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Abstract. It is shown that cyclic polygons with the fixed lengths of the sides
can be interpreted as the critical points of various functions on the moduli space
of the corresponding polygonal linkage. The detailed results are given for the
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Introduction

The aim of this paper is to describe a new point of view at cyclic poly-
gons. As usual, under a cyclic polygon we understand a polygon which
can be inscribed in a circle, i.e., such that there exists a point (center of
circumscribed circle) equidistant from all vertices of the polygon (see, e.g.,
[4]). Study of cyclic polygons has a long history starting with elementary
classical results such as Ptolemy theorem and Brahmagupta formula (see,
e.g., [4]). Important results on existence and geometry of cyclic polygons
were obtained by J. Steiner [4]. Cyclic polygons continue to attract con-
siderable interest (see, e.g., [6], [16]), in particular, due to the results and
conjectures of D. Robbins concerned with computation of the areas of cyclic
polygons [14]. We suggest a new interpretation of cyclic polygons based on
consideration of polygonal linkages. This approach enables us to reveal a
seemingly new aspect of cyclic polygons by interpreting them as critical
points of certain functions on moduli space of the corresponding polygonal
linkage.

We will freely use results about polygonal linkages presented in [3] and
[8]. Informally, linkages may be thought of as mechanisms build up from
rigid bars (sticks) joined at flexible links (pin-joints). Linkages provide
useful mathematical models of various mechanical and chemical systems
and at the same time suggest some interesting mathematical problems. In
particular, the concept of moduli (configuration) space of polygonal linkage
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appeared very fruitful and was actively studied in last few decades (see, e.g.,
[13], [15], [8]). In this context, it appeared possible to develop Morse theory
of various functions on moduli spaces (see, e.g., [7], [8], [12]). Along these
lines we consider several geometrically and physically meaningful functions
on moduli space of polygonal linkage and show that their critical points are
often given by cyclic configurations. The main attention will be given to
the signed (oriented) area while a few possible generalizations will only be
briefly mentioned.

It should be added that the interpretation of cyclic polygons as critical
points of the signed area was suggested in [12]. It should be added that con-
siderable information about cyclic configurations of any concrete polygon
can be gained using the signature formulae for topological invariants [10].
Detailed results on cyclic configurations of planar quadrilaterals and pen-
tagons were obtained in [5]. The aim of this paper is to extend the setting
considered in [12], [5] and present a few new results in the same spirit.

1. Preliminaries on polygonal linkages

Polygonal linkages (or equivalently polygons with the fixed lengths of the
sides [4]) were actively studied from various points of view for more than
one century (cf., e. g., [9]). In particular, moduli (configuration) spaces
of planar polygonal linkages were investigated in big detail [7], [8]. Those
general results give a natural framework for our considerations and so we
reproduce the necessary definitions in the form adjusted to our purposes.

Recall that an n-gonal linkage L is defined by a n-tuple of nonnegative
numbers li (called sidelengths of L) each of which is not greater than the
sum of all other ones [3]. We always assume that not all of sidelengths li
are equal to zero. The N -th configuration space CN(L) of such a linkage
is defined as the collection of all n-tuples of points vi in N -dimensional
Euclidean space RN such that the distance between vi and vi+1 is equal to
li, where i = 1, . . . , n and vn+1 = v1. Each such collection V of points,
as well as the corresponding polygon, is called a configuration of L. We
assume that the corresponding n-gon is oriented by the given ordering of
vertices. A configuration is called cyclic if all vertices lie on a certain circle
and aligned if all vertices lie on the same straight line. Obviously, the latter
type of configuration is a sort of limiting case of the former.

Factoring the configuration space CN(L) by the natural diagonal action
of the group of orientation preserving isometries Iso+(N) of RN one obtains
the N -th moduli space MN(L) [8]. Moduli spaces as well as configuration
spaces are endowed with the natural topologies induced by Euclidean metric.
For N = 2, the moduli space M2(L) is usually called the moduli space of
planar polygonal linkage L, i.e., here one thinks of L as a linkage lying in a
fixed Euclidean plane R2.

In the sequel we basically consider the moduli space M2(L) and de-
note it simply by M(L). It is easy to see that the moduli space M(L)
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can be naturally identified with the subset of configurations such that
v1 = (0, 0), v2 = (l1, 0) and thus can be considered as embedded in R2n−4.
It is also easy to realize that the moduli space is compact and can be repre-
sented as a level set of a certain quadratic mapping (see, e.g., [10]), which
implies that, for generic values of li, the planar moduli space M(L) has a
natural structure of compact orientable manifold of dimension n − 3. In
fact, the condition of genericity needed in the last statement can be made
quite precise. Let us say that linkage L is degenerate if it has an aligned
configuration. A minute thought shows that this happens if and only if
there exists a n-tuple of ”signs” si = ±1 such that

∑
sili = 0. Now, it is

possible to show that moduli space M(L) is smooth (does not have singular
points) if and only if linkage L is nondegenerate (see, e. g., [8]).

