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CYCLIC POLYGONS ARE CRITICAL POINTS OF AREAG. Panina∗ and G. Khimshiashvili† UDC 514.177.2
It is shown that typical critical points of the signed area function on the moduli space of a generic planar polygon
are given by cyclic configurations, i.e., configurations that can be inscribed in a circle. Several related problems are
briefly discussed in conclusion. Bibliography: 14 titles.

IntroductionAs usual, by a 
y
li
 polygon we understand a polygon that 
an be ins
ribed in a 
ir
le, i.e., there exists apoint (the 
enter of the 
ir
ums
ribed 
ir
le) equidistant from all verti
es of the polygon (see, e.g., [4℄). The studyof 
y
li
 polygons has a long history starting with elementary 
lassi
al results su
h as Ptolemy's theorem andBrahmagupta's formula (see, e.g., [4℄). Important results on the existen
e and geometry of 
y
li
 polygons wereobtained by J. Steiner [4℄. This topi
 
ontinues to attra
t 
onsiderable interest (see, e.g., [6, 14℄), in parti
ular,due to the results and 
onje
tures of D. Robbins 
on
erning the 
omputation of the areas of 
y
li
 polygons [12℄.The aim of this note is to show that 
y
li
 polygons 
an often be interpreted as 
riti
al points of the signed areafun
tion on the moduli spa
e of the 
orresponding polygonal linkage.Our 
onsiderations are performed in the 
ontext of polygonal linkages [3℄. Informally, linkages may be thoughtof as me
hanisms build up from rigid bars (sti
ks) joined at 
exible links (pin-joints). Linkages provide usefulmathemati
al models of various me
hani
al and 
hemi
al systems and suggest some interesting mathemati
alproblems. Spe
i�
ally, the moduli (
on�guration) spa
es of polygonal linkages were a
tively studied in the lastfew de
ades (see, e.g., [7, 13, 8℄). In parti
ular, the Morse theory of various fun
tions on moduli spa
es was
onsidered in [7, 8℄. Along these lines, we 
onsider the signed (oriented) area of a polygon [4℄ as a fun
tion onthe moduli spa
e of a generi
 planar polygonal linkage and show that, generi
ally, its 
riti
al points are given bythe 
y
li
 
on�gurations of the latter.It should be added that the interpretation of 
y
li
 polygons as 
riti
al points of the signed area fun
tionwas suggested in [11℄. As was shown in [5℄, this is indeed the 
ase for nondegenerate planar quadrilateralsand pentagons. We extend these results by proving that the same holds for generi
 
y
li
 
on�gurations ofnondegenerate polygonal linkages with arbitrary number of verti
es (pin-joints).We tried to make the exposition (reasonably) self-
ontained. To this end, in the �rst se
tion we give thene
essary information about the 
on�guration spa
es of linkages and the signed area of planar polygons. Theformulation and proof of the main result are presented in the se
ond se
tion. In the last se
tion, we brie
ydis
uss several related problems.
1. Preliminaries on polygonal linkagesPolygonal linkages (or, equivalently, polygons with �xed lengths of the sides [4℄) were a
tively studied fromvarious points of view for more than one 
entury (
f., e.g., [9℄). In parti
ular, the moduli (
on�guration) spa
esof planar polygonal linkages were investigated in big detail [7, 8℄. Those general results give a natural frameworkfor our 
onsiderations, and so we reprodu
e the ne
essary de�nitions in the form adjusted to our purposes.Re
all that an n-gonal linkage L is de�ned by an n-tuple of nonnegative numbers li (
alled the side lengthsof L) ea
h of whi
h is not greater than the sum of all the other ones [3℄. We also assume that not all of the sidelengths li are equal to zero. The N -th 
on�guration spa
e CN (L) of su
h a linkage is de�ned as the 
olle
tion ofall n-tuples of points vi in the N -dimensional Eu
lidean spa
e R

N su
h that the distan
e between vi and vi+1is equal to li, where i = 1; : : : ; n and vn+1 = v1. Ea
h su
h 
olle
tion V of points, as well as the 
orrespondingpolygon, is 
alled a 
on�guration of L. We assume that the 
orresponding n-gon is oriented by the given orderingof verti
es. A 
on�guration is 
alled 
y
li
 if all verti
es lie on a 
ertain 
ir
le and aligned if all verti
es lie onthe same straight line. Obviously, the latter type of 
on�gurations is a sort of limiting 
ase of the former.
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Fa
toring the 
on�guration spa
e CN (L) by the natural diagonal a
tion of the group Iso+(N) of orientation-preserving isometries of R
N , one obtains the N -th moduli spa
e MN (L) [8℄. Moduli spa
es, as well as 
on�gura-tion spa
es, are endowed with the natural topologies indu
ed by the Eu
lidean metri
. For N = 2, the modulispa
e M2(L) is usually 
alled the moduli spa
e of the planar polygonal linkage L, i.e., here one thinks of L asa linkage lying in a �xed Eu
lidean plane R

