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ON STOCHASTICALLY INDEPENDENT CONTINUOUS FUNCTIONS

K. Kalashnikov and G. Khimshiashvili UDC 519.21

Abstract. We discuss continuous functions that are stochastically independent as random variables.
It is shown that such functions are closely related to Peano curves which fill parallelotopes in Euclidean
spaces. An explicit construction of independent functions is presented which leads to a sufficiently
complete description of collections of stochastically independent continuous functions on an interval.
Several related results are also presented and a few open problems are formulated.
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Introduction

The notion of independent random variables is of fundamental importance in probability theory [1,
8]. Some curious and nontraditional aspects of this concept arise in connection with the following
definition which was considered in several papers (see, e.g., [3, 4, 7, 9]). We develop these aspects
further here.

Let us say that two functions on a compact probability space are stochastically independent if
they are independent as random variables. It seems that topology was not considered relevant to
the study of stochastically independent functions, perhaps because those were implicitly assumed to
have bad regularity properties. In fact, the typical examples of independent random variables, (e.g.,
Rademacher functions and their various modifications [8]) involve discontinuous functions. There are
even written statements that independent continuous functions do not exist (see, e.g., the editor’s
foreword to the Russian edition of M. Kac’s famous book on stochastic independence [8]).

However, nonconstant continuous independent (NCI) functions do exist (see, e.g., [3, 7]) and they
are naturally connected with interesting topological constructions like the famous Peano curve [11].
Moreover, one can ask interesting and quite nontrivial questions about stochastically independent
functions even in the context of smooth and real-analytic functions (e.g., the so-called Eidlin prob-
lem [4]).

In this paper, we address some basic geometric and topological aspects of independent continuous
and smooth functions. Our discussion consists of two parts. In the first (and shorter) part (Secs. 1
and 2) we present several simple results about smooth and (real-)analytic NCI functions on certain
manifolds, in particular, on two-dimensional closed surfaces. To this end we use a few basic notions of
differential topology. As usual, here and below the word “smooth” means “infinitely differentiable.”

In the second part, we deal with NCI continuous functions on intervals and parallelotopes. In
particular, we establish an intrinsic connection between independent continuous functions and Peano
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curves and give a comprehensive description of NCI functions on an interval (Theorem 3.1). The
discussion in this part is based on a few classical constructions presented in an excellent textbook
of N. Lusin [11] and deep results about homeomorphisms of measures obtained by J. von Neumann,
W. Oxtoby, and S. Ulam (see, e.g., [5, 12, 13]).

To give a more precise idea of the problems and results discussed below, let us first add a few words
about the setting accepted in the first part. By a closed surface, as usual, we mean a compact oriented
connected two-dimensional smooth manifold S without boundary. Recall that, for such a surface S,
one can consider its genus g(S) (or, equivalently, the Euler characteristic χ(S) = 2 − 2g(S)), which
is a complete topological invariant of closed surfaces [6]. Each such surface can be embedded in
three-dimensional Euclidean space R

3 as an algebraic surface, hence it also has a natural structure
of real-analytic manifold [6]. Assuming that such an embedding is fixed, we can endow S with
measure P which is induced by the Lebesgue measure in ambient space and normalize it by requiring
that P (S) = 1. This turns S into a probability space and enables one to speak of (stochastically)
independent functions on S. Hence one wonders how many independent continuous functions of certain
regularity class (e.g., Hölder, smooth, real-analytic) exist on S. We present some simple results in
this direction, which may hopefully serve as a sample for further investigation of independent smooth
functions on manifolds.

As to the second part, it is based on a well-known fact that independent continuous functions on
an interval can be constructed using Peano curves which fill parallelotopes in Euclidean spaces [3,
7]. We complement this observation by showing that this description is complete in a certain natural
sense. Namely, our Theorem 3.1 shows that constructing independent continuous functions on an
interval is essentially equivalent to constructing Peano curves. More precisely, each Peano curve can
be turned into one with independent components by applying an appropriate homeomorphism of its
image. Combined with other results presented in Sec. 3, this gives a seemingly curious description
of independent continuous functions in terms of Peano curves. The proof is based on some classical
results from [13]. We also outline connections of independent continuous functions with another type
of space-filling curves provided by the so-called thread theorem (see [5]).

