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CONFIGURATION SPACES AND SIGNATURE FORMULAS
G. Khimshiashvili UDC 515.16

ABSTRACT. We show that nontrivial topological and geometric information about configuration spaces
of linkages and tensegrities can be obtained using the signature formulas for the mapping degree and
Fuler characteristic. In particular, we prove that the Euler characteristics of such configuration spaces
can be effectively calculated using signature formulas. We also investigate the critical points of signed
area function on the configuration space of a planar polygon. We show that our approach enables
one to effectively count the critical points in question and discuss a few related problems. One of
them is concerned with the so-called cyclic polygons and formulas of Brahmagupta type. We describe
an effective method of counting cyclic configurations of a given polygon and formulate four general
conjectures about the critical points of the signed area function on the configuration space of a generic
planar polygon. Several concrete results for planar quadrilaterals and pentagons are also presented.
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Introduction

We describe several new applications of the signature formulas for topological invariants [15] to the
topological study of configuration spaces of linkages [12] and tensegrities [19]. Our approach is based
on the possibility of representing the configuration spaces in question as the fibers of proper polynomial
mappings and calculating their topological invariants by the so-called signature formulas [15]. In such
manner we obtain a number of general results about configuration spaces and investigate in some
detail the critical points of the signed area function on the configuration space of a planar polygon.

In line with this strategy, we begin by presenting some general results about polynomial mappings
and signature formulas. The formula for the Euler characteristic in the form suggested in [5] is
especially relevant for our purposes and so we reproduce it as Theorem 1.1. In the second section
we collect the necessary information about configuration spaces of linkages and tensegrities. We show
that the configuration spaces we deal with are compact algebraic or semi-algebraic subsets so that the
signature formulas enable one to calculate their Euler characteristics.

Next, we consider the signed area as a function on the configuration space of a planar polygonal
linkage and study its critical points. A general method of counting its critical points is described and
a few concrete results are presented. It turns out that in all those cases the critical points are given
by the the so-called cyclic configurations (i.e., the ones which can be inscribed in a circle) of linkage.
For this reason we study the cyclic configurations as well and, in particular, give a general method
of counting those configurations by means of signature formulas. We also discuss some corollaries
and related results concerned with the areas of cyclic polygons and generalized Heron polynomials of
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D. Robbins [20]. In conclusion, we formulate four general conjectures about the critical points of an
area function which are suggested by our results and considerations.

Acknowledgment. This work was partially supported by GNSF (project No. 07-9303-100) and
INTAS (project No. 06-1000017-9093).

1. Signature Formulas for Topological Invariants

The algebraic formulas for the mapping degree [7, 13] and Euler characteristic [5, 13| have already
found many applications in concrete problems of geometry, topology, and singularity theory (cf. [15]).
They are often called signature formulas [15] because they express the topological invariants in question
in terms of signatures of effectively constructible quadratic forms. As was outlined in [13] and further
developed in [5, 14], those formulas, in particular, provided an effective method for calculating the
Euler characteristic of an explicitly given compact algebraic or semi-algebraic subset. It should be
added that thanks to the existing computer programs for calculating the mapping degree (see, e.g., [18])
such calculations can be done quite effectively.

Recall that a real polynomial mapping F : R® — R? is defined by a collection of ¢ polynomials
Fy, ..., F; in s variables with real coefficients. We will only deal with the cases where s > t. If s =,
then F is called a polynomial endomorphism (or a polynomial vector field as in [2]).

For any y € RY, the set FF~1(y) is called a fiber of F over the point y. A point z € R* is called a
regular point of F' if the rank of Jacobi matrix J(F')(x) is maximal, i.e., equal to ¢ (for s = ¢ this is
obviously equivalent to det JF(z) # 0). In the opposite case (i.e., if this rank is less than t¢) point z
is called a singular point of F. A fiber F~!(y) is called regular if it does not contain singular points of
F'. In this case the point y is called the regular value of F. The set of regular values of F' is denoted
Reg F'.

As is well known, each regular fiber is a smooth manifold of dimension s —t (see [4]). A mapping F
is called proper if the preimage F~!(X) of any compact set X C R! is a compact set in R® (here and
below we only consider the topologies induced by Euclidean metric). For convenience and brevity, a
proper real polynomial mapping F' as above will be referred to as a propomap.

Thus the fibers of a propomap are compact algebraic varieties. Correspondingly, regular fibers of a
propomap F are compact smooth manifolds. By Sard’s lemma [2], the set of singular values of F' has
measure zero, so a “generic” fiber of F' is a smooth compact manifold of dimension s — t.

