zero-sets 'ivere established in [3], in particular it rvas shorvn that such

enon takes place for polynornials rvith real coefftcients tvhich possess non-real roots. In

that case pich nonreal ioot gave rise to a two-dimensional sphere of roots dlle to the

:ristic of the structural sheaf of pre_irrage p
Gount that in our case this is the usual Erilerc
frat it is equal to n for every regular value r.o

Theorem 3. The Euler characteristic o1
p$nonial is equal to its algebraic clegree.

- - 
Generically the roots have multipli"in om-

ixilated roots plus two times tlie nurnber of ryfoocr it is possible to show that, if all coeffci
nfralgebra of H tlien all roots are isolated- lie il.Tol to r. which is apparently a refonnulationo

It is instructive to lnve a closer look ailhis
rtal numbers. Ifsuch a p has z real roots thea

process of ,,cloaning" roots by means of conjugation by purely imaginary quaternlons

unit lengh I3l. It i straightforward to check that each pair ofcornplex-conjugate ror

producei a whole two-dirnensional sphere of quaternionic roots of P.

More precisely, it is easy to see that every complex mnnber 7 = 6+ ib is

conjugate" to its cornplex conjugate a - ib. Tirr- s in such case the zero-set consists

isolated points and several t*oott two-dimensional spheres. In other words, the zero'

consists of several smooth submanifolds and this can be proved in general by a

argument using properties ofjacobian matrix,-I.
Indeed. uy a afect inspection ofsuch rnatrices it is possible to prove that their

a smooth' two-dimensional surface.

Theorem 2. Each,componeni ofthe zero-set ofa standard,quaternionic polynom

tdlial If among the roots appear some compl
&$-e. each complex conjugate pair generae
*dmning" of roots by conjugations lsei 1:1y. "fbe atactly such as predicted by theorem j.

{. We would like to conclude by explaining h
3-nithout referring to general resulrc^of Agt

tralizer (commutaxt) C(p) of polynomial p i
) of all of its coefficients. As is easv to see. C

attherootsofP"unonlytakethreevalues: 0,2,4.Thefirstoneisexcludedforanon-
polynomial P, while the third one corresponds to an isolated root. In rernaining case v

)t i = Z,by implicit ftiirction theorem one concludes that the zero-set near such a point tive approach to criterion offiniteness der

is a compact smootlt submanifold of diruensiott zero or hrto'

Actually, one can show that the zero-set is always a union of a finite set of points a

several smooth copies of trvo-dimensional sphere S. ttris suggests that in this case o

should find a way of properly counting eomponents of the zero-set and this would lead

a generalization lf tne Fundimentat Theorern of Algebra. It turns out that this can be do

The latter case juSt means that ali coefficie
[' thi-s case using the signature technique fi
set of roots is finite if and only if all roots a

; signature formulae forlhe topological deg
' the aforementioned anitysijandr.. ttai

using an appropriate version ofthe concept ofEuler characteristic'

rsrJele auu rw ry
If dim C(P) = 2, then it is easy to see tlEr a
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l,lore precisell', r've use 1he Eulcr clmracteristic of the struclural sheaf of a coruplex

_ -.rreic subset rvhich plays considerable role in many topics ofalgebraic gcornetry [6].- . bccotnes possible since in our case the zero-set Z has a nalural siructure of a.o*ptri
-.:reic set. In order to shoty that, notice thal by interpreting I{ as a trvo-dimensional- :lcr space, P defites a poilrtomial endornorphisrn ol (- eaiied coniplexihcation of F.
": iire zero-setZ can be represented as the zero-set of trvo complex pcl.vnomials ap-,. : :rg as the components of the conplexification of p.
\otice that in the case of a stnooth subset, ihe sircaf"-tlieoreiicai Euler characteristic

- * -:es to tlte usual Euler charactcristic of this subsct rn,.dtiplier.l bv the multiplicity of its
::tc point. In our situation this is the usual rnultiplicity oI'ar isalated root or the
.rpIicit1' of a trvo-sphere appeariug as a colnponeil of Z.
- or esarnple. if all isolatecl roots and tlvo-dirnensional cornponents are simple (of mgl-
:it! one) then the value of 1lds Euler characteristic is equal to the number cf isi:lated
:s plus tu'o titnes tlte numbgr of trvo-spheres. In gcneral case each surnmarid sirould