2. In the sequel, we will only 
onsider the moduli spa
e M2(L) anddenote it simply by M(L). It is easy to see that the moduli spa
e M(L) 
an be naturally identi�ed with thesubset of 
on�gurations su
h that v1 = (0; 0), v2 = (l1; 0) and thus 
an be 
onsidered as embedded into R
2n−4.It is also easy to realize that the moduli spa
e is 
ompa
t and 
an be represented as a level set of a 
ertainquadrati
 mapping (see, e.g., [10℄), whi
h implies that, for generi
 values of li, the planar moduli spa
e M(L)has a natural stru
ture of a 
ompa
t orientable manifold of dimension n − 3. In fa
t, the generi
ity 
onditionneeded in the last statement 
an be made quite pre
ise. Let us say that a linkage L is degenerate if it hasan aligned 
on�guration. A minute's thought shows that this happens if and only if there exists an n-tuple of\signs" si = ±1 su
h that ∑ sili = 0. Now, one 
an show that the moduli spa
e M(L) is smooth (does not havesingular points) if and only if the linkage L is nondegenerate (see, e.g., [8℄).One 
an now 
onsider various geometri
ally meaningful fun
tions on the moduli spa
e and study 
riti
alpoints of those fun
tions. Note that this makes sense even for a singular (nonsmooth) moduli spa
e, be
ause ithas a natural stru
ture of a real algebrai
 variety, and for su
h varieties one has a natural de�nition of a 
riti
alpoint and many other notions of di�erential topology (see, e.g., [2℄). Taking into a

ount the aforementionedembedding of M(L) into R

2n−4, we 
an 
onsider restri
tions to M(L) of polynomial fun
tions on R
2n−4. If themoduli spa
eM(L) is smooth and a fun
tion f :M(L) → R arises as the restri
tion of a 
ertain smooth fun
tionF on R

2n−4, then the 
riti
al points of f 
an be found by the Lagrange method as the points p ∈ M(L) su
hthat gradF is orthogonal to the tangent spa
e Tp(M(L)) [1℄. For a smooth moduli spa
e, a natural idea is toinvestigate its topology using the Morse theory of some natural smooth fun
tion on it, whi
h requires a thoroughinvestigation of 
riti
al points of this fun
tion. We apply this approa
h to the signed (oriented) area regardedas a fun
tion on the moduli spa
e.To this end, re
all that for any 
on�guration V of L with verti
es vi = (xi; yi); i = 1; : : : ; n, its signed areaA(V ) is de�ned by A(V ) = (x1y2 − x2y1) + : : :+ (xny1 − x1yn):Obviously, this formula de�nes a smooth fun
tion on R
2n. Now, to obtain a smooth fun
tion on the modulispa
e M(L) of any n-gonal linkage L, it is suÆ
ient to make use of the 
hosen embedding of M(L) into R

2n−4by putting x1 = y1 = 0, x2 = l1, y2 = 0 in the above formula. If the moduli spa
e is smooth, in this way weobtain a smooth fun
tion AL = A|M(L) on the 
ompa
t manifold M(L) and, as said above, we 
an �nd its
riti
al points by the Lagrange method.As was noti
ed in [11℄, from general prin
iples of singularity theory it follows that A is a Morse fun
tion ona generi
 moduli spa
e, and so one 
an indeed use Morse theory to study the topology of moduli spa
es if theamount and indi
es of 
riti
al points are found. With this in mind, it was shown in [5℄ that, for n = 4 andn = 5, all 
riti
al points of AL in M(L) are given by the 
y
li
 
on�gurations of a nondegenerate n-linkage L.We generalize this result by proving that, under 
ertain additional generi
ity assumptions, the same holds forarbitrary n. We 
on
lude this se
tion by presenting a few remarks on linkages and the signed area whi
h will beused in the sequel.Given an oriented 
on�guration V = (v1; : : : ; vn) ⊂ R
2 of a linkage L and a point x ∈ R