In particular, if s = ¢, then each fiber F~!(y) consists of a finite amount of points and it appears
reasonable to consider the algebraic number of preimages of y, which leads to the concept of the
mapping degree. More precisely, one can define the mapping degree deglF’ by the well-known formula

deg F' = Z signdet JF(x), (1.1)
zeF~1(y)

where sign denotes the sign of a real number, and y € Reg F' is an arbitrary regular value of F.

The sum on the right-hand side does not depend on y € Reg F' so we obtain an invariant of F.
Moreover, the degree is invariant under proper homotopies and enjoys some other nice properties
which make it very useful in many problems of topology and nonlinear analysis. An important role is
also played by a local version of this notion, the local (topological) degree of an endomorphism which
is often called the index of an isolated zero of a vector field [2].

The local degree deg, F' of a given polynomial endomorphism F' is defined at any point p which
is isolated in F~1(F(p)). What is especially important is that, from the results of [7, 13], it follows
that deg,F' can be computed in a purely algebraic way as the signature of a certain nondegenerate
quadratic form which is explicitly constructible using the coefficients of components F; of F. The
same refers to the (global) topological degree deg F'. This method of computing topological degree
can be implemented as a computer algorithm based on the computation of the Grobner basis of the
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ideal (F') generated by the components of F' in the algebra of real polynomials in s indeterminates
(see, e.g., [18]).

The mapping degree provides one of the main topological tools of real algebraic geometry and we
essentially use the fact that the Euler characteristic of any fiber of a given propomap can be expressed
through the local degree as follows. As is known, it is sufficient to deal only with the case where all
components of the map are homogeneous polynomials of the same degree.

Let F : R® — R be a propomap with the components F; of degree d. Let y € R, X, = F~Y(y), and

fi=F;—y;,i=1,...,t. Note that X, is a compact real algebraic variety, so its Euler characteristic
is well-defined [4]. Set
t s
hi(zo, - .., xs) = 231, <ﬂ o “7—) L OHy =Y hE Y g
0 0 j=1 k=0

Denote by grad H, the gradient of H,, considered as a polynomial endomorphism of R**1.

Theorem 1.1 (see [5]). With the assumptions and notation as above, polynomial H, has an isolated
critical point at the origin and the Euler characteristic of Xy is given by the formula

2x(Xy) = (—1)% — degg grad Hy, (1.2)
where degg grad H, denotes the local degree of grad H, at the origin of Rs+L,

Since the local degree is equal to the signature of the so-called Gorenstein quadratic form on the
local algebra of mapping [7, 13], this theorem shows that the Euler characteristic is expressible through
the signature of an explicitly constructible quadratic form. For this reason, we refer to formula (1.1)
as the signature formula for the Fuler characteristic. Using this formula and a standard process of
eliminating inequalities by considering two-fold coverings [4], [14], one can obtain a similar result for
a compact semi-algebraic subset.

Theorem 1.2 (see [14, 15]). The Euler characteristic of an explicitly given compact semi-algebraic
subset can be calculated in the algorithmic way through the signatures of explicitly constructible qua-
dratic forms.

In the next section we apply these results to the topological study of mechanical linkages and
tensegrities.

Remark 1.1. For a quadratic mapping F', another way of calculating the Euler characteristics of
fibers was proposed in [1]. This is sometimes useful because, as is well known, configuration spaces of
linkages can be represented as the fibres of quadratic mappings. However, for calculating the Euler
characteristics of workspaces and configuration spaces of tensegrities, one needs to use Theorems 1.1
and 1.2.

2. Configuration Spaces of Linkages and Tensegrities

Mechanical linkages, in particular planar mechanical linkages, and their configuration (moduli)
spaces were studied in many papers. Linkages may be thought of as mechanisms build up from rigid
bars (sticks) joined at flexible links (pin-joints). Some links may be fixed in the ambient space and
the rest are supposed to be movable. In many problems it is important to know the totality of
possible positions of the links in the ambient space and the range of positions available for a given
link (workspace of the link). A general mathematical description of mechanical linkage runs as follows
(cf. [12, 21)).