' --rltiplied b.v the corresponhing rnultiplicitr'. If ali roors are sirnpic;rnd isolatcd tliis
,:.ntlv coincides rvith the aigebraic degree rr.
\otice norv that from the properncss of sl.andard poi-i,irornials ii lollows thaL ils

- :lesiftcation is a flat holomorphic rnapping in thc sense of algebraic geolnctn, t6]. B"v

- 
' 
---laittental thcoretn of Grothendieck this iurplies tiial" Ieir er,.en, ile FI. tilc Euler eharae-

-r'perlless of -' .:i: of the structural sheaf 
"i 

p.;-il; l,ta;i ;ilr';,;i,;;;'io1."inu*g i,rto
' Lor calculat- - - llrnt thal in our case this is thc usual Euler characteristic conntecl ti,ith nir,rltiplieitv anri
.-: i] colllputer' :: is equal to n for eve{,reguiar yaluc l,of /)" q,e arriye to the inain rcsuit
:r': properties Theorem 3. The Eulir charocteristic o./'the zero-\e! of a ,stanrlcrtl qtiateritianir:
i.rJh plrcnom- tttrictl is equal to its algebroic tlegree.
-:ca1 roots' In Generically ihe roots harc rnuitiplicity one. alcl tilis resLrlts irnplies il*it thc *-r-un-ircr ci,
:ls due to thc '. ,--:d roots plus fi.vo times the irurnber of spheres is eclunl to the algcbraie rlcgree. Intclr.
:.-rrternionsof ': rt is possible to shorv flmt. if all coellrcienls olP lic in tiie same m.o-etir*ctsi*n:il
;lllrtgate roots , - --:cbra of H then all roots are isolated, lie in iire saine subalgebra. a*d tLli:ir:rniouni ls. -- to ,re. rvhich is apparently a refonnuiatiou of the Fuir.c{amental 'Iheorell oi',{lg,;bra Iil.
r. ..quaternion_ : rs instructive to lnve a closer iook at this rcsult in the case rvheir ai1 eoeifliienls alr
.:i consists oI "- . :lurlbers. If suclt a P ltas n real roots then there arc no other roots and thc res*lt is
:. tile zero-set - - Il among the roots appear some cornpler con-jugate pairs then" as \\ffs explaineti
:-rl bY a direct :. each complex conjugate pirir geteratcs a trio-diulensiolal sphere of'rcots via

' - ':1ing"' of rools by conjugaticns (see [3]). Apparcntlr.tile arnount of ti.'o-spheres rl,ili
.rt their ranks '- -'.rcth'such as predicted by Theorem J.

: :.,i it non-zerO - Wc I'ould like to conclude bv explaining horv one can r:btai1 a direct proof of 'Ileorcnr
:..lng caseu4rett- . lrout referring to general results of algebraic geo1itctn,. To this *nri on* can use ar-.ucli a point is -- ttiYe approach to criterion of finiteness developed b.v i{Topuridze i3l. Reciill L1nt lhe

"'1izer (cormnulant) C(P) of polynonrial P is defined as 1he intersectron cf centralizers
:c: polynoniia _".f all of its coeltrcients. As is eaqv to sec, C-(r)) can hltrre dirnensicrn 1. 2, or 4 [31.

- he latter case just llleans that all coefficiei'rts rsf [' arc reatr anci one can srLccessfully
,:i cfpoints arrc' * this sn5s using the signature techniquc for conntitg rerai rocts [5]. it follorvs that
::rihiscaseoil(' - >:tofrootsisfifliteifandonlyifallrootsarerealandlliiscanbeeffectivelychecked
:s iiouldleadtt-, -: signatnreforrnulaeforthe topologicaldegree [-5].Ifthere arenon-realrr:c,ts. o,eca*
:hrs ean bc donr-: : -" llte aforelnentioned anaiysis and see l.hai Tirioiem 3 holds in tleis case.

-i dim C(P) = 2, then it is easy to see tirat ali eoefiiciruts a. helong to the sarne lrvo-
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dimensional subalgebra isomorphic to C. By the Fundamental Theorem of Algebra, there
exist n roots (counted with multiplicites) of P belonging to the same subalgebra. Using the
fact that Jacobian ofP is nonnegative one can show that there can be no isolated roots
outside this subalgebra (otherwise the value of deg P would exceed n). Some pairs of
roots can again generate two-dimensional spheres by ,,cloaning" but it is not difficult to
veri$ that the amount of those spheres is exactly such as stated in Theorem 3. So the
theorem remains true also in this case.

