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CYCLIC POLYGONS ARE CRITICAL POINTS OF AREAG. Panina∗ and G. Khimshiashvili† UDC 514.177.2
It is shown that typical critical points of the signed area function on the moduli space of a generic planar polygon
are given by cyclic configurations, i.e., configurations that can be inscribed in a circle. Several related problems are
briefly discussed in conclusion. Bibliography: 14 titles.

IntroductionAs usual, by a yli polygon we understand a polygon that an be insribed in a irle, i.e., there exists apoint (the enter of the irumsribed irle) equidistant from all verties of the polygon (see, e.g., [4℄). The studyof yli polygons has a long history starting with elementary lassial results suh as Ptolemy's theorem andBrahmagupta's formula (see, e.g., [4℄). Important results on the existene and geometry of yli polygons wereobtained by J. Steiner [4℄. This topi ontinues to attrat onsiderable interest (see, e.g., [6, 14℄), in partiular,due to the results and onjetures of D. Robbins onerning the omputation of the areas of yli polygons [12℄.The aim of this note is to show that yli polygons an often be interpreted as ritial points of the signed areafuntion on the moduli spae of the orresponding polygonal linkage.Our onsiderations are performed in the ontext of polygonal linkages [3℄. Informally, linkages may be thoughtof as mehanisms build up from rigid bars (stiks) joined at exible links (pin-joints). Linkages provide usefulmathematial models of various mehanial and hemial systems and suggest some interesting mathematialproblems. Spei�ally, the moduli (on�guration) spaes of polygonal linkages were atively studied in the lastfew deades (see, e.g., [7, 13, 8℄). In partiular, the Morse theory of various funtions on moduli spaes wasonsidered in [7, 8℄. Along these lines, we onsider the signed (oriented) area of a polygon [4℄ as a funtion onthe moduli spae of a generi planar polygonal linkage and show that, generially, its ritial points are given bythe yli on�gurations of the latter.It should be added that the interpretation of yli polygons as ritial points of the signed area funtionwas suggested in [11℄. As was shown in [5℄, this is indeed the ase for nondegenerate planar quadrilateralsand pentagons. We extend these results by proving that the same holds for generi yli on�gurations ofnondegenerate polygonal linkages with arbitrary number of verties (pin-joints).We tried to make the exposition (reasonably) self-ontained. To this end, in the �rst setion we give theneessary information about the on�guration spaes of linkages and the signed area of planar polygons. Theformulation and proof of the main result are presented in the seond setion. In the last setion, we brieydisuss several related problems.
1. Preliminaries on polygonal linkagesPolygonal linkages (or, equivalently, polygons with �xed lengths of the sides [4℄) were atively studied fromvarious points of view for more than one entury (f., e.g., [9℄). In partiular, the moduli (on�guration) spaesof planar polygonal linkages were investigated in big detail [7, 8℄. Those general results give a natural frameworkfor our onsiderations, and so we reprodue the neessary de�nitions in the form adjusted to our purposes.Reall that an n-gonal linkage L is de�ned by an n-tuple of nonnegative numbers li (alled the side lengthsof L) eah of whih is not greater than the sum of all the other ones [3℄. We also assume that not all of the sidelengths li are equal to zero. The N -th on�guration spae CN (L) of suh a linkage is de�ned as the olletion ofall n-tuples of points vi in the N -dimensional Eulidean spae R

N suh that the distane between vi and vi+1is equal to li, where i = 1; : : : ; n and vn+1 = v1. Eah suh olletion V of points, as well as the orrespondingpolygon, is alled a on�guration of L. We assume that the orresponding n-gon is oriented by the given orderingof verties. A on�guration is alled yli if all verties lie on a ertain irle and aligned if all verties lie onthe same straight line. Obviously, the latter type of on�gurations is a sort of limiting ase of the former.
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Fatoring the on�guration spae CN (L) by the natural diagonal ation of the group Iso+(N) of orientation-preserving isometries of R
N , one obtains the N -th moduli spae MN (L) [8℄. Moduli spaes, as well as on�gura-tion spaes, are endowed with the natural topologies indued by the Eulidean metri. For N = 2, the modulispae M2(L) is usually alled the moduli spae of the planar polygonal linkage L, i.e., here one thinks of L asa linkage lying in a �xed Eulidean plane R