2, we denote by wL(x)the winding number of L around the point x (
f. [12℄). Assume now that two polygonal linkages L1; L2 have a
ommon edge with opposite orientations. We de�ne their sum L = L1 +L2 (whi
h is again a polygonal linkage)as the homologi
al sum of these two 
y
les. Further, assume that two 
on�gurations V1; V2 ⊂ R
2 of L1 and L2have a 
ommon edge with opposite orientations. Clearly, the homologi
al sum of V1 and V2 is a 
on�gurationof L1 +L2. The following two properties of the signed area are well known and easy to prove dire
tly using theabove de�nitions and remarks.Lemma 1. 1. For the (signed) area of a 
on�guration V one hasA(V ) = ∫

R2 wL(x)d�(x);where � denotes the Lebesgue measure in R
2.2. If V = V1 + V2, then A(V ) = A(V1) +A(V2).
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For a 
on�guration V of an n-linkage L and ea
h k ∈ [1; n℄, we denote by V k the quadrilateral formed by thefour 
onse
utive verti
es vk; vk+1; vk+2; vk+3 assuming that the diagonal vkvk+3 of V is added as the fourth sideof V k. Ea
h su
h quadrilateral V k will be 
alled a side quadrilateral of V , and we denote by Qk the 
orrespondingquadrilateral linkage. We say that a 
on�guration V is strongly nondegenerate if all of its side quadrilaterals arenondegenerate.
2. Cyclic configurations are critical points of the signed areaAfter these preparations, we are able to present the main result.Theorem 1. Let L be a nondegenerate n-gonal linkage. A strongly nondegenerate 
on�guration V of L is a
riti
al point of A|M(L) if and only if V is 
y
li
.The proof is based on the similar result for n = 4 established in [5℄, whi
h we reprodu
e as a lemma for thereader's 
onvenien
e.Lemma 2. Let L be a nondegenerate quadrilateral linkage. Then a 
on�guration V of L is a 
riti
al point ofA|M(L) if and only if V is 
y
li
.Note that all 
on�gurations of nondegenerate quadrilaterals are automati
ally strongly nondegenerate. It willbe 
onvenient for us to speak of deformations of a given 
on�guration V ∈ M(L), where the term \deformation"means any 
on�guration V ′ of L suÆ
iently 
lose to V . The heuristi
s behind this term is that, generi
ally, one
an in fa
t pass from V to V ′ by smoothly deforming the shape of V , or, whi
h is the same, by 
hanging theangles of V . With all these de�nitions and observations at hand, we 
an prove the main result.Proof. (\Only if") Assume that V = (v1; : : : ; vn) is a 
riti
al point of A|M(L). Choose a natural numberk ∈ [1; n− 3℄ and use the quadruple of 
onse
utive verti
es of V starting with vk to de
ompose V into the sumof two polygons: V = (v1; : : : ; vk; vk+3; : : : ; vn) + (vk ; vk+1; : : : ; vk+3) = V k + V k:In other words, we split the 
y
le along the diagonal vkvk+3. Let M(L) (respe
tively, M(Qk)) be the modulispa
e of L (respe
tively, of Qk). Our assumptions obviously imply that M(Qk) is a 
ompa
t smooth one-dimensional manifold and that in a neighborhood of the point V we have a natural smooth embeddingM(Qk) ,→M(L). Indeed, a deformation of the 
losed quadrilateral V k yields a deformation of the whole L: we deform V kand keep the rest (i.e., V k) �xed. (This is equivalent to saying that ea
h 
on�guration of Qk suÆ
iently 
lose toV k gives a uniquely de�ned 
on�guration of L.)Sin
e V is a 
riti
al point, the 
on�guration V k has to be a 
riti
al point of the area fun
tion on the modulispa
e M(Qk). By Lemma 2, the quadrilateral V k is 
y
li
. Sin
e this holds for any k, the whole L is 
y
li
 aswell.(\If") For a 
y
li
 
on�guration V = (v1; : : : ; vn) of a nondegenerate n-gonal linkage L, 
onsider the tangentspa
e TV (M(L)) of the moduli spa
eM(L) at the point V . First, note that the nondegenera
y of L implies that,in a neighborhood of the point V , the moduli spa
eM(L) is smoothly parameterized by the angles �1; : : : ; �n−3of the 
on�guration at the verti
es v1; : : : ; vn−3.Next, ea
h deformation of V 
an easily be represented as a 
omposition of some deformations (dk)n−3k=1 su
hthat ea
h of the deformations dk keeps �xed the verti
es (v1; : : : ; vk; vk+3; : : : ; vn). In other words, only thequadrilateral V k = (vk ; vk+1; vk+2; vk+3) is deformed in 
ourse of the deformation dk. Indeed, to de
ompose adeformation, we �rst 
hoose a deformation d1 that adjusts the angle �1; next we 
hoose a deformation d2 thatadjusts the angle �2, and so on. This is obviously possible up to the angle �n−3, and then the last three anglesare determined uniquely.Therefore the tangent ve
tors to the 
urves M(Qk); k = 1; : : : ; n − 3, at the point V linearly generate thetangent spa
e TV (M(L)). Dimension reasons imply that these 
urves form a basis. Sin
e ea
h 
on�gurationV k is 
y
li
, gradA regarded as a ve
tor in R

