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CYCLIC POLYGONS ARE CRITICAL POINTS OF AREA
G. Panina* and G. Khimshiashvilif UDC 514.177.2

It is shown that typical critical points of the signed area function on the moduli space of a generic planar polygon
are given by cyclic configurations, i.e., configurations that can be inscribed in a circle. Several related problems are
briefly discussed in conclusion. Bibliography: 14 titles.

INTRODUCTION

As usual, by a cyclic polygon we understand a polygon that can be inscribed in a circle, i.e., there exists a
point (the center of the circumscribed circle) equidistant from all vertices of the polygon (see, e.g., [4]). The study
of cyclic polygons has a long history starting with elementary classical results such as Ptolemy’s theorem and
Brahmagupta’s formula (see, e.g., [4]). Important results on the existence and geometry of cyclic polygons were
obtained by J. Steiner [4]. This topic continues to attract considerable interest (see, e.g., [6, 14]), in particular,
due to the results and conjectures of D. Robbins concerning the computation of the areas of cyclic polygons [12].
The aim of this note is to show that cyclic polygons can often be interpreted as critical points of the signed area
function on the moduli space of the corresponding polygonal linkage.

Our considerations are performed in the context of polygonal linkages [3]. Informally, linkages may be thought
of as mechanisms build up from rigid bars (sticks) joined at flexible links (pin-joints). Linkages provide useful
mathematical models of various mechanical and chemical systems and suggest some interesting mathematical
problems. Specifically, the moduli (configuration) spaces of polygonal linkages were actively studied in the last
few decades (see, e.g., [7, 13, 8]). In particular, the Morse theory of various functions on moduli spaces was
considered in [7, 8]. Along these lines, we consider the signed (oriented) area of a polygon [4] as a function on
the moduli space of a generic planar polygonal linkage and show that, generically, its critical points are given by
the cyclic configurations of the latter.

It should be added that the interpretation of cyclic polygons as critical points of the signed area function
was suggested in [11]. As was shown in [5], this is indeed the case for nondegenerate planar quadrilaterals
and pentagons. We extend these results by proving that the same holds for generic cyclic configurations of
nondegenerate polygonal linkages with arbitrary number of vertices (pin-joints).

We tried to make the exposition (reasonably) self-contained. To this end, in the first section we give the
necessary information about the configuration spaces of linkages and the signed area of planar polygons. The
formulation and proof of the main result are presented in the second section. In the last section, we briefly
discuss several related problems.

1. PRELIMINARIES ON POLYGONAL LINKAGES

Polygonal linkages (or, equivalently, polygons with fixed lengths of the sides [4]) were actively studied from
various points of view for more than one century (cf., e.g., [9]). In particular, the moduli (configuration) spaces
of planar polygonal linkages were investigated in big detail [7, 8]. Those general results give a natural framework
for our considerations, and so we reproduce the necessary definitions in the form adjusted to our purposes.

Recall that an n-gonal linkage L is defined by an n-tuple of nonnegative numbers [; (called the side lengths
of L) each of which is not greater than the sum of all the other ones [3]. We also assume that not all of the side
lengths [; are equal to zero. The N-th configuration space Cn (L) of such a linkage is defined as the collection of
all n-tuples of points v; in the N-dimensional Euclidean space R" such that the distance between v; and v; 1
is equal to [;, where ¢ = 1,... ,n and v,41 = v1. Each such collection V' of points, as well as the corresponding
polygon, is called a configuration of L. We assume that the corresponding n-gon is oriented by the given ordering
of vertices. A configuration is called cyclic if all vertices lie on a certain circle and aligned if all vertices lie on
the same straight line. Obviously, the latter type of configurations is a sort of limiting case of the former.
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Factoring the configuration space Cy(L) by the natural diagonal action of the group Isoy (V) of orientation-
preserving isometries of RY, one obtains the N-th moduli space My (L) [8]. Moduli spaces, as well as configura-
tion spaces, are endowed with the natural topologies induced by the Euclidean metric. For N = 2, the moduli
space M (L) is usually called the moduli space of the planar polygonal linkage L, i.e., here one thinks of L as
a linkage lying in a fixed Euclidean plane R2. In the sequel, we will only consider the moduli space M>(L) and
denote it simply by M (L). It is easy to see that the moduli space M (L) can be naturally identified with the
subset of configurations such that v; = (0,0), vo = (I1,0) and thus can be considered as embedded into R4,
It is also easy to realize that the moduli space is compact and can be represented as a level set of a certain
quadratic mapping (see, e.g., [10]), which implies that, for generic values of [;, the planar moduli space M (L)
has a natural structure of a compact orientable manifold of dimension n — 3. In fact, the genericity condition
needed in the last statement can be made quite precise. Let us say that a linkage L is degenerate if it has
an aligned configuration. A minute’s thought shows that this happens if and only if there exists an n-tuple of
“signs” s; = £1 such that ) s;l; = 0. Now, one can show that the moduli space M (L) is smooth (does not have
singular points) if and only if the linkage L is nondegenerate (see, e.g., [8]).