2. In the sequel, we will only onsider the moduli spae M2(L) anddenote it simply by M(L). It is easy to see that the moduli spae M(L) an be naturally identi�ed with thesubset of on�gurations suh that v1 = (0; 0), v2 = (l1; 0) and thus an be onsidered as embedded into R
2n−4.It is also easy to realize that the moduli spae is ompat and an be represented as a level set of a ertainquadrati mapping (see, e.g., [10℄), whih implies that, for generi values of li, the planar moduli spae M(L)has a natural struture of a ompat orientable manifold of dimension n − 3. In fat, the generiity onditionneeded in the last statement an be made quite preise. Let us say that a linkage L is degenerate if it hasan aligned on�guration. A minute's thought shows that this happens if and only if there exists an n-tuple of\signs" si = ±1 suh that ∑ sili = 0. Now, one an show that the moduli spae M(L) is smooth (does not havesingular points) if and only if the linkage L is nondegenerate (see, e.g., [8℄).One an now onsider various geometrially meaningful funtions on the moduli spae and study ritialpoints of those funtions. Note that this makes sense even for a singular (nonsmooth) moduli spae, beause ithas a natural struture of a real algebrai variety, and for suh varieties one has a natural de�nition of a ritialpoint and many other notions of di�erential topology (see, e.g., [2℄). Taking into aount the aforementionedembedding of M(L) into R

2n−4, we an onsider restritions to M(L) of polynomial funtions on R
2n−4. If themoduli spaeM(L) is smooth and a funtion f :M(L) → R arises as the restrition of a ertain smooth funtionF on R

2n−4, then the ritial points of f an be found by the Lagrange method as the points p ∈ M(L) suhthat gradF is orthogonal to the tangent spae Tp(M(L)) [1℄. For a smooth moduli spae, a natural idea is toinvestigate its topology using the Morse theory of some natural smooth funtion on it, whih requires a thoroughinvestigation of ritial points of this funtion. We apply this approah to the signed (oriented) area regardedas a funtion on the moduli spae.To this end, reall that for any on�guration V of L with verties vi = (xi; yi); i = 1; : : : ; n, its signed areaA(V ) is de�ned by A(V ) = (x1y2 − x2y1) + : : :+ (xny1 − x1yn):Obviously, this formula de�nes a smooth funtion on R
2n. Now, to obtain a smooth funtion on the modulispae M(L) of any n-gonal linkage L, it is suÆient to make use of the hosen embedding of M(L) into R

2n−4by putting x1 = y1 = 0, x2 = l1, y2 = 0 in the above formula. If the moduli spae is smooth, in this way weobtain a smooth funtion AL = A|M(L) on the ompat manifold M(L) and, as said above, we an �nd itsritial points by the Lagrange method.As was notied in [11℄, from general priniples of singularity theory it follows that A is a Morse funtion ona generi moduli spae, and so one an indeed use Morse theory to study the topology of moduli spaes if theamount and indies of ritial points are found. With this in mind, it was shown in [5℄ that, for n = 4 andn = 5, all ritial points of AL in M(L) are given by the yli on�gurations of a nondegenerate n-linkage L.We generalize this result by proving that, under ertain additional generiity assumptions, the same holds forarbitrary n. We onlude this setion by presenting a few remarks on linkages and the signed area whih will beused in the sequel.Given an oriented on�guration V = (v1; : : : ; vn) ⊂ R
2 of a linkage L and a point x ∈ R

2, we denote by wL(x)the winding number of L around the point x (f. [12℄). Assume now that two polygonal linkages L1; L2 have aommon edge with opposite orientations. We de�ne their sum L = L1 +L2 (whih is again a polygonal linkage)as the homologial sum of these two yles. Further, assume that two on�gurations V1; V2 ⊂ R
2 of L1 and L2have a ommon edge with opposite orientations. Clearly, the homologial sum of V1 and V2 is a on�gurationof L1 +L2. The following two properties of the signed area are well known and easy to prove diretly using theabove de�nitions and remarks.Lemma 1. 1. For the (signed) area of a on�guration V one hasA(V ) = ∫