Our joint research on this topic was started during a long-term visit of the first author to the
Institute of Computational Mathematics of the Georgian Academy of Sciences. The authors wish to
thank N. Vakhania and T. Shervashidze for stimulating discussions and valuable comments.

1. Preliminary Remarks

We need to use several standard concepts and paradigms of probability theory for which we refer
to [1, 15] and differential topology for which we refer to [6]. Let (X,B, P ) be a probability space [15].
Recall that any measurable function f : X → R can be naturally considered as a random variable.

Definition 1.1. Two measurable real functions f, g : X → R considered as random variables are
called (stochastically) independent if they are independent as random variables, i.e., for any a, b ∈ R,
one has P{f < a, g < b} = P{f < a}P{g < b}. In this case we say that g is an independent companion
for f (and vice versa) or that (f, g) is a pair of (stochastically) independent functions.

For brevity we omit the word “stochastically” and write simply “independent functions.” A constant
function is obviously independent of any other (measurable) function and we wish to exclude this trivial
case from the very beginning. So let us say that a continuous function f on X is (stochastically) tolerant
if it is nonconstant and admits a smooth independent nonconstant companion. One of the problems
we are interested in is to describe peculiar properties of tolerant functions.

Remark 1.1. The notion of a stochastically independent collection of functions (f1, . . . , fk) with
k > 2 is defined similarly. One should keep in mind that in higher dimensions this is a much stronger
condition than their pairwise independence [15].
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The results presented delow are based on two observations which we formulate as lemmas. Assume
that X is endowed with topology which turns it into a compact connected topological space. In such
case we say that X is a compact probability space.

Lemma 1.1. If f1, . . . , fk are independent continuous functions on a compact probability space X,
then the image of mapping F = (f, g) : X → R

k fills up a k-dimensional parallelotope (direct product
of k segments).

Proof. First, assume that k = 2. The space X is compact and connected and the images f(X) and
g(X) are compact and connected subsets of the real line. Hence they both are closed segments and
we can write f(X) = [a, b] and g(X) = [c, d]. We set B = [a, b] × [c, d]. Then it is easy to show that
F (X) = B. Indeed, if we assume that there exists an interior point (x, y) ∈ B outside F (X), then by
compactness of F (X) there exists a small quadrangle Q = [x−r, x+r]× [y−r, y+r] in B lying outside
F (X). Since f and g are continuous, the numbers P{x − r < f < x + r} and P{y − r < g < y + r}
are both strictly positive. Thus by the independence condition the number P{F ∈ Q} is also positive,
which contradicts the assumption and proves the statement. It is pretty clear now that the same
argument with obvious changes works for arbitrary k.

If a probability space X has in addition a structure of compact smooth manifold, then we say that
X is a smooth probability space. In such case we can speak of smooth functions, differentials, gradients,
regular and singular values, and other notions of differential topology [6]. Obviously, Definition 1.1
applied to smooth functions gives the notion of independent smooth functions.

Lemma 1.2. Let f1, . . . , fk be independent smooth functions on a smooth probability space. Then a
point c = (c1, . . . , ck) is a regular value of F = (f1, . . . , fk) if and only if each cj is a regular value
of fj.

Proof. It is known and easy to verify that, for smooth independent smooth random variables, the
probability density of their joint distribution F is equal to the product of probability densities of the
components fj . In our situation, if we introduce a Riemannian metric on X, the densities become
nonzero multiples of the lengths of gradients grad fj . It follows that J(p) is nonzero if and only if all
gradients at this point are nonzero, which is equivalent to the statement of the lemma.

Corollary 1.1. On an n-dimensional compact connected manifold X, there cannot exist collections
of k > n independent smooth functions.