One can now consider various geometrically meaningful functions on
moduli space and study critical points of those functions. Notice that this
makes sense even for a singular (non-smooth) moduli space because it has
a natural structure of real algebraic variety and for such varieties one has
a natural definition of critical point and many other concepts of differential
topology (see, e.g., [2]). Taking into account the aforementioned embedding
of M(L) into R2n−4 we can consider restrictions to M(L) of polynomial
functions on R2n−4. If a moduli space M(L) is smooth and function f :
M(L) → R arises as restriction of a certain smooth function F on R2n−4

then the critical points of f can be found by Lagrange method as the points
p ∈ M(L) such that grad F is orthogonal to the tangent space Tp(M(L))
[1]. For smooth moduli space, a natural idea is to investigate its topology
using Morse theory of some natural smooth function on it, which requires
a thorough investigation of its critical points. We proceed by applying this
approach to the signed (oriented) area considered as a function on moduli
space.

To this end recall that, for any configuration V of L with vertices vi =
(xi, yi), i = 1, . . . , n, its signed area A(V ) is defined by

A(V ) = (x1y2 − x2y1) + . . . + (xny1 − x1yn).

Obviously, this formula defines a smooth function on R2n. Now, to obtain
a smooth function on moduli space M(L) of any n-gonal linkage L it is
sufficient to make use of the chosen embedding of M(L) into R2n−4 by
putting x1 = y1 = 0, x2 = l1, y2 = 0 in the above formula. If the moduli
space is smooth, in this way we obtain a smooth function AL = A|M(L) on
a compact manifold M(L) and by said above we may find its critical points
using the classical Lagrange method.

As will be shown below, A is typically a Morse function on generic
moduli space and so one can indeed use Morse theory to study the topology
of moduli spaces if the amount and Morse indices of critical points are
found. With this in mind, it was shown in [5] that, for n = 4 and n = 5,
all critical points of AL in M(L) are given by the cyclic configurations of a
nondegenerate n-linkage L. In the next section we generalize these results
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by proving that, under certain additional assumptions of genericity, the
same holds for arbitrary n.

2. Cyclic polygons as critical points of signed area

To begin with, let us prove the following result which was formulated in
[12] as conjecture.

Theorem 2.1. For any n and any nondegenerate n-gonal linkage L,
the signed area A defines a Morse function on M(L).

Proof. Since A is a homogeneous quadratic function its Hessian matrix
with respect to standard coordinates on R2n is a constant (2n×2n)-matrix.
An obvious computation shows that its determinant does not vanish. Hence
the second differential of A is a nondegenerate quadratic form and its re-
striction on each linear subspace of R2n also gives a nondegenerate quadratic
form. It follows that the Hessian of restriction of A to M(L) is nondegener-
ate on each tangent space TV (M(L)). Writing Lagrange equations for the
critical points one sees that, for each nondegenerate L, the critical points of
A|M(L) are isolated. Hence we conclude that A|M(L) is a Morse function,
which completes the proof.

According to a classical result of J.Steiner, the signed area A attains
its maximum at the convex cyclic configuration [4]. Taking into account
this fact and some heuristical evidence the present author conjectured in
[12] that all critical points of A on M(L) are given by the cyclic configu-
rations. This conjecture was proven in [5] for nondegenerate quadrilaterals
and pentagons. We complement the results of [5] in two ways. First, we
obtain a similar result for arbitrary quadrilaterals. Next, we show that, in
the nondegenerate case, critical configurations are indeed given by cyclic
configurations.

Since moduli spaces of degenerate linkages are singular, to formulate
the first result one needs to have a rigorous definition of critical point of
function on singular space. It turns out that the definition of critical point
of a polynomial function on real algebraic variety with isolated singularities
given in [2] is appropriate for our purposes. Thus in the formulation below
the critical points are understood in the indicated sense. For further use
notice that an aligned configuration is cyclic if and only if it has only two
geometrically distinct vertices. Such a ”highly degenerate” configuration
exists for each regular n-linkage with even n - just take the configuration
where all vertices with odd indices coincide with v1 and those with even
indices coincide with v2.