R2 wL(x)d�(x);where � denotes the Lebesgue measure in R
2.2. If V = V1 + V2, then A(V ) = A(V1) +A(V2).
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For a on�guration V of an n-linkage L and eah k ∈ [1; n℄, we denote by V k the quadrilateral formed by thefour onseutive verties vk; vk+1; vk+2; vk+3 assuming that the diagonal vkvk+3 of V is added as the fourth sideof V k. Eah suh quadrilateral V k will be alled a side quadrilateral of V , and we denote by Qk the orrespondingquadrilateral linkage. We say that a on�guration V is strongly nondegenerate if all of its side quadrilaterals arenondegenerate.
2. Cyclic configurations are critical points of the signed areaAfter these preparations, we are able to present the main result.Theorem 1. Let L be a nondegenerate n-gonal linkage. A strongly nondegenerate on�guration V of L is aritial point of A|M(L) if and only if V is yli.The proof is based on the similar result for n = 4 established in [5℄, whih we reprodue as a lemma for thereader's onveniene.Lemma 2. Let L be a nondegenerate quadrilateral linkage. Then a on�guration V of L is a ritial point ofA|M(L) if and only if V is yli.Note that all on�gurations of nondegenerate quadrilaterals are automatially strongly nondegenerate. It willbe onvenient for us to speak of deformations of a given on�guration V ∈ M(L), where the term \deformation"means any on�guration V ′ of L suÆiently lose to V . The heuristis behind this term is that, generially, onean in fat pass from V to V ′ by smoothly deforming the shape of V , or, whih is the same, by hanging theangles of V . With all these de�nitions and observations at hand, we an prove the main result.Proof. (\Only if") Assume that V = (v1; : : : ; vn) is a ritial point of A|M(L). Choose a natural numberk ∈ [1; n− 3℄ and use the quadruple of onseutive verties of V starting with vk to deompose V into the sumof two polygons: V = (v1; : : : ; vk; vk+3; : : : ; vn) + (vk ; vk+1; : : : ; vk+3) = V k + V k:In other words, we split the yle along the diagonal vkvk+3. Let M(L) (respetively, M(Qk)) be the modulispae of L (respetively, of Qk). Our assumptions obviously imply that M(Qk) is a ompat smooth one-dimensional manifold and that in a neighborhood of the point V we have a natural smooth embeddingM(Qk) ,→M(L). Indeed, a deformation of the losed quadrilateral V k yields a deformation of the whole L: we deform V kand keep the rest (i.e., V k) �xed. (This is equivalent to saying that eah on�guration of Qk suÆiently lose toV k gives a uniquely de�ned on�guration of L.)Sine V is a ritial point, the on�guration V k has to be a ritial point of the area funtion on the modulispae M(Qk). By Lemma 2, the quadrilateral V k is yli. Sine this holds for any k, the whole L is yli aswell.(\If") For a yli on�guration V = (v1; : : : ; vn) of a nondegenerate n-gonal linkage L, onsider the tangentspae TV (M(L)) of the moduli spaeM(L) at the point V . First, note that the nondegeneray of L implies that,in a neighborhood of the point V , the moduli spaeM(L) is smoothly parameterized by the angles �1; : : : ; �n−3of the on�guration at the verties v1; : : : ; vn−3.Next, eah deformation of V an easily be represented as a omposition of some deformations (dk)n−3k=1 suhthat eah of the deformations dk keeps �xed the verties (v1; : : : ; vk; vk+3; : : : ; vn). In other words, only thequadrilateral V k = (vk ; vk+1; vk+2; vk+3) is deformed in ourse of the deformation dk. Indeed, to deompose adeformation, we �rst hoose a deformation d1 that adjusts the angle �1; next we hoose a deformation d2 thatadjusts the angle �2, and so on. This is obviously possible up to the angle �n−3, and then the last three anglesare determined uniquely.Therefore the tangent vetors to the urves M(Qk); k = 1; : : : ; n − 3, at the point V linearly generate thetangent spae TV (M(L)). Dimension reasons imply that these urves form a basis. Sine eah on�gurationV k is yli, gradA regarded as a vetor in R