Recall that a weighted graph is defined as a triple I' = (V, E, d) consisting of a set of vertices V, a
set of edges E = {(Vj,,Vj,)}, and a weight function d : E — R which assigns to every edge (Vj,,V},)
a certain length d(V;,,Vj,) € Ry. We always assume that I' is connected, i.e., each pair of its vertices
can be connected by a sequence of elements of E. It is also assumed that the set of vertices of V is
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decomposed in two subsets V = VUV, with Vy = {V1,...,V;p} and Vi, = {Viq1, ..., Vi }. Vertices
from V; will be considered as fized, while those from V;,, as movable. For our further considerations it
is natural to assume, and we do so, that m > 2 (which basically means that we factor out the action
of the group of Euclidean motions, i.e., exclude shifts and rotations of the graph as a whole).

A connected weighted graph is called N-realizable (or realizable in RY) if there exists a mapping
f:V — R¥ such that the Euclidean distance |f(V;) — f(V;)| is equal to d(V;, V;) for all (V;,V;) € E.
For example, a regular tetrahedron is (by definition) 3-realizable but not 2-realizable.

A connected weighted graph I is called a planar mechanical linkage if it is realizable in R?. In
general, an N-realization of T' is defined as the collection (f(V4),...,f(V;)) € R™. In order to
get the definition of the Ng-configuration space of a mechanical linkage as above, one fixes m points
P1y-- s Pm in RY such that |p; — pj| = d(Vi,V;) for all Vi, V; € Vy with (Vi,V;) € E. Now the
Ng-configuration space of I' is defined as

Cn(T) = {f realization of T' | f(V}) = (p1,...,pm)}/Iso (RY),

where Iso; (R") denotes the group of all orientation preserving isometries of R,

In other words, we factor out the motions of a realization as a rigid whole. There are versions of this
definition where factoring is over the group of all (not necessarily orientation preserving) isometries
or over the extension of Iso, (R™) by homotheties. These differences are inessential for our tasks, so
we use the simplest definition presented above. Note that the same space can be defined as

On(T) ={z = (z;) €R™ | zj =pj, 1 <j<m, |z — 5] = d(Vi, V)) if (V;, V) € E}/Tsop. (RY).

Configuration spaces are also called the moduli spaces of mechanical linkage [12]. All configuration
spaces are considered with a natural topology induced by the Euclidean distance. If the linkage is just
a polygon with fixed sidelengths, one obtains configuration spaces of polygon studied in [12, 21].

From the topological point of view, 2d-configuration spaces are especially interesting because it
turned out that for any smooth closed (i.e., compact and without boundary) manifold M there exists
a planar mechanical linkage I" such that one of the components of its configuration space of the latter
is diffeomorphic to M [12, 21]. In many cases I' can be chosen so that C(I') is connected and itself
diffeomorphic to M.

Given a graph with fixed combinatorial structure, one obtains a mechanical linkage by choosing a
N-realizable weight function d as above. We say that some property of a mechanical linkage is generic
if it holds for almost all choices of the weight function. Using Sard’s lemma it is easy to see that, for
a generic mechanical linkage I', the Ng-configuration space C(I") is a compact smooth manifold of the
dimension N(n —m) — (cardE — k), where n is the number of vertices of T', cardE is the total number
of edges, and k is the number of edges joining the vertices from V.

Configuration spaces of planar polygons, which gained a lot of attention in last ten years [12, 21],
appear as a particular case of this general definition. Recall that Euler characteristics of configuration
spaces of polygons were calculated in many cases (see, e.g., [11]). Our first observation is that, in
principle, all such results could be obtained using Theorem 1.1.

Theorem 2.1. The FEuler characteristic of Ng-configuration space of any mechanical linkage I' =
(V,E,d) as above can be calculated in an algorithmic way from its combinatorial data (V,E) and
weight function d.

The proof follows by noting that each configuration space is naturally represented as the fiber of a
certain explicitly given quadratic mapping Qr and then referring to Theorem 1.1. The components of
the mapping Qr are obtained by writing down (in the standard coordinates on R™) the conditions
that the squared distance from f(V;) to f(V;) should be equal to [d(V;, V;)]? for each edge (V;, V;) € E.
Obviously one has exactly ¢(I') = cardE' — k such conditions, where k is the number of edges joining
vertices from V} since the latter edges impose no conditions at all. Thus Qr naturally appears as a
quadratic mapping from RY("=7) to RU) . For evident geometric reasons, Qr is proper and so one
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can directly apply formula (1.2) by taking F' = Qr. The result follows by noticing that in virtue of [7,
13] the local topological degree in the formula (1.2) can be calculated in an algorithmic way. It may
be added that the Euler characteristic of any fiber of Qr can also be calculated using results of [1].