Indeed, it is well known that a smooth mapping cannot increase the dimension [6] and so the image
of an n-dimensional manifold cannot fill up a parallelotope of dimension bigger than n. Taking this
into account, it remains to refer to Lemma 1.1.

We emphasize that the condition of smoothness is essential. In fact, a similar statement is not
correct for continuous functions. As will be explained below, for any natural k, one can construct a
collection of k independent smooth functions on the unit interval I = [0, 1] by taking the coordinate
functions of an appropriate Peano curve which regularly fills up the cube Ik (see [2]).

Corollary 1.2. On a closed surface S, there can only exist pairs of independent smooth functions.

In the next section we will take a closer look at independent smooth functions on two-dimensional
surfaces.

2. Independent Functions on Two-Dimensional Surfaces

It is obvious that the standard angular coordinates on the torus T 2 = S1 × S1 provide a pair of
smooth (in fact, real analytic) functions on T 2. Moreover, pairs of independent smooth functions on
a closed surface S of arbitrary genus g > 1 can be constructed from the polar coordinates on the unit
disc using its well-known representation as the universal covering space of S (see, e.g., [9]).
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Proposition 2.1. On each orientable closed surface there exist pairs of independent nonconstant
smooth functions.

We omit the proof because more general statements will be established in the sequel. It is now
natural to wonder if there exist essentially different pairs of smooth independent functions. Notice
that, given such a pair (f, g), one can obtain new independent pair (f ◦Φ, g◦Φ) by composing it (on the
right) with any measure preserving diffeomorphism Φ : S → S. This provides a natural equivalence
relation on the set of pairs of independent smooth functions on S and it would be interesting to
describe the set of equivalence classes. For independent functions on the unit interval I, some results
in this direction are presented in the next section. We conclude this section by giving some “no-go”
results in the real-analytic case.

For a smooth function f , denote by E(f) the set of all points where f has a local extremum
(minimum or maximum). The next geometric property of independent functions follows from the
above remarks (cf. also [4]).

Lemma 2.1. Let f, g be independent smooth functions on S and let p ∈ E(f) be such that g is
nonconstant in an arbitrary small neighborhood U of p. Then g(U \ E(f)) is a set with nonempty
interior in R (i.e., it contains an open interval).

We apply this to a pair of real analytic functions. Since a nonconstant analytic function g does not
vanish on any open subset and cannot increase dimension, we see that the connected components of
E(f) are one-dimensional.

Corollary 2.1. A tolerant analytic function on a closed surface attains its maxima and minima on
one-dimensional subsets.

Remark 2.1. Note an apparent similarity with the so-called round functions whose critical sets con-
sist of several smooth one-dimensional components [10]. This connection may appear useful because
round functions on closed surfaces are sufficiently well understood [10].

From the above it follows that the sets of maxima and minima of an analytic tolerant function f on
a closed surface S define one-dimensional analytic closed chains [4]. Thus they define certain elements
in the first homology group H1(S, Z2) with coefficients in Z2 and one can show that at least one of
these elements should be nontrivial. Since the homology groups and the fundamental groups of closed
surfaces are well known, we can derive some concrete conclusions.

Proposition 2.2. There are no nonconstant tolerant analytic functions on a two-dimensional sphere S2.

This follows from the preceding remarks because H1(S2) = 0. In other words, on S2 do not exist
independent nonconstant analytic functions (notice that S2 admits no round functions as well [10]).
We feel that the same conclusion should be correct for any closed surface except T 2, but the above
argument with homology groups is insufficient. Similar results are available for nonorientable compact
surfaces. For example, no independent analytic functions exist on the projective plane RP

2.
Of course, the same problems are meaningful and nontrivial in any dimension. However, at present

we are not able to add much about the higher-dimensional cases and so we postpone a more detailed
discussion of independent smooth functions for future publications. In the rest of this paper we
concentrate on investigating independent continuous functions on intervals and parallelotopes.