Propositon 2.1. Let L be an arbitrary quadrilateral with not all side-
lengths equal to zero. A configuration V ∈ M(L) is a critical point of
A|M(L) if and only if it is either a cyclic configuration or an aligned con-
figuration.

Since the case of nondegenerate L was completely solved in [5], it re-
mains to consider all possible degenerate quadrilaterals. The list of such
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quadrilaterals is given in [7]) and the structure of their moduli spaces is
well-known (see, e.g., [11]). With this at hand, the proof can be obtained
using case-by-case analysis. The details of the argument are quite standard
and therefore we omit them. Instead we illustrate the essence of matter
by considering the moduli space of rhomboid R (all sidelengths are equal)
which is in a sense the most ”singular” case. As is easy to verify, M(R)
is homeomorphic to the union of three circles each pair of which has one
common point which is a singular point of M(R). The three singular points
correspond to three aligned configurations, only one of which, the most de-
generate one V0 with v1 = v3, v2 = v4 is cyclic. The both components of
M(R) containing V0 consist entirely of critical points of A|M(R) and A
identically vanishes on those components. There are also one point of max-
imum (”upward square”) and one of minimum (”downward square”) both
obviously cyclic. Thus it is pretty obvious in this case that all A-critical
configurations are indeed either cyclic or aligned.

Notice that here the aligned critical configurations are singular points
of M(L). In fact, it can be proven that if the moduli space has no singular
points then there can be no aligned configurations which are critical points
of A. This observation leads us to the second main result. As was already
mentioned, it was conjectured in [12] that, for any natural n ≥ 4, a config-
uration V of nondegenerate linkage L is a critical point of A|M(L) if and
only if it is cyclic. Using Proposition 2.1 and the latter observation we can
prove this conjecture in one direction. The reverse implication seems more
delicate and remains open.

Theorem 2.2. For a nondegenerate n-linkage L, each critical point of
A|M(L) is a cyclic configuration.

Proof. Suppose V = (v1, ..., vn) is a critical point of A|M(L). For any
k = 1, . . . , n, consider a quadruple of its consecutive vertices starting with
vk and add the diagonal vkvk+3 to obtain two polygons: Pk with the vertices
(v1, ..., vk, vk+3, ..., vn) and Qk with the vertices (vk, vk+1, ..., vk+3).

Assume first that Qk is nondegenerate. Then taking only those defor-
mations of Qk which leave unchanged all sides of Qk including the diagonal
vkvk+3 we can interpret it as a linkage and consider its moduli space M(Qk).
Then the latter moduli space is one-dimensional and we can identify it with
a smooth curve in M(L). Since the point V ∈ M(L) is critical, the gradient
grad A is orthogonal to TV (M(L)) and a fortiori orthogonal to TQk

(M(Qk)),
which means that Qk is also a critical point of A in the moduli space M(Qk).
By the mentioned result of [5] this implies that Qk is cyclic, i.e. the four
points (vk, vk+1, ..., vk+3) lie on the same circle. Since this holds for each
quadruple of consecutive vertices, the whole configuration V is cyclic, as
was claimed.

If Qk is degenerate, then by our Proposition 2.1 it is either cyclic or
aligned. However, since by assumption the moduli space M(L) is non-
singular, quadrilateral Qk should be cyclic and the argument can be finished
in the same way as above. This completes the proof.
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This theorem can be combined with the results of D.Robbins [14] and
his followers [16], [6] to obtain some nontrivial information on the critical
values of A|M(L). For natural m, put

4m =
1

2
[(2m + 1)Cm

2m − 22m],

where Cm
2m denotes the corresponding binomial coefficient. Now define num-

bers Rn as follows. For an odd n = 2m + 1, put Rn = 4m. For an even
n = 2m + 2, put Rn = 24m.

Proposition 2.2. The number of distinct critical values of the signed
area function A on the moduli space of nondegenerate n-gonal linkage does
not exceed Rn. Moreover, all critical values of A|M(L) can be found as
the real roots of a certain polynomial coefficients of which are algebraically
expressible through the sidelengths l2i .

This follows directly from Theorem 2.2 and results of [14], [6]. The
point of this result is that the critical values of A|M(L) appear effectively
computable, which was by no means obvious a priori.

Having these results one can try to develop Morse theory of area function
and apply it to topological study of moduli spaces. The crucial step is of
course to find a method of calculating Morse indices of cyclic configurations
as critical points of signed area. This problem is largely open. In the first
nontrivial case of nondegenerate pentagon P , by dimension reasons and the
mentioned result of J.Steiner it follows that all critical points, except the
global maximum and global minimum, are of index one, in other words, they
are saddlepoints of A|M(L). As was shown in [5], the signed area is not
always a perfect (i.e., having the minimal possible amount of critical points)
Morse function on M(P ). Thus we are led to another natural problem: find
out for which pentagons P the signed area is a perfect Morse function on
M(P ).