One can now consider various geometrically meaningful functions on the moduli space and study critical
points of those functions. Note that this makes sense even for a singular (nonsmooth) moduli space, because it
has a natural structure of a real algebraic variety, and for such varieties one has a natural definition of a critical
point and many other notions of differential topology (see, e.g., [2]). Taking into account the aforementioned
embedding of M (L) into R?"~*, we can consider restrictions to M (L) of polynomial functions on R?"~4. If the
moduli space M (L) is smooth and a function f : M (L) — R arises as the restriction of a certain smooth function
F on R*"~*  then the critical points of f can be found by the Lagrange method as the points p € M (L) such
that grad F' is orthogonal to the tangent space T,(M (L)) [1]. For a smooth moduli space, a natural idea is to
investigate its topology using the Morse theory of some natural smooth function on it, which requires a thorough
investigation of critical points of this function. We apply this approach to the signed (oriented) area regarded
as a function on the moduli space.

To this end, recall that for any configuration V' of L with vertices v; = (z;,y;),7 = 1,... ,n, its signed area
A(V) is defined by

A(V) = (Ilyg — Jf2y1) + ...+ (:z:nyl — xlyn).

Obviously, this formula defines a smooth function on R?”. Now, to obtain a smooth function on the moduli
space M (L) of any n-gonal linkage L, it is sufficient to make use of the chosen embedding of M (L) into R?*~*
by putting z; = y; = 0, o2 = l1, y2 = 0 in the above formula. If the moduli space is smooth, in this way we
obtain a smooth function A;, = A|M (L) on the compact manifold M (L) and, as said above, we can find its
critical points by the Lagrange method.

As was noticed in [11], from general principles of singularity theory it follows that A is a Morse function on
a generic moduli space, and so one can indeed use Morse theory to study the topology of moduli spaces if the
amount and indices of critical points are found. With this in mind, it was shown in [5] that, for n = 4 and
n = 5, all critical points of Ay, in M (L) are given by the cyclic configurations of a nondegenerate n-linkage L.
We generalize this result by proving that, under certain additional genericity assumptions, the same holds for
arbitrary n. We conclude this section by presenting a few remarks on linkages and the signed area which will be
used in the sequel.

Given an oriented configuration V = (vq,... ,v,) C R? of a linkage L and a point x € R?, we denote by wy, ()
the winding number of L around the point = (cf. [12]). Assume now that two polygonal linkages L;, L, have a
common edge with opposite orientations. We define their sum L = L; + Lo (which is again a polygonal linkage)
as the homological sum of these two cycles. Further, assume that two configurations Vi, Vs C R? of L; and Lo
have a common edge with opposite orientations. Clearly, the homological sum of V; and V5 is a configuration
of L + Ly. The following two properties of the signed area are well known and easy to prove directly using the
above definitions and remarks.

Lemma 1. 1. For the (signed) area of a configuration V one has
AV) = [ @)
R2

where \ denotes the Lebesque measure in R2.
2. If V.=V, + Vs, then A(V) = A(V1) + A(Va).
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For a configuration V of an n-linkage L and each k € [1,n], we denote by V* the quadrilateral formed by the
four consecutive vertices vy, Ug41, Vk42, Vg3 assuming that the diagonal vgvgys of V' is added as the fourth side
of V*. Each such quadrilateral V* will be called a side quadrilateral of V, and we denote by Q* the corresponding
quadrilateral linkage. We say that a configuration V' is strongly nondegenerate if all of its side quadrilaterals are
nondegenerate.

2. CYCLIC CONFIGURATIONS ARE CRITICAL POINTS OF THE SIGNED AREA

After these preparations, we are able to present the main result.

Theorem 1. Let L be a nondegenerate n-gonal linkage. A strongly nondegenerate configuration V of L is a
critical point of A|M (L) if and only if V is cyclic.

The proof is based on the similar result for n = 4 established in [5], which we reproduce as a lemma for the
reader’s convenience.

Lemma 2. Let L be a nondegenerate quadrilateral linkage. Then a configuration V of L is a critical point of
A|M (L) if and only if V is cyclic.

Note that all configurations of nondegenerate quadrilaterals are automatically strongly nondegenerate. It will
be convenient for us to speak of deformations of a given configuration V' € M (L), where the term “deformation”
means any configuration V’/ of L sufficiently close to V. The heuristics behind this term is that, generically, one
can in fact pass from V to V' by smoothly deforming the shape of V', or, which is the same, by changing the
angles of V. With all these definitions and observations at hand, we can prove the main result.