3. Independent Functions and Space Filling Curves

Apparently, the most direct and simple way of constructing independent continuous functions is
based on the use of certain space filling curves. Let us begin with the two-dimensional case. Given
two independent continuous functions u and v on the segment I = [0, 1], consider the function f =
u + ıv : I → C. Let u(I) = [a1, a2] and v(I) = [b1, b2]. Then by Lemma 1.1 we conclude that
f(I) = [a1, a2], [b1, b2].
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Since u and v are continuous we obtain a continuous curve (path) which fills up a rectangle. Such
curves are well known and are often called Peano curves (see [2, 11]). A rich class of such curves
including the original Peano curve have indeed the property that the components are independent.
We reproduce here an explicit construction of such curves given in [3]. Let

X = {f : I → I2}, X0 = {f ∈ X ∩ C(I) : f(0) = 0, f(1) = 1}.
It is well known that X and X0 endowed with the uniform norm are complete metric spaces. Consider
the operator T : X → X defined by the formulas

Tf(t) = ıf(4t)/2 if t ∈ [0, 1/4); Tf(t) = [f(4t − 1) + ı]/2 if t ∈ [1/4, 1/2);

Tf(t) = [1 + ı + f(4t − 2)]/2 if t ∈ [1/2, 3/4); Tf(t) = [1 + ıf(4 − 4t)]/2 if t ∈ [3/4, 1].
It is easy to verify that T is a contraction and that

‖Tf − Tg‖ ≤ 1
2
‖f − g‖.

According to Banach’s fixed point theorem, there exists exactly one function F ∈ X such that TF = F ;
moreover, Tnf → F for every f ∈ X. It turns out that F is a Peano function which fills up the square.
Set F = u + ıv and denote by λ the Lebesque measure. The main properties of the function F are
collected in the following proposition.

Proposition 3.1 (see [3]). (i) T (X0) ⊂ X0;
(ii) F ∈ X0 and F (I) = I2;
(iii) λ ◦ F−1 = λ ⊗ λ, i.e., u and v are independent and uniformly distributed.

From this proposition one derives the following corollary which shows that there are sufficiently
many pairs of NCI functions on an interval.

Corollary 3.1. Let u, v : I → R be two continuous function. Then there exist two independent
continuous functions U and V such that λ ◦ u−1 = λ ◦ U−1 and λ ◦ v−1 = λ ◦ V −1.

Indeed, one can just set U = u(Re F ) and V = v(Im F ), where F is the Peano function constructed
above.

As was shown in [3], the above construction of Peano curves can be generalized by using a more
general definition of operator T . In this way, one obtains further examples of independent continuous
functions on I. Furthermore, using the same construction and reasoning one can construct continuous
curves which fill up parallelotopes of arbitrary fixed dimension and such that their components are
independent. In this way one obtains collections of independent continuous functions of arbitrary
finite cardinality. Moreover, one can strengthen the latter conclusion by constructing continuous
curves which fill up the Hilbert cube and such that their components are independent. This enables
one to show that there exist even countable collections of independent continuous functions on the
unit interval [7].

Thus each collection of independent continuous functions provides a Peano curve filling up a par-
allelotope. At the same time, it is easy to construct a Peano curve such that its components are
not independent. In fact, this can be done by an arbitrarily small perturbation of the Peano curve
constructed above. This can be used to show that, in a certain explicit sense, “generic” Peano curves
do not come from independent continuous functions. However, it turns out that each Peano curve can
be transformed into a curve with independent components by applying an appropriate homeomor-
phism of its image. This is the content of Theorem 3.1 which is our main result. We present it here
for convenience of the reader but the proof will be given in the next section after recalling necessary
concepts and results concerned with transformations of measures.