It is clear that thorough investigation of these issues may yield an ef-
fective method of obtaining important information on the critical points of
A|M(L). In the rest of the paper we present some evidence that the same
holds for several other natural functions on the moduli space of polygonal
linkage. The main message is that the results and methods available for the
signed area function may serve as a paradigm for further research of similar
problems.

3. Critical points of energy functions on moduli spaces

A reasonable way to generalize the results and considerations presented
above is to consider various geometrically or physically meaningful functions
on the moduli space of polygonal linkage. Several natural candidates for
such functions can be obtained as (potential) energy of a certain physical
system which can be associated with a linkage. In fact, one can imagine a lot
of such systems some of which may be considered as useful models of certain
physical phenomena. For example, one can introduce certain forces acting
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between (the particles placed at) the vertices of linkage L and consider the
corresponding (potential) energy. If this energy function is translation- and
rotation-invariant then we obviously obtain a function on the moduli space
M(L) and can embark on the study of its critical points along the lines
described above.

Notice that the points of minima are especially interesting in this context
since they correspond to the equilibria of the system considered. Moreover,
this setting has some dynamical aspects concerned with the study of relax-
ation processes understood as the passage from a given configuration to the
equilibrium. By general principles of mechanics the motion in process of
relaxation should obey appropriate variational principles and can be pos-
sibly interpreted as the motion along a geodesic with respect to certain
riemannian metric on the moduli space.

All these aspects seem reasonable and apparently deserve investigation.
However, this is obviously too vast a program to be discussed in more depth
in a short note like this one and so we will only present a few ideas and
observations which emerged in the framework of this program without trying
to reach maximal generality or rigour.

To begin with, consider functions Dr defined as follows. For configura-
tion V ∈ M(L) put Dr(V ) equal to the product of the rth powers of all
diagonals of polygon V , where r is a fixed positive number. In other words,
we put Dr(V ) = Π̃dr

ij, where dij is the distance between vertices vi and vj

of configuration V and the product is taken over pairs (i, j) with |i− j| ≥ 2
(here as always we assume that vn+1 = v1). Obviously, this formula defines
a function on M(L) which will be denoted by the same letter Dr and we
can consider its critical points in M(L). Taking into account our results
it seems reasonable to conjecture that, in some cases at least, the critical
points could be given by cyclic configurations and the critical values can be
effectively computed.

This is indeed the case but we cannot go into general formulations and
describe just the simplest nontrivial situation of such kind. Namely, let
us take n = 4 and k = 1. Then, in classical terms, we just wish to find
the extrema of the product of two diagonals of quadrilateral with the fixed
lengths of the sides. The answer perfectly fits our general paradigm.

Proposition 3.1. For a nondegenerate quadrilateral linkage Q, the
critical points of D1|M(Q) are given by the cyclic configurations of Q.

The proof can be obtained by an easy analysis of Lagrange equations
written in angular coordinates quite similar to the proof of Theorem 1 in
[5]. For the point of maximum, this also follows from Ptolemy theorem and
its converse (see, e.g., [4]). Indeed, these classical results state that, in our
notations, d13d24 ≤ l1l3 + l2l4 and equality is achieved if and only if the
configuration V is cyclic (cf. [4]). Moreover, we see that the critical values
are algebraically expressible in terms of sidelengths as was conjectured.

We do not have proof of similar statements in reasonable generality and
at present there is no serious evidence to believe that this holds for arbi-
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trary nondegenerate n-gon but there are many concrete examples where our
conjectures were confirmed numerically. In any case this setting obviously
suggests many interesting problems and deserves further investigation.

One can also consider the energy functions obtaining by summing the
contributions coming from pairwise interactions. One class of such energy
functions which seem relevant to physical models can be obtained as follows.
We fix now a negative r and consider the function Er given by the formula
Er =

∑̃
dr

ij, where as above dij is the distance between vertices vi and vj

of configuration V and the sum is taken over pairs (i, j) with |i − j| ≥ 2.
Notice that such functions have a certain physical flavour because one can
think of identical particles placed at the vertices which pairwise interact
through forces depending only on the distance between particles and then
the potential energy of such a system is expressed by the formula of such
type (modulo constant). For r = −1 we obviously obtain the electrostatic
(Coulomb) energy E = E−1 which in a sense is the most fundamental
example. We believe that our approach may lead to new insights even in
this classical case. In general, all such energy functions are naturally defined
on the moduli spaces and we can again wonder if there critical points are
related to critical configurations.