2n−4 is orthogonal to ea
h of M(Qk); k = 1; : : : ; n − 3, at thepoint V . Therefore gradA is orthogonal to TV (M(L)) at the point V as well, whi
h implies that dA vanishes onTV (M(L)), i.e., V is a 
riti
al point of A|M(L). This 
ompletes the proof.
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3. Concluding remarksA few remarks seem in pla
e here. First of all, the 
ondition of strong nondegenera
y is te
hni
al, sin
eit is suggested by our method of proving the theorem. We believe that the same result should hold for anarbitrary 
riti
al 
on�guration of a nondegenerate linkage, but there are subtleties 
aused by the possibility ofthe appearan
e of degenerate side quadrilaterals.In fa
t, there may well exist 
y
li
 
on�gurations with degenerate side quadrilaterals. For example, the regular(all sides have the same length) pentagon linkage is nondegenerate but has an \isos
eles-triangle-like" 
on�gu-ration with one \triple" side (
f. [14℄), whi
h is obviously 
y
li
 but has a strongly degenerate side quadrilateral
onsisting of just one \thi
k" side obtained by piling four equal segments. Thus the dire
t appli
ation of ourapproa
h is impossible in this 
ase, sin
e we 
annot refer to Lemma 2. In this respe
t, it might be interestingto look for 
onditions on the linkage L whi
h guarantee that it does not have 
riti
al and 
y
li
 
on�gurationswith degenerate side quadrilaterals.Next, one 
ould try to over
ome these subtleties by obtaining an analog of Lemma 2 valid for all (notne
essarily nondegenerate) quadrilaterals. In fa
t, there is good eviden
e that ea
h A-
riti
al 
on�guration of aquadrilateral linkage is either 
y
li
 or aligned if one properly de�nes the notion of a 
riti
al point on a singularmoduli spa
e. Making this idea pre
ise seems reasonable and within rea
h using the ma
hinery developed in[2℄, but we will not go into that here sin
e it is not 
ompletely 
lear if this may eventually give the desiredgeneralization. Let us illustrate possible 
ompli
ations by 
onsidering the moduli spa
e M(R) of a rhomboidR (all side lengths are equal). As is easy to verify, M(R) is homeomorphi
 to the union of three 
ir
les ea
hpair of whi
h has one 
ommon point whi
h is a singular point of M(R). The three singular points 
orrespondto three aligned 
on�gurations, only one of whi
h, V0 with v1 = v3; v2 = v4, is 
y
li
. Both 
omponents ofM(R) 
ontaining V0 
onsist entirely of 
riti
al points of A|M(R) at whi
h A vanishes (there are also one pointof maximum { \upward square," and one point of minimum { \downward square"). We see that, indeed, allA-
riti
al 
on�gurations are either 
y
li
 or aligned. However, the presen
e of 
ontinual 
omponents of 
riti
alpoints 
ompli
ates the situation, and it is un
lear if our argument 
an be applied in su
h situations. So here areseveral issues that require to be 
lari�ed.Furthermore, a whole bun
h of problems is related to 
al
ulating the Morse indi
es of 
y
li
 
on�gurations.Not mu
h is known in this dire
tion beyond the �rst nontrivial 
ase of pentagon linkages (
f. [11℄). As explained in[11℄, if one knows that the A-
riti
al 
on�gurations of a linkage L 
oin
ide with the 
y
li
 ones, then 
onsiderableinformation about the topology ofM(L) 
an be derived from the variety of results on the amount and geometry of
y
li
 
on�gurations obtained in [12, 14, 6℄. Thus stronger versions of our theorem may have 
on
rete 
orollariesfor linkages with �xed number of verti
es.All this shows that the relation between 
y
li
 and 
riti
al 
on�gurations established in our theorem has anumber of interesting and unexplored aspe
ts. It is our belief that further resear
h in this dire
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