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ABSTRACT. We show that each Seifert fibration of an orientable closed three-dimensional manifold has an
intrinsic complex structureinduced from theloop space of manifold. It isalso shown that thenatural mapping from
theleaf space of Seifert fibration to the loop space of manifold ismeromor phic. © 2007 Bull. Georg. Natl. Acad. Sci.
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1. Theaim of this note isto establish an intrinsic relation between the geometry of three-dimensional manifolds
(3-folds) and the theory of pseudoholomorphic curvesin almost complex manifolds. Since the pioneering paper of
M.Gromov [1], pseudo-holomorphic curves gradually became a standard tool of symplectic geometry and complex
analysis (see, e.g, [2]). As is well known one can define such objects in any manifold endowed with an almost
complex structure. Recently, someinteresting examples of almost complex structures on loop spaces of 3-foldswere
constructed (see [3, 4]) which appeared useful in topology and differential geometry. This suggested that it might
also be useful to consider pseudo-holomorphic curves in such loop spaces and a number of papers on this topic
appeared quite recently [5-7].

In particular, it was shown in[7] that pseudohol omorphic curvesinloop spaces of 3-foldslocally look like solid tori
foliated by closed curves and if a pseudoholomorphic curve is stable then it defines a Seifert fibration of the target
manifold. This established a natural link between pseudoholomorphic curvesin loop spaces and the theory of Seifert
fibrations[8]. In the present note we elaborate upon some results of [ 7] by showing that each Seifert fibration generates
ameromorphic curvein the loop space of manifold considered.

2. Werecall first afew concepts of complex analysis. Let M be asmooth (infinitely differentiable) manifold with
tangent bundle TM. An almost complex structure on M is defined by alinear endomorphism Jon TM such that P = -I,
where| denotestheidentity. Noticethat this definition isalso applicablein the case of aninfinite dimensional manifold
M modelled on aBanach or Frechet space[2]. If M isacomplex manifold then itstangent pl anesT M are complex vector
spaces so such an endomorphism J can be defined as multiplication by i = J-1 ineach tangent plane. If an amost
complex structure arisesin such way from acomplex manifold, it iscalled integrable. A criterion of integrability isgiven
by the famous Newlander-Nirenberg theorem [9].

Recall that aloop in amanifold M is defined as a continuous mapping g of the unit circle T into M. Thetotality of
al loopsin M istraditionally denoted AM. Wewill only work with smooth loops. Loop spaceswe shall be dealing with,
have earlier been considered by J.-L.Brylinski [3] and L.Lempert [4]. Recdll that theimmersed loop space BX of Riemannian
3-fold X has a natural almost complex structure Jintroduced by J.-L.Brylinski [3]. The main objects of our study are
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hol omorphic maps of the unit disc D into the almost complex manifold (BX,J) which iscalled the Brylinski |oop space of
X [4]. We briefly recall the basic constructionfrom [3].

Let X be athree-dimensional oriented smooth manifold endowed with Riemannian structure. Denote by M the
totality of smooth immersed knotsin X [3, 4]. Asis explained in [3], M can be endowed with a natural almost
complex structure which is non-integrable [4]. In order to make our exposition self-contained we briefly recall the
basic definition from [3] which statesthat M consists of equival ence classes of smooth immersions of thecircle St
into X. Two immersions are called equivalent if one can be obtained from another by composing with an orientation
preserving diffeomorphism of St. Equivalence class of animmersion f isdenoted by [f]. Elements of M are called
immersed loops.

The standard construction of topology on mapping spaces applied to M turns it into an infinite dimensional
manifold modelled on Frechet space C~(St, R?) [3]. Thetangent planeto M at point [f] isnaturally identified with
the space of smooth sections of the normal bundle N to C = f(S) in X. A natural almost complex structure on X
arises asfollows. One defines an endomorphism Jon T_M by describing its action on anormal vector field v along
C. Namely, Jv = w if at each point pe C vectorsv(p) and w(p) are orthogonal, have the same length, and the triple
(t(p),v(p),w(p)) is positively oriented, where t(p) is the unit vector in the direction of tangent vector to C (this
directioniswell-defined since we only used orientation preserving diffeomorphismsin the definition of equivalence
classes). It is geometrically obvious that = -1 and it is easy to see that this is a smooth endomorphism of the
tangent bundle.

So we obtain an almost complex structure on M. M with this almost complex strucutreis called the Brylinski loop
space of X and denoted BX [4]. Thusit becomes possible to speak of pseudoholomorpic curvesin M. For brevity and
convenience, we call them loopy holomorphic curves (LHC). Asusual, holomorphicity of adifferentiable map between
two amost complex manifoldsmeansthat itsdifferential intertwinesthe operators of almost complex structures considered
[1]. We often omit the prefix “ pseudo” and speak simply of holomorphic maps and curves when this cannot lead to a
misunderstanding.

Basic existence theorems for loopy holomorphic curves were proved in [4, 7]. A closer look at the geometry and
topol ogy of their imagesrevealsthat they typically look like solid tori foliated by closed curves, which exhibits obvious
analogy with Seifert fibrations [7]. We are basically interested in studying the images of (the germs of) LHC and
introduce some relevant concepts.

Definition 1. A holomorphic doughnut in M is defined as an image of a (pseudo)holomorphic map F: D — BM,
where D isasmooth simply connected domainin C. For agivenimmersed loop [f] in BM, we say that Fisaholomorphic
doughnut through [f] if 0e D and[F(0)] =[f]. Loop [f] iscalled the core of F.

