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ABSTRACT. We present several results on the location and structure of the zero-set of a quaternionic polyno-
mial. Our main result provides an effectively verifiable criterion of stability of such polynomials. We also explain
how one can find the number of components of the zero-set having negative real parts. © 2007 Bull. Georg. Natl. Acad.
Sci.
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1. We deal with the zero-sets of certain polynomials of one variable over the algebra of quaternions H [1].
Consider a so-called unilateral quaternionic polynomial of algebraic degree n having the form

P(q) = an q
n + an–1 q

n–1 + … + a1q + a0, a0, ... , an ∈H.

Such polynomials naturally form a left H-module. It is also useful to consider products of such polynomials
assuming that the variable q commutes with coefficients. If the coefficient by monomial of the highest degree is equal
to one then P is called a monic (unilateral) quaternionic polynomial of degree n.

Obviously, while investigating the structure of the zero-set Z(P) of P, without reall loss of generality one can
assume that P is monic and we will do so in the sequel.

 As was proved by S.Eilenberg and I .Niven [2], such a polynomial always has a root in H (see also [3], [4]). At
the same time, it is well known that the zero-set of such a polynomial can be infinite. For example, the zero-set of
polynomial P(q) = q2 + 1 consists of all purely imaginary quaternions of modulus one which form a unit two-
dimensional sphere in the hyperplane H0 = {Re q = 0}. It is also easy to produce examples like q3 – q2 + q – 1 =
(q– 1)(q2 + 1) where the zero-set contains isolated points as well as infinite components.

Recently, a comprehensive description of zero-sets of unilateral quaternionic polynomials was achieved in [3], [4],
[5]. In particular, it was proved in [3], [4] that the zero-set Z(P)of such a polynomial P consists of points and two-
dimensional metric spheres. Moreover, the results of [3] and [5] imply that the Euler characteristic of the structural
sheaf of the zero-set is equal to the algebraic degree of polynomial. In other words, if one takes into account the
multiplicities of components of the zero-set, then the number of points plus the doubled number of spheres is equal
to n [5].

The latter result gives a natural analog of the “Fundamental Theorem of Algebra” for quaternionic polynomials.
It should be added that the methods of [4] and [5] enable one to effectively calculate the number of spherical
components of Z(P) for any concrete polynomial P. Since the topological Euler characteristic of Z(P) can be also
calculated by the Bruce formula (cf., e.g., [5]), in this way one can find the number of isolated zeroes, which provides
substantial information about the geometric structure of Z(P).

Similar but less precise results have been obtained in a recent paper [6]. More precisely, it is shown in [6] that the
number of isolated zeroes plus the doubled number of spherical zeroes does not exceed the algebraic degree of P, but
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there are no results about the sum of multiplicities of components analogous to the aforementioned quaternionic
version of the Fundamental Theorem of Algebra obtained in [5]. Moreover, the problem of finding the number of
spherical components of Z(P) was not considered in [6].

2. Having the above results, one may investigate further problems concerned with the zero-sets of quaternionic
polynomials. Several interesting problems of such kind were suggested in a recent paper [7] in relation with some
problems of mathematical physics. According to [7], to establish the stability of solutions to certain quaternionic
differential equations, it is important to have methods of checking that all roots of a given unilateral quaternionic
polynomial have negative real parts.

This is a natural quaternionic analog of the classical Maxwell problem about the stable complex polynomials [8]. By
analogy with the complex case let us say that a quaternionic polynomial is stable if all of its roots have negative real
parts. In other words, a polynomial is stable if all of its roots lie in the left half-space defined by the hyperplane H0.

We aim at establishing an effective criterion of stability of quaternionic polynomial P which is in the spirit of the
classical Stodola theorem [8]. In general case, one may wish to find the number of components of Z(P) which lie on
the left of H0. We shall show that this more general problem can also be solved effectively using the signature
formulae for topological invariants presented in [5]. It should be added that our considerations and results make an
essential use of the results obtained in [3-5].

3. We proceed with presenting the main result. Let P be a unilateral quaternionic polynomial as above. Introduce
a new unilateral polynomial P* which is obtained from P by changing each of its coefficients with its conjugate. In
other words, we put P* (q) = ∑ (as)* qs, where the asterisk denotes quaternionic conjugation which acts by changing
the sign of the imaginary part of the quaternion. Next, we put N(P) = PP*. Obviously, N(P) is monic and the algebraic
degree of N(P) is 2n. The following fact, which was established in [3], can be verified by direct calculation.

Lemma 1. All coefficients of polynomial N(P) are real numbers.
Notice now that, given a real polynomial R, one can consider the set ZZ(R) of pairwise sums of roots of R where

the number of appearances of each root of R is equal to its multiplicity. Obviously, there exists a uniquely defined
real monic polynomial Q(R) such that its zero-set coincides with ZZ(R).

Lemma 2. Coefficients of polynomial Q(R) are algebraically expressible through coefficients of R.
Indeed, the coefficients of Q(R) are symmetric functions of the roots of R, so by the fundamental theorem on

symmetric polynomials they can be algebraically expressed through the elementary symmetric functions of the roots
which by the Viete theorem are expressible through the coefficients of R.

We are now in a position to formulate the main result.
Theorem 1. A unilateral quaternionic polynomial P is stable if and only if all the coefficients of polynomials

N(P) and Q(N(P)) are positive.
The proof relies on results of [4] and [8] and goes in two steps. First, one derives from the results of [4] that the

set of the real parts of the roots of P is always finite and coincides with the set of the real parts of the roots of N(P).
Next, one uses the results on stable real polynomials to show that the stability of N(P) is equivalent to the positivity
of coefficients of N(P) and Q(N(P)). Details will be presented elsewhere.

Notice that this criterion is indeed effective because the coefficients of N(P) and Q(N(P)) can be algebraically
computed from the coefficients of P. Moreover, it works even in the case if the zero-set of P is infinite. In this way we
obtain a complete solution of the stability problem for unilateral quaternionic polynomials.

2. Let us now present a more general result concerned with the problem of finding the number of components of
Z(P) having negative real parts. Notice that this problem is meaningful even in the case where Z(P) is infinite because
all roots lying in one spherical component have the same real parts.

In order to treat this problem consider P as a polynomial endomorphism of four-dimensional real vector space.
Then, as was explained in [4], [5], one can use the Bruce formula [4] to algorithmically compute the geometric Euler
characteristic g(P) of Z(P) which is equal to the number of geometrically distinct isolated roots plus the doubled
number of the geometrically distinct spherical roots. Notice that, unlike the aforementioned sheaf-theoretic Euler
characteristic of Z(P), g(P) need not be equal to n.

Analogously, using the results on the computation of the Euler characteristic of semi-algebraic set presented in
[4] one can algorithmically compute the (geometric) Euler characteristic g–(P) of the set of roots lying in the left half-
space H–. Taking into account that the final formula involves only the signatures of quadratic forms effectively
constructible from the coefficients of P [4], we arrive at the second main result.

Theorem 2. The Euler characteristic g–(P) of the set of the roots of P lying in the left half space H– can be
effectively calculated from the coefficients of P using a finite number of algebraic and logical operations.

Obviously, if g–(P) = 0, then polynomial P is stable. Thus Theorem 2 is indeed more general than Theorem 1.
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