Theorem 3.1. Let F : I → In be a continuous surjective mapping (Peano curve). There exists a
homeomorphism Φ : In → In such that the components of the curve Φ ◦F are independent continuous
functions.
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This gives a sufficiently complete description of independent continuous functions on an interval.
It is now quite easy to construct NCI functions on parallelotopes. First of all, coordinate functions
are obviously independent on each parallelotope, so one has at least d independent continuous (actu-
ally, real-analytic functions) on a d-dimensional parallelotope. Collections of independent continuous
functions of cardinality bigger than the dimension of parallelotope considered can be constructed from
obvious analogs of Peano curves. More precisely, there always exist surjective continuous mappings
Id → In and they can be constructed in such a way that their components are independent. Thus
their exist arbitrarily long collections of independent continuous functions on each parallelotope and
even countable collections of independent continuous functions. One can also prove a natural analog
of Theorem 3.1 for parallelotopes of arbitrary dimension. We do not go into details which are rather
obvious. Thus with regard to independent functions the case of Id is completely analogous to the case
of I. The reason why this is so will become clear from the discussion in Sec. 4.

It is now natural to wonder what are the possible regularity classes of independent functions on I. It
can be shown that there do not exist independent functions of finite variation [3]; in particular, there
are no differentiable independent functions (the latter fact was already mentioned above). However,
as was shown in [7], one can construct independent functions which are Hölder continuous with an
exponent not exceeding one-half. We will not go into these aspects and conclude this section by
formulating a number of further problems.

Recall that, given a map F : X → Y , the multiplicity mF (y) of a point y ∈ Y with respect to F is
defined as the cardinality of F−1(y) (if this set is infinite we put mF (x) = ∞). If y /∈ F (X) then we put
mF (y) = 0. The multiplicity of map is defined as the maximum of point multiplcities. One may wonder
what is the multiplicity of Peano curves constructed above and in [3]. For the curve constructed above,
from the discussion in [11] it follows that the multiplicity is equal to 4. As was shown by Hilbert, there
exist Peano curves filling the square with multiplicities not exceeding 3 (see [11]). Since composing
with a homeomorphism does not change the multiplicity, from the mentioned result of Hilbert and
our Theorem 3.1 it follows that their exist pairs of NCI functions of multiplicity 3, which apparently
would be not so easy to prove directly.

For n-dimensional parallelotopes, it can be shown that the multiplicities of Peano curves provided
by the construction presented above are equal to 2n. Thus we arrive at a natural problem: what is the
minimum of multiplicities of continuous curves filling n-dimensional parallelotopes and such that their
components are independent functions? Our conjecture is that there exist continuous curves filling an
n-dimensional parallelotope with multiplicities not exceeding n + 1 but for proving this one needs a
thorough analysis of multidimensional analogs of Hilbert’s construction.

Thus we have achieved a reasonable understanding of the structure and storage of independent
continuous functions on an interval and it becomes natural to address the same questions for more
complicated probability spaces, but we cannot go into that in this paper. In the next section we
present some general results of measure theory which are crucial for proving Theorem 3.1.

4. Independent Functions and Measure Preserving Automorphisms

One can also approach the construction of independent continuous and smooth functions using
general results on measure preserving automorphisms of compact spaces obtained by J. von Neumann,
W. Oxtoby, and S. Ulam [12, 13]. To describe this approach we introduce the necessary definitions
and terminology.

A finite outer measure on a set (space) E is a function m∗ defined for all subsets of E and satisfying
three conditions:

(1) 0 ≤ m∗A ≤ m∗e, 0 < m∗E ≥ ∞, m∗(∅) = 0;
(2) m∗A ≤ m∗B if A ⊂ B;

(3) m∗
( ∞⋃

n=1
An

)
≤

∞∑
n=1

m∗(An).
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A set A is measurable with respect to m∗ if m∗W = m∗(W ∩ A) + m∗(W ∩ (E\)) for every subset
W ⊂ E. The function m∗ is completely additive with respect to its class of measurable sets, and the
measure function thus derived from m∗ by restricting its domains is denoted by m.