Intuitively, one can think of aholomorphic doughnut asafamily of immersed loops holomorphically depending on
a complex parameter. Generically such afamily constitutes a foliated solid torusin X which is a standard pattern in
Seifert fibrations theory [8]. In general, solid tori play a big role in three-dimensional geometry and topology. In
particular, many 3-folds can be obtained by gluing solid tori along their boundaries[9]. For example, itiswell known that
a3-sphere S is diffeomorphic to the union of two solid tori T, T, glued along their boundaries by a diffeomorphism
whichidentifiesmeridiansof T, with parallelsof T,. Aswasshownin[4, 5], theinverseto Hopf fibrationH: S* — S*is
anLHCinBS®. In other words, the arising natural map H*: P — BS® is pseudoholomorphic and eachof T , T, isaloopy
analytic disc. Here P isthe Riemann sphere with the canonical complex structure.

3. Our nearest aimisto show that aLHC locally lookslike afoliated solid torus. Thefollowing result showsthat all
solid tori foliated by closed curves appear in thisway up to leafwise diffeomorphism. Recall that derivative F'(0) of a
loopy holomorphic discisasection of the pull-back on the normal vector bundieN,,K, K =[F(0)], and it can be thought
of asanormal vector field along [F(0)]. If such avector field is nowhere vanishing then its winding number indv along
[F(0)] iswell-defined [5].

Theorem 1. Let - S — X be a real-analytic embedded knot in a 3-fold X and v be a nowhere vanishing real
analytic section of the pull-back bundle f*(N, (f(S'))) . Then there exists a loopy holomorphic disc F: D — BX such
that F(0) = f(S'), F'(0) = v, the loops [F(s)], s € D, do not intersect, and their union [F] = U {[F(s)], s € D} is
diffeomorphic to a solid torus. Moreover, the images [F(s)], s € D define an analytic foliation of [F], and the core
multiplicity of [F] is equal to indv.
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Theresult follows using an explicit geometric construction of aspecial tubular neighbourhood of K =f(St) suggested
in[7].

Infact, thistheorem is also applicableto LHC which arise from multiple loopslike z — zP. Theresulting loopy
holomorphic curveisap times covered solid torus foliated by toric (p,q)-curves, where q is the winding number
of v along the core. Strictly speaking, multiple loops are not immersed and do not belong to the Brylinski loop
space as defined in [3]. However it is not difficult to extend the setting so that becomes applicable for multiple
loopsaswell.

4. Suppose now we are given a Seifert fibration S of a3-fold X asabove and denote by L the leaf space of S[g]. It
iswell knownthat L isareal two-dimensional or bifold and locally lookslike afactor of unit disc with respect to cyclic
group. Moreover, the set E of exceptional (singular) fibersisfinite. ThusL* =L —E isan open two-dimensional surface.
It is well known that such a surface can be endowed with a complex structure and all those complex structures are
equivalent. Notice that we also have anatural map of L into BX.

Theorem 2. With the above assumptions the natural map F:L — BX is meromorphic and all of its singular points
belong to L*.

This means that the collection of regular fibres of Seifert fibration possesses an intrinsic complex structure. The
singularities at points of E areindeed essential and so one cannot extend F to the whole of L in aholomorphic way. An
interesting problem isto characterize those Seifert fibrations for which the mapping constrcuted above is holomorphic.
Taking into account that Seifert fibrations are stable in the sense of foliation theory [8], one might hope to establish
certain stability properties of the corresponding loopy holomorphic curves using the standard methods of singularity
theory. Actually, in the next section we establish aresult which may be considered as a sort of converse.

5. The general definition of stable mapping used in singularity theory [9], in our setting sounds asfollows. First of
all, theset of all LHC in agiven 3-fold hasanatural topology making it a Frechet manifold [3]. A holomorphic curve F:
Y — BX iscaled stableif, for any other LHC G sufficiently closeto F in Frechet topol ogy, there exist diffeomorphisms
SandT of Y and X, respectively, such that F = TFS, in other words, G isright-left equivalent to F (cf. [9]).

Theorem 3. Let X be an orientable Riemannian 3-fold, Y a compact Riemann surface, and F: Y — BX a stable
loopy holomorphic curve. Then the velocity vector fields F’(x) are nowhere vanishing for all x € X, images of loops
[F()], y € Y are nonintersecting, and the collection of loops [F(v)], y € Y, defines a Seifert fibration of X.

The proof of Theorem 3 is rather lengthy but the crucial points are quite natural and easy to describe. First, one
shows that intersecting loops cannot appear in a stabl e situation because any intersection can be eliminated by asmall
holomorphic perturbation. Next, one proves that if a velocity vector field vanishes at the certain point, then this
situation can be also eliminated by a small holomorphic perturbation. It remainsto show that the loops [F(y)] behave
likeleavesof afoliation.

In conclusion we mention that most of the concepts and problems discussed above are meaningful for Seifert
fibrations of orientable manifolds of an arbitrary odd dimension. An intriguing problem is to obtain analogs of our
resultsfor holomorphic mappings of higher-dimensional complex manifoldsinto loop spaces.

Summing up, the relation between Seifert fibrations and holomorphic curves in loop spaces established above
suggests a number of problems which are apparently worthy of further investigation.
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