The most troublesome is the case when dim C(P) = 1. As was explained in [3] one can
use homotopies preserving dim C(P) to reduce the rvhole matter to the case of trinomials,

Georgian Academy of Sciences
A.Razmadze Matherrratical Institute

REFERENCES

l. S.Lang. Algebra. N.Y, 1965.
2. S.Eilenberg, I.Niven. Bull. Amer. Math. Soc. 28, 1942, 123-130.
3. N.Tbpuridze. Bull. Georgiari Acad. Sci. 164,2, 2001,228-231.
4. G.Khimshiashvili. Proc. A.Razmadze Math. Inst. 125, 2001, l-121.
5. A.Lecki, Z.Szafraniec. Banach Center Publ. 35, 1996,73-83.
6. P.Grffiths, J.Harris, Principles of algebraic geometry. N.Y., 1982.

5. bo8to$3oqo

.:i:50l30gfab a3060C6it:I: _ :_:
BITLETIN OF THE GEORGL{\ AC.!E

7 T*)--.;

Lniqueness for Two-Dimersicna- D
ofthePcicu

Presented by Corr. lr{ember of t( :_:x,rc

l\en

Jlr(v)p(r,ld =
oor

So it remains to verifu Theorem 3 for an arbitrary trinomial, which can be done by a direcl .t
application of signature formulae [5] . Details of the argrrment will be published elsewher* 

- 
-li:VYCT' Inverse problems of the porcr

These results may be generalized in several directions of which we ;;;;;;ly ,; S, dlt"lt.. The uniqueness theorem-r rn
First, one can analogously treat standard polynomials over an arUitrary frnii.-Af*Lrirf"rJ Dmderies of the domains and densities of potr
associative algebra. Effective criteria for the finiteness of the zero-set are again available Lc1. rords: inverse problems. potenit,. ._B:
using signature technique. It would be interesting to find some geometric interpretatioru
in thi caie of a Clifford algebra [l]. -: the in'erse problems of the porenreJ u

Another natural possibility iito consider artitrary noncommutative polynomials whicl kq' of a body (or one of them) r-flthe o:lx ;
are by definition the finite surns of finite ,,words" of the form aqbqcq.....It is known 65 m ;nncipal question in the studl' of 1he=e ':
such polynomials need not always have a root in H, which may be observed already 1s] LilL
linearequationsoftheformaq+bq=c. Atthesametime,ifsuchapolynomialcontain .._d. A b€.some bounded domain m R:.,,onlyonewordofthemaximallength,thenithasaquaternionicroot[1].rnsuchcaseoilg,:"a-.lreR.:tx_yt<e] is an open balj:r*rcan again apply the result of Grothendieck and obtain the constanry of the Euler charac
teristic ofthe structural sheafofzero-set. * I . ,

However,thisresultislessillurninatingbecauseitisnotaprioriknownwhatcanb 
{ =' =ttlt-/ stands for the fuoc-l=E

flre components of zero-set in this case so it is not clear if one can obtain a visul
statement like Theorem 3 in this case. Correspondingly, it would O. t".I-tllTTllr._1 , *.- . rF 

IK1,y)p(y)dSy is a singJe te;.:r p
obtain some general conclusions about the possible structure of zero-set of noncommutativ ie
quaternionic polynornials.

-: fJ- and t\are two bounded domri-< .r l

crr*sled component of R2 \DFE: r:r. j
Foraulation of the problem. Let J?.. J2 m I

5r.n:ac,n defined on A!2rwOd)r. Moreor er, l:;
vae,(/txx) = v*, (u I x t f;.r a-

tr rhis condition we have to defin: re loc

aJ())3aJ(5(I
I Ll pro\.e the uniqueness theorerns $ e .s:iec!l
I rrams l. Let !), and tZ, be tv.o l:.r,.:e i

;fun:::on on &Zrw1esuch that l,.orlulx,=;-o3 3l$n ln5 o cn53q J cn qo6 c.r I m,> ggl6g dob RDmAR,)

6S ogOn. sp$'96 oqos,j3sgX66 o c't 63qo Jc.r qo 6c,r 3 ob g3b3or; bo8d;3qob goJr
qro5o36o 1663j69do. 6r6droq, q.:Qg3o$dtqo,s, 6co0 gXb3ar bo86;3qob 3og
doob 8rb.>bosmgts6qo 3pr6ob Jroqo6m8ob ;q5XM3q b;drobbb, 16rg g3$qffib.:g
6tsCoob dodoocnsqo' or3o6X8ob g$bro5lq66sb.
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