Proof. (“Only if”) Assume that V' = (v1,...,v,) is a critical point of A|M(L). Choose a natural number
k € [1,n — 3] and use the quadruple of consecutive vertices of V' starting with vy to decompose V into the sum
of two polygons:

—k
V= (v, Uk Ukt - 5 Un) + (Vs ks - o 5 Opg3) =V 4+ VE

In other words, we split the cycle along the diagonal vgvg 3. Let M (L) (respectively, M (Q*)) be the moduli
space of L (respectively, of Q¥). Our assumptions obviously imply that M (Q*) is a compact smooth one-
dimensional manifold and that in a neighborhood of the point V' we have a natural smooth embedding M (Q*) —
M (L). Indeed, a deformation of the closed quadrilateral V¥ yields a deformation of the whole L: we deform V'*

and keep the rest (i.e., Vk) fixed. (This is equivalent to saying that each configuration of Q¥ sufficiently close to
V¥ gives a uniquely defined configuration of L.)

Since V is a critical point, the configuration V* has to be a critical point of the area function on the moduli
space M(Q%). By Lemma 2, the quadrilateral V'* is cyclic. Since this holds for any k, the whole L is cyclic as
well.

(“If”) For a cyclic configuration V = (vq,... ,v,) of a nondegenerate n-gonal linkage L, consider the tangent
space Ty (M (L)) of the moduli space M (L) at the point V. First, note that the nondegeneracy of L implies that,
in a neighborhood of the point V', the moduli space M (L) is smoothly parameterized by the angles a1, ..., q,—3

of the configuration at the vertices vy,... ,v,_3.

Next, each deformation of V can easily be represented as a composition of some deformations (dk)f;lg such

that each of the deformations dj keeps fixed the vertices (vi,..., vk, Vg+3,...,0,). In other words, only the
quadrilateral V* = (vg,vpa1, Va2, Vpe3) is deformed in course of the deformation dj. Indeed, to decompose a
deformation, we first choose a deformation d; that adjusts the angle a;; next we choose a deformation dy that
adjusts the angle @y, and so on. This is obviously possible up to the angle «,,_3, and then the last three angles
are determined uniquely.

Therefore the tangent vectors to the curves M(Q*), k = 1,... ,n — 3, at the point V linearly generate the
tangent space Ty (M(L)). Dimension reasons imply that these curves form a basis. Since each configuration
V¥ is cyclic, grad A regarded as a vector in R?"~* is orthogonal to each of M(Q*), k = 1,... ,n — 3, at the
point V. Therefore grad A is orthogonal to Ty (M (L)) at the point V' as well, which implies that dA vanishes on
Ty (M(L)), ie., V is a critical point of A|M(L). This completes the proof.
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3. CONCLUDING REMARKS

A few remarks seem in place here. First of all, the condition of strong nondegeneracy is technical, since
it is suggested by our method of proving the theorem. We believe that the same result should hold for an
arbitrary critical configuration of a nondegenerate linkage, but there are subtleties caused by the possibility of
the appearance of degenerate side quadrilaterals.

In fact, there may well exist cyclic configurations with degenerate side quadrilaterals. For example, the regular
(all sides have the same length) pentagon linkage is nondegenerate but has an “isosceles-triangle-like” configu-
ration with one “triple” side (cf. [14]), which is obviously cyclic but has a strongly degenerate side quadrilateral
consisting of just one “thick” side obtained by piling four equal segments. Thus the direct application of our
approach is impossible in this case, since we cannot refer to Lemma 2. In this respect, it might be interesting
to look for conditions on the linkage L which guarantee that it does not have critical and cyclic configurations
with degenerate side quadrilaterals.

Next, one could try to overcome these subtleties by obtaining an analog of Lemma 2 valid for all (not
necessarily nondegenerate) quadrilaterals. In fact, there is good evidence that each A-critical configuration of a
quadrilateral linkage is either cyclic or aligned if one properly defines the notion of a critical point on a singular
moduli space. Making this idea precise seems reasonable and within reach using the machinery developed in
[2], but we will not go into that here since it is not completely clear if this may eventually give the desired
generalization. Let us illustrate possible complications by considering the moduli space M (R) of a rhomboid
R (all side lengths are equal). As is easy to verify, M(R) is homeomorphic to the union of three circles each
pair of which has one common point which is a singular point of M (R). The three singular points correspond
to three aligned configurations, only one of which, Vy with v; = wv3,v2 = vy, is cyclic. Both components of
M (R) containing Vy consist entirely of critical points of A|M(R) at which A vanishes (there are also one point
of maximum — “upward square,” and one point of minimum — “downward square”). We see that, indeed, all
A-critical configurations are either cyclic or aligned. However, the presence of continual components of critical
points complicates the situation, and it is unclear if our argument can be applied in such situations. So here are
several issues that require to be clarified.

Furthermore, a whole bunch of problems is related to calculating the Morse indices of cyclic configurations.
Not much is known in this direction beyond the first nontrivial case of pentagon linkages (cf. [11]). As explained in
[11], if one knows that the A-critical configurations of a linkage L coincide with the cyclic ones, then considerable
information about the topology of M (L) can be derived from the variety of results on the amount and geometry of
cyclic configurations obtained in [12, 14, 6]. Thus stronger versions of our theorem may have concrete corollaries
for linkages with fixed number of vertices.

All this shows that the relation between cyclic and critical configurations established in our theorem has a
number of interesting and unexplored aspects. It is our belief that further research in this direction may appear
rewarding.
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