If E is a metric space, a Caratheodory outer measure is defined as an outer measure which also
satisfies the condition

(4) m∗(A + B) = m∗A + m∗B if the distance between A and B is positive.
The measurable sets then include all Borel sets. By a Lebesgue–Stieltjes (LS) outer measure on

a polyhedron, we shall understand a finite Caratheodory outer measure which satisfies the further
condition

(5) m∗A = inf m∗G for all open G ⊃ A.
An LS measure on an r-dimensional polyhedron E, r ≥ 1, will be called r-dimensional if it is zero

for points, zero for the set of singular points (lower-dimensional faces), and positive for neighborhoods
of regular points. The set of all automorphisms of a polyhedron E (or of any compact metric space)
is made into a metric space H[E] by the definition

d(g, h) = max[max d(g(x), h(x)), max d(g−1(x), h−1(x))], x ∈ E.

The closed subgroup of H[E] consisting of automorphisms that leave all boundary points fixed
will be denoted by H [E]. The subspace of H[E] consisting of all measure-preserving automorphisms
(isomerisms) with respect to a given LS measure m will be denoted by M [E, m]. We shall write simply
M [E] if m is the ordinary r-dimensional Lebesgue measure on E ⊂ R

n, r < n. The closed subgroup
of M [E] consisting of automorphisms that leave all boundary points fixed will be denoted by M [E].

The following two results obtained by J. von Neumann, W. Oxtoby, and S. Ulam [12, 13] give
a comprehensive description of automorphisms of measures (measure preserving homeomorphisms).
The second of them is of crucial importance for our approach while the first one is presented for
completeness and so its proof is omitted.

Theorem 4.1 (see [13]). Let E be any regularly connected polyhedron of dimension r ≥ 2, and let m
be any r-dimensional LS measure on E. Then the set of all metrically transitive automorphisms is a
residual Gδ-set in the space M [E, m] of measure-preserving automorphisms of E.

Theorem 4.2 (see [13]). In order that a given outer measure m∗ defined for all subsets of polyhedron
E ⊂ R

n be automorphic to the Lebesgue outer measure L∗ it is necessary and sufficient that it satisfies
conditions (1)–(5), and also

(6) m∗G > 0 if G is a nonempty open subset ;
(7) m∗p = 0 for every point p;
(8) m∗(bd, E) = 0 and m∗E = L(E).

If m∗ satisfies these conditions there exists an automorphism h of E such that m∗A = L∗h(A) for
every A ⊂ E, and such that h leaves the boundary fixed.

In the case where r = 1, Theorem 4.2 is trivial. Indeed, suppose E is the unit interval [0, 1] and put
h(x) = m([0, x]). Then it is easy to verify that h satisfies all conditions listed in Theorem 4.2. For
arbitrary r, the proof is based on a sequence of lemmas whose motivation lies in the idea of securing
first that m(A) = L(h(A)) for all sets of a division automorphic to a dyadic subdivision. Then h is
modified within each of these sets so as to secure equality for the sets of a finer subdivision. Finally,
a convergent sequence of such modifications is obtained and the limiting automorphism affects the
desired transformation for all sets. Before presenting the lemmas let us show that Theorem 4.2 indeed
implies Theorem 3.1.

Proof of Theorem 3.1. Consider a Peano curve F : I → In filling in In. Introduce a measure on
E = In by setting m(X) = λ1F

−1(X) for any Borel set X ⊂ E, where λ1 denotes the one-dimensional
Lebesgue measure on I. Then it is easy to verify that measure m satisfies all the conditions of
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Theorem 4.2. Hence by the latter theorem, there exists an automorphism h of E such that λnh(X) =
m(X) = λ1F

−1(X). Thus for G = h ◦F we get that λn(X) = λ1G
−1(X) for any Borel subset X ⊂ E,

which by definition means that the components of the curve h◦F are independent. Thus, Theorem 4.2
indeed implies Theorem 3.1.

We now formulate the lemmas needed for proving Theorem 4.2 and present outlines of their proofs.

