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the ABSTRACT. We present an explicit formula for the number of complex points

177 on the graph of a polynomial endomerphism of the plane. We also show that one can
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compute the number of elliptic complex points and explain relation of our results
to Bishop’s problem, -
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1. We deal with certain aspects of the so-called Bishop’s problem concerned with the
existence of analylic discs attached (o the graph of a complex valued function in the plane
[1]. As was shown by Bishop, in many cases a positive solution to this problem follows
from the existence of points where the tangent plane (o graph is a complex line in C?. Such
points are called complex points of a given function {and its graph) and they can be of the
two essentially different types according to the local geometric properties of the graph
near the point in question. Thus it is very desirable to obtain detailed information about
the existence and amount of the complex poinis of both types and this is exactly the
problem which we are going to attack. In this note we give an effective solution of the
latter problem in the case when the real and imaginary parts of the given function are (real)
polynomials of the real and imaginary parts of the argument, Qbviously the same assump-
tion may be expressed by saying that we arc given a polynomial endomorphism of the
plane which will be called a planar endomorphism {plend).

Following the general strategy of singularity theory [2] it is reasonable to consider
first ., generic™ plends which satisfy certain jet transversality conditions. For our purposes
it is appropriate to require that a plend is proper and the Gauss mapping of its graph is
transversal to the subset of complex lines G, in the real Grassmanian Gr[2.4] (cf. [3]. [4).
We call them ,perfect plends” (by analogy with ..excellent maps” of H. Whitney [5]).

It is well known that such plends are indeed generic in the standard sense t1]; ie., they
form an open dense subset in the space of all plends [2], [3]. In particular any plend can
oe approximated by arbitrarily close perfect ones (so-called perfect perturbations). From
our transversality condition by dimension reasons it follows that a perfect plend can only
have a finite number of complex points. A general . deformation paradigm” of singularity
theory suggests then that important information on an arbitrary plend can be obtained by
counting complex points of its sufficiently smail perfect perturbations.

2. In line with that we concentrate on counting complex points of a perfect plend. Let
F'=(/g): R* - R? be a perfect endomorphism defined by real polynomials flx.), g(x.).
Denote by G its graph in R?xR? which is identified with €2 in the usual way. Recall that
a point peR* is called a complex point of F (and Gp) if the tangent plane TPG'F isa complex
line in CZ.
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Lemma 1. 4 point p is a complex point of plend F if and only if ¢ JF(p) 9.

In other words. the set of complex points C{F) coincides with the zero set of plend £,
which suggests that one can calculate the number of complex points c(F) as the cardinality of
algebraic subset {#, =0}, which can be donc in an algorithmic way using results of [6]. In order
to realize that, it is necessary to verify that F, satisfies conditions of Theorem 8.2 of [6].

Lemma 2. If F is a perfect plend then F, is a proper planar endomorphism.

Indeed, the homogeneous forms of highest degree of the components of 7, are easily
scen 1o have no non-trivial common zeroes. which implies that |, is growing at infinity,
hence 7, is proper. We can now use Theorem 8.2 of |6}, which lcads to an explicit
algorithm for computing ¢(F). Suppose that the maximum of algebraic degrees of fand g
15 cqual to . Introduce auxiliary polynomials
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Recall that the local topological degree deg G of a plend ( is defined at any point
p which is isolated in the full preimage of its 1mage [6]. Our [irst main result is an explicit
formmla for o(F).

Theorem 1. Polynomial If has an isolated critical point at the origin of R® and

: c(f) = 1/2 (1 - deg, grad /1),
where grad /7 denotes the gradicnt mapping of polynomial .

Corollary 1. The number of complex points of a perfect planar endomorphism
can be effectively computed using a finite number of algebraic and logical operations
over its coefficients.

Both these results follow from the discussion in Chapter 8 of |6] so we omit the
details. It may be added that there already exist computer algorithms for calculation of the
local topological degree 8] so our theorem cnables one to compute the number of com-
plex points in many concrele cases.

3. Our next task is to obtain more detailed information about the structure of complex
points of & given perfect plend . By a fundamental result of E Bishop. near a generic
complex point there cxits a germ of biholomorphism of C* such that. up to infinitesimals
of the third order. the graph G of I lies in the three-dimensional subspace {1m z, =0}
and coincides with the set {Re z,= h(xy)} [1]. In such a representation. there can happen
two cssentially difTerent snuallons - either the graph of F lics on one side of the tangent
plane (elliptic case) or the tangent planc intersects any arbitrarily small part of the graph
near this point (lyperbolic case). In the first case the point is called an clliptic complex
point while in the second casc it is called a hyperbolic complex point.

As was shown by E Bishop in the samc paper [1), near each clliptic complex point of
# there exists a family of analytic discs attached to the graph of /7. Thus the Bishop’s
problem is automatically solved if one is able to guarantee existence of elliptic complex
points (such stralegy was applicd in [3.4]). So our next goal becomes to compute the
number e(#) of elliptic complex points of 7. |

To this cnd we usc results of [6] on counting points of finite semi-algebraic subsets. This
becomes possible because the set of elliptic complex points C(F) of a perfect plend
appears lo be a semi-algebraic subset of the planc. The simplest way to show that, is to
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sopeal to the notion of Gaussian curvature of a two-surface [7]. We denole by K Hp) the
aussian curvature at point p of the graph of a perfect plend /7.