It should be said from the very beginning that, for such energy functions,
the analysis of critical points is much more difficult and they are definitely
NOT always given by cyclic configurations. This can already be observed
for the electrostatic energy E. For example, if the linkage L has several
very short sides, the system behaves as if a big charge is placed instead
of those short sides. If the number of short sides is sufficiently big, using
numerical methods one can show that the equilibrium is not achieved at a
cyclic configuration of such linkage. Thus we encounter a highly nontrivial
problem of characterizing those linkages for which the stationary points of
electrostatic energy are given by cyclic configurations. We were able to show
that this is true for all nondegenerate quadrilateral linkages but already the
case of pentagon linkages remains open.

Next, as soon as we know the stationary points of various functions on
moduli space it is natural to investigate the dynamics of relaxation process,
i.e., the process of passing from a given configuration to a stationary one.
We present only a few brief remarks on this issue but it is obvious that a
closer look into it could reveal many interesting aspects and problems.

First of all, according to the least action principle this should be a sort
of movement along a geodesics in moduli space. Thus we are led to the
necessity of exploring the geometry of moduli space in more depth. Geom-
etry of moduli spaces of planar linkages is known in big detail (see, e.g.,
[8]) and so there is a good evidence that this may give some insights in the
relaxation processes of planar linkages. In the case of signed area, it seems
very likely that the motion always happens along a geodesic and terminates
at a cyclic configuration. One may now wish to verify and/or explicate this
conclusion by investigating the corresponding equations of motion.



82 Khimshiashvili G.

The problem becomes more difficult for spatial linkages (i.e., for N = 3).
On the one hand, for non-knotted initial configurations, the stationary con-
figurations obtained as the results of relaxation process are often planar and
hence cyclic. This can be proven for energy functions Dr using the ”diago-
nal bending flows” considered in [8]. On the other hand, in many cases the
energy barrier prohibits self-intersections of linkage in process of relaxation
and so if the initial configuration is knotted then it cannot relax to a cyclic
configuration. Thus we are led to the problem of finding the limiting sta-
tionary configurations. Similar problems were considered in knot theory in
several physically relevant contexts. It is our hope that such problems could
be more easily studied for linkages, which might appear useful for studying
relaxation processes for knots.

4. Concluding remarks

In conclusion we wish to indicate a few general problems suggested by
our approach. First of all, one could try to characterize functions on moduli
space having the property that all of their critical points are given by the
cyclic configurations. Certain essential properties of such functions, like the
invariance with respect to cyclic substitution of vertices, are more or less
clear but the problem is far from obvious. One could at least try to indicate
sufficiently wide classes of functions with such property.

We can further generalize this setting by introducing the general notion
of concritical functions. Namely, given two smooth functions which are
defined on moduli spaces of all n-gonal linkages we will say that these two
functions are concritical if their critical sets coincide on each moduli spaces.
In this terms, we can say that A, D1 and E−1 are concritical on moduli
spaces of quadrilaterals. Having this concept one could try to characterize
such pairs of functions axiomatically. It is also interesting to find out what
could be the ”dispersion” (maximal difference) of Morse indices of a given
pair of concritical energies from the lists Dr, Er introduced above.

It is also natural to investigate if the results obtained in Section 2 hold
for singular moduli spaces. As was mentioned in Section 1, all necessary
concepts of differential topology are available for real algebraic varieties
with isolated singularities [2] and so one can try to develop Morse theory
for singular moduli spaces in the spirit of Goresky-McPherson.

Similar problems can be studied for ”higher” moduli spaces MN(L) of
which especially intriguing are moduli spaces of spatial linkages obtained for
N = 3. Notice that in arbitrary dimension N one has the oriented volume
VN [4] which defines a smooth function on the Nth configuration space of
each n-gonal linkage. Up to our knowledge, no analogs of our Theorems 1
and 2 exist in this context so this seems to be a vast and promising research
topic.

Finally, as was already mentioned, a plenty of practically unexplored
problems is related to relaxation processes on moduli spaces of polygonal
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linkages. Especially interesting are the non-planar stationary configurations
of knotted 3d-linkages. There are examples showing that such stationary
configurations appear in continual families and so the geometric aspects of
this problem might appear quite involved. A natural way for getting more
insight in problems of such kind is to use numerical methods and computer
simulation. Thus there is good evidence that the problems and methods
presented in this paper will lead to further results.
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