Lemma 4.1. Let m be any LS measure on E that is zero for points and for the boundary and let a
be any number in the interval (0, m(E)). There exists an open set G contained in the interior of E
such that m(G) = a.

Lemma 4.2. Let m be any LS measure on E that is zero for points and for the boundary. Let e1 and
e2 be the two cells obtained by bisecting E perpendicularly to one of its edges. Let a1 and a2 be any
two positive numbers such that a1 + a2 = m(E). There exist an automorphism h ∈ H [E] such that
m(h(e1)) = a1, m(h(e2)) = a2.

Lemma 4.3. Let m be any LS measure in E that is zero for points and for the boundary. Let
s1, . . . , sN be the cells of any dyadic subdivision of E, and let a1, . . . , aN be associated positive numbers
whose sum is equal to mR. There exists an automorphism h ∈ H [E] such that mh(si) = ai, i =
1, . . . , N .

Lemma 4.4. Let m be any LS measure on E that is zero for points and for the boundary. There
exists an automorphism h ∈ H [E] such that for every dyadic cell s we have m(h(bd s) = 0.

Lemma 4.5. Let m, v be two r-dimensional LS measures on E such that mE = vE, and let d > 0 be
given. There exists automorphisms g, h ∈ H [E] such that, for each cell s of a certain dyadic subdivision
of E, we have m(g(s)) = v(h(s)); m(g(bd s)) = v(h(bd s)) = 0; diam g(s) < d, diam h(s) < d,
diam s < d.

Lemma 4.6. Any two r-dimensional LS measures m, v on E such that m(E) = v(E) are automorphic
to each other under an automorphism that leaves the boundary fixed.

Proof of Lemma 4.1. Since m(E) < ∞, there can be at most countably many planes parallel to the
faces of E that intersect E in sets of positive m-measure, hence we can divide E into a finite number
of rectangular r-cells s1, . . . , sN of diam < 1/2 whose boundaries all have m-measure zero. Let i be
the least integer such that m(s1 + · · · + si) ≥ a and let G1 be the union of interiors of s1, . . . , si−1.
Then m(G1) < a, but m(G1) + m(s1) ≥ a.

Now consider the cell si, denote it by R1 and divide it into rectangular cells si,1, . . . , si,Ni of diam <
1/4. Again, we find an open set G2 ⊂ R1 such that m(G1 + G2) < a and m(G1 + G2) + m(R2) = a,
where R2 has an analogous meaning. Proceeding in this manner, we find disjoint open sets G1, G2, . . .
contained in the interior of E and sequence of rectangular r-cells R1, R2, . . . such that diamRn → 0
and a − m(Rn) ≤ m(G1 + . . . + Gn) < a, n ≥ 1. The cells Rn intersect in a point p and we have
lim m(Rn) = m(p) = 0 (by hypothesis), hence m(G) = a.

The next lemma is crucial. Its complete proof is rather tedious and so we only present an outline
of the argument. The details can be found in [13].

Sketch of proof of Lemma 4.2. Let H1 be the set of automorphisms h ∈ H
[R]
0 such that m(h(R1)) ≥ a1

and m(h(R2)) ≥ a2. This is a closed set. Let {hn} be any sequence of automorphisms in H1 tending
uniformly to h; then any neighborhood of h(Ri), i = 1, 2, . . ., contains hn(Ri) for all sufficiently large
n, and therefore has m-measure at least ai. It can be proved that H1 is a nonempty closed subset
of a complete space, hence it is also complete. For each natural n, put En = {h ∈ H1 : m(h(R1)) ≥
a1 + 1/n}. For each n, it is a set of first category in the sense of Baire, hence the set H1 \

∞⋃
n=1

En

is residual. The same is done for R2, i.e., it is proved that the set of automorphisms h such that
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m(h(R2)) = a2 is also residual in H1. Thus we get two sets of second category in H1, hence their
intersection is dense in H1. It remains to note that each element of this intersection satisfies the
desired property, which completes the proof of Lemma 4.2.