2n−4 is orthogonal to eah of M(Qk); k = 1; : : : ; n − 3, at thepoint V . Therefore gradA is orthogonal to TV (M(L)) at the point V as well, whih implies that dA vanishes onTV (M(L)), i.e., V is a ritial point of A|M(L). This ompletes the proof.
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3. Concluding remarksA few remarks seem in plae here. First of all, the ondition of strong nondegeneray is tehnial, sineit is suggested by our method of proving the theorem. We believe that the same result should hold for anarbitrary ritial on�guration of a nondegenerate linkage, but there are subtleties aused by the possibility ofthe appearane of degenerate side quadrilaterals.In fat, there may well exist yli on�gurations with degenerate side quadrilaterals. For example, the regular(all sides have the same length) pentagon linkage is nondegenerate but has an \isoseles-triangle-like" on�gu-ration with one \triple" side (f. [14℄), whih is obviously yli but has a strongly degenerate side quadrilateralonsisting of just one \thik" side obtained by piling four equal segments. Thus the diret appliation of ourapproah is impossible in this ase, sine we annot refer to Lemma 2. In this respet, it might be interestingto look for onditions on the linkage L whih guarantee that it does not have ritial and yli on�gurationswith degenerate side quadrilaterals.Next, one ould try to overome these subtleties by obtaining an analog of Lemma 2 valid for all (notneessarily nondegenerate) quadrilaterals. In fat, there is good evidene that eah A-ritial on�guration of aquadrilateral linkage is either yli or aligned if one properly de�nes the notion of a ritial point on a singularmoduli spae. Making this idea preise seems reasonable and within reah using the mahinery developed in[2℄, but we will not go into that here sine it is not ompletely lear if this may eventually give the desiredgeneralization. Let us illustrate possible ompliations by onsidering the moduli spae M(R) of a rhomboidR (all side lengths are equal). As is easy to verify, M(R) is homeomorphi to the union of three irles eahpair of whih has one ommon point whih is a singular point of M(R). The three singular points orrespondto three aligned on�gurations, only one of whih, V0 with v1 = v3; v2 = v4, is yli. Both omponents ofM(R) ontaining V0 onsist entirely of ritial points of A|M(R) at whih A vanishes (there are also one pointof maximum { \upward square," and one point of minimum { \downward square"). We see that, indeed, allA-ritial on�gurations are either yli or aligned. However, the presene of ontinual omponents of ritialpoints ompliates the situation, and it is unlear if our argument an be applied in suh situations. So here areseveral issues that require to be lari�ed.Furthermore, a whole bunh of problems is related to alulating the Morse indies of yli on�gurations.Not muh is known in this diretion beyond the �rst nontrivial ase of pentagon linkages (f. [11℄). As explained in[11℄, if one knows that the A-ritial on�gurations of a linkage L oinide with the yli ones, then onsiderableinformation about the topology ofM(L) an be derived from the variety of results on the amount and geometry ofyli on�gurations obtained in [12, 14, 6℄. Thus stronger versions of our theorem may have onrete orollariesfor linkages with �xed number of verties.All this shows that the relation between yli and ritial on�gurations established in our theorem has anumber of interesting and unexplored aspets. It is our belief that further researh in this diretion may appearrewarding. REFERENCES1. V. Arnold, A. Varhenko, and S. Gusein-Zade, Singularities of Di�erentiable Mappings [in Russian℄, Nauka,Mosow (2005).2. J. Bohnak, M. Coste, and M.-F. Roy, Real Algebrai Geometry, Springer, Berlin{Heidelberg{NewYork (1998).3. R. Connelly and E. Demaine, \Geometry and topology of polygonal linkages," in: Handbook of Disrete andComputational Geometry, 2nd edition, CRC Press, Boa Raton (2004), pp. 197{218.4. H. Coxeter and S. Greitzer, Geometry Revisited, Amer. Math. So. (1967).5. E. Elerdashvili, M. Jibladze, and G. Khimshiashvili, \Cyli on�gurations of pentagon linkages," Bull. Geor-gian Nat. Aad. Si., 2, No. 4, 13{16 (2008).6. M. Fedorhuk and I. Pak, \Rigidity and polynomial invariants of onvex polytopes," Duke Math. J., 129,No. 2, 371{404 (2005).7. C. Gibson and P. Newstead, \On the geometry of the planar 4-bar mehanism," Ata Appl. Math., 7, 113{135(1986).8. M. Kapovih and J. Millson, \Universality theorems for on�guration spaes of planar linkages," Topology,41, 1051{1107 (2002).9. A. Kempe, \A method of desribing urves of the nth degree by linkwork," Pro. London Math. So., 7,213{216 (1876).
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