Lemma 3. 4 complex point p is an elliptic complex point if and oniy if  the
Caussian curvature K p) is positive.

This follows from the aforementioned representation of the graph (i, as a hypersurface
i three-dimensional Euclidean space. because in thai representation it becomes obvious that
.47 1s positive exactly in the case when the graph lics on one side of the tangent planc at p.

Proposition 2. The set of elliptic complex points is a semi-algebraic subser of the
piane. : .
From preceding remarks it is clear that C (/) = {£, =0, K, w0} and the result follows
if we show that the second condition can be expressed as a polynomial incquality. in order
to show that, we refer to some well-known results about the Gaussian curvature of a param-
cienzed two-dimensional surface [7]. First of all. from the general formula for the Gaussian
curvature in terms of Riemann tensor |7, it follows that in our case the sign of & s coincides
with the sign of the component R, of the Ricmann tensor R of G,. The component & .,
can be computed by simple explicit formulae which show that, for a two-dimensional sur-
face given by a polynomial parametrization, it is a polynomial function of parameters. In our
casc this means that R, , is a polynomial in x.y so the condition of positivity of K is indecd
a polynomial inequality. which shows that C () 1s indecd a semi-algebraic subset.

Now we can apply results of Chapter 9 of {7} and obtain the desired conclusion about
the effective computability of e(J7).

Theorem 2. The number of elliptic complex points of a perfect plend can be
effectively computed using a finite number of algebraic and logicai operations on iy
coefficients.

Actually. this number can be expressed through signatures of explicitly constructible
quadratic forms on the factor-algebra of polynomial algebra over the ideal generaied by
components ol F, (cf. [6]). In concrete cases necessary computations can be done using
the program from [8].

4. In conclusion we show that some information about the complex points of small
perfect deformations of an arbitrary proper plend may be obtained in a purely algebraic
way from its cocfficients. To this end we use a version of the Maslov index which was
introduced in [3. 4]. In our sciting it is convenient to dcfine.the Masloy index of a proper
plend F¥ in geometric way in the spirit of [3. 4]. For a proper plend, the number of complex
points is always finite so its graph is a totally real surface .at infinity”, ie., outside
sufficiently big discs. Take a circle S of sufficicntly big radius and consider its image
G(S) in Gr(2,4) under the Gauss map G of the graph G Obviously G(S) is an oriented
one-dimensional submanifold which does not intersect the oriented two-dimensional
submanifold of complex lines G,. and the sum of dimensions of these two oriented
submanifolds 1s by one less than the dimension of the ambient manifold (31(2.4) so one
can define the linking number of these two submanifolds.,

Actually. in order that complex points are counted properly it is necessary 10 consider
both connected components ;,. and G of (7. consisting of complex lines with their natural
orientation,and with the opposite orientation respeciively. Then the Masle: indes - (5. 18
defined as the linking number 7.(G(S). & (7 ), where -(;_denotes the componer . take:
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with the opposite orientation (cf. [3. 4]). It is easy to verify that it docs not depend on a
(sufficiently big) circle S and is invariant under homotopies of proper plends. If the complex
points are generic then the Maslov index can be computed by properly counting complex
points of various types, in particular formulae from [3] and [4] can be casily extended 1o this
situation. Since Maslov index is hoinotopy invariant this means that it gives some informa-
tion about complex points of small perfect perturbations. Thus our next result can be con-
sidered as a first step towards counting complex points of perfect perturbations.

Theorem 3. The Maslov index of a sufficiently small perfect periurbations of a
proper plend F can be computed as the local topological degree of an explicitly con-
structible planar endomorphisai.

Corollary 2. The Maslov index is equal to the signature of the so-called Gorenstein
quadratic form on the local algebra of an explicitly constructible polyronmial endo-
merphism.

Both these statements follow from the method of computing Maslov index in terms
of the local topological degree developed in [3. 4] and from the well-known algebraic
formula for the local topological degree (see. e.g.. [6]. Chapter 3).

Using cstimates for the topological degree of homogeneous polynomial
endomrophisims il is now casy to give an exact estimate for the possible values of Maslov
index of a planar endomorphism with fixed algebraic degrees of its components (cf. |6].
Chapter 6). These estimates and similar estimates for the number of complex points and
clliptic complex points will be presented elsewhere.
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1. We use some notations from momos
elements of n (n = 2)-dimensional Ench
X= (%), Xy ), ¥V = (Vs Vaoooos ) -

M =420}, B=4l.i5 i
|Bl=Card B, T =

If x € R”, then x, denotes the point. &ve
B coingides with corresponding coordimanss
(x,,=x, x5 20)

2. We consider the functions 75" — =
[ e L(T"). We denote

F(x)y=Fix. f)=FlxjJ

where dsp =ds; ds;, ...ds; . We assume @

each variable. If B, = {i }. then we assume

_ L\Bl(F,r,sBi}= Fix+i

When |Bl 2 2, then by A (Fxs,) we &=
operation fixed in (1) to all indices o =
depend on the sequence of operations L

B Sy

3. In the paper the best possible comd
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