Lemma 4.3 is a direct generalization of Lemma 4.2 to the case of N cells. The proof is purely
technical and is based on repeatedly applying Lemma 4.2 to a dyadic sequence of subdivisions in
which each subdivision is a refinement of the preceding one. Details can be found in [13].

Sketch of proof of Lemma 4.4. The proof is again based on considerations involving the Baire category.
Let R1 be the (r−1)-dimensional cell in which E is intersected by any one of the planes used in forming
dyadic subdivisions. Let An be the set of automorphisms h ∈ H

[R]
0 such that m(h(R1)) ≥ 1/n. Then

the set An is nowhere dense, and H0 −
∞⋃

n=1
En is residual. The intersections of the residual sets

corresponding to each of the countably many planes used in forming dyadic subdivisions is therefore
also residual, and the automorphisms belonging to this set have the required property.

In order to prove Lemma 4.5 it is sufficient to apply the preceding lemmas to a pair (measure,
automorphism) for each of the two measures separately. This immediately gives the existence of
automorphisms with the required properties.

Sketch of the proof of Lemma 4.6. The proof is conceptually simple but technically rather involved.
First, one constructs a sequence of partitions of E into cells s1, . . . , sn (elements of each partition
are numbered by upper indices) and two sequences of automorphisms gn, hn ∈ H [E] satisfying four
properties, three of which are the same as in Lemma 4.5 but for en−(1/2)n diam E, and the fourth one
reads: gn = gn−1 on sn−1

i , i = 1, . . . , Nn−1 and similarly for hn and hn−1. It is now possible to show
that sequences gn and hn are convergent in H [E], say, to g and h, respectively. Then for measures
m′(A) = m(g(A)) and v′(A) = v(h(A)), one can prove that

m′(G) =
∞∑

k=1

m′(sk) =
∞∑

k=1

v′(sk) = v′(G),

where G =
∞⋃

k=1

sk is an open set. Hence m′∗ and v′∗ agree for open sets and therefore for all sets. Thus

m∗(A) = v∗(h(g−1(A))) for every set, and Lemma 4.6 is proved.

Now Theorem 4.2 follows at once from Lemma 4.6 by taking v = L the Lebesgue measure, which,
as was shown above, gives also the proof of Theorem 3.1.

In order to prove the existence of independent smooth functions on closed manifolds we need a re-
finement of Theorem 4.2. Let us say that measure is of class Ck, k = 1, 2, . . . ,∞, if it possesses density
of the same regularity class, in other words, if there exists a Ck-function p such that m(A) =

∫
A p.

Theorem 4.3. Let m∗ be an outer LS-measure of class Ck defined for all subsets of polyhedron E ⊂
R

n which satisfies all conditions of Theorem 4.2. Then there exists a Ck-diffeomorphism h of E such
that m∗A = L∗h(A) for every A ⊂ E and h leaves all points of the boundary fixed.

The proof reduces to checking that, with the assumptions of the latter theorem, the homeomorphism
h constructed in the proof of Theorem 4.2 appears smooth of the same regularity class. The details
are fairly standard and therefore we omit them. Having this theorem one may repeat the argument
used for deriving Theorem 3.1 from Theorem 4.2. Recall that there always exists a smooth surjective
map f of a closed manifold on a cube E of the same dimension such that the set of singularities has
measure zero [6]. Having such a map we obtain a measure m on E by putting m(A) = μ(f−1(A)) for
each measurable set A, where μ is an a priori fixed measure on the manifold. It is easy to see that m
satisfies all conditions of Theorem 4.3. Hence there exists a diffeomorphism h transforming measure
m in the Lebesque measure on E. Obviously, components of the composition h◦f provide a collection
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of independent smooth functions on the given manifold. In this way we obtain a generalization of
Proposition 2.1.

Theorem 4.4. Each closed n-dimensional Ck-manifold possesses collections of n nonconstant inde-
pendent Ck functions.

Thus all the results formulated in this paper are proved. We postpone the discussion of its gener-
alizations and applications for future publications.
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