This theorem has several concrete applications. As was shown in [16], it enables one to list all
possible topological types of configuration spaces of planar pentagons. Using the scheme of [16] one
can also describe all possible topological types of configuration spaces of planar quadrilaterals and
various mechanical linkages with two-dimensional configuration space [3, 9].

Our next observation is related to the concept of work space of a given vertex. Recall that, for each

movable vertex V; € V,,,, its work space Wr(Vj, N) is defined as the subset {f(V;): f € C(T')} of RY.

Theorem 2.2. The Euler characteristic of the work space of any movable vertex can be calculated in
an algorithmic way.

To prove this result we notice first that, being a projection of the algebraic set C(I"), the work space
is a semi-algebraic subset of the plane by “general principles” [4]. Moreover, it is easy to write down
the inequalities which should be added to the components of the quadratic mapping Qr constructed
above. Thus the desired conclusion follows from Theorem 1.2.

Recently, it turned out that similar results can be obtained for the so-called tensegrities [19] which
were brought to our attention by O. Karpenkov during a conference in Nijmegen in February of 2008.
Informally, tensegrity is a subclass of the so-called spatial (3d) truss structures consisting of pin-jointed
bars (struts) and cables (see, e.g., [19]). Thus they can be obtained from spatial linkages by replacing
some of the edges by cables instead of rigid bars (struts). Tensegrities are usually characterized by
certain stability properties. We will use one of the possible definitions which is most suitable for our
approach. Namely, a truss structure is called a tensegrity if it has 3-realizations and the set of those
is finite. In such a case, each of the realizations is automatically stable, in a natural and physically
meaningful sense [19].

Tensegrities were invented by Kenneth Snelson in 1948 and gained popularity in the 1970s, par-
ticularly due to the activity of Buckminster Fuller. Their main applications are in architecture and
engineering, while the mathematical aspects of this topic seem to be less developed [19]. Our goal is
to show that our approach enables one to find the number of stable configurations of a tensegrity with
prescribed combinatorial structure and fixed lengths of struts and cables.

To this end, notice first that the combinatorial structure of tensegrity 7' can be described by
a weighted graph as above. Next, the fact that tensegrities are spatial structures corresponds to
considering the 3-realizations of a given graph in R3. Thus it is appropriate to deal with the 3d-
configuration space, i.e., take N = 3. Finally, we can also formalize the fact that there are edges of
two kinds. Namely, divide E in two subsets E; (struts) and E. (cables) and modify the above definition
of configuration space as follows. The conditions corresponding to edges from E; remain unchanged,
while for each pair (V;,V;) € E one imposes a quadratic inequality |z; — z;]|* < [d(V;i, V;)]? instead
of the corresponding equality. In this way we obtain a semi-algebraic set called the configuration
space C(T') = C5(T) of tensegrity T'. The above definition of tensegrity obviously implies that C'(T')
is a finite set. Hence the number of 3-relizations (stable configurations) of T' is equal to the Euler
characteristic of C'(T"). These remarks combined with Theorem 1.2 immediately yield an analog of
Theorem 2.1 for tensegrities.

Theorem 2.3. The number of distinct configurations of a tensegrity with a given combinatorial struc-
ture and prescribed lengths of elements can be computed in an algorithmic way through the signatures
of explicitly constructible quadratic forms.

Since it is recognized that the problem of counting all possible configurations of a tensegrity is far
from trivial [19], this result can hopefully find useful applications to analysis of concrete tensegrities.
However, it should be added that the computational complexity of the corresponding algorithm is quite
high even for the simplest tensegrities, so that we were unable to obtain new results in practically
interesting cases.
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Similar results can be obtained for configuration spaces of various different types. For instance, one
may consider linkages such that certain vertices can slide along prescribed subspaces or submanifolds
of the ambient space (in other words, possible positions of those vertices should belong to prescribed
submanifolds). Such situations arise in circle packing problems (the author owes this observation
to E. Wegert) and in gravitation toys of “spiderman” type (those were brought to our attention by
T. Lomadze and N. Khimshiashvili). In a variety of such cases one can find the Euler characteristic of
configuration space by our methods and derive certain conclusions about the qualitative behavior of
the objects considered. Development and exposition of these topics is left for the future and we turn
now to description of another type of application of signature formulas to the study of configuration
spaces, which yields rather interesting results.

3. Signed Area of Planar Polygons

We proceed by investigating the signed (oriented) area of planar polygon (see, e.g., [6]) as a
function on configuration space of a planar linkage. Recall that given an ordered set of n points
p1 = (z1,91),.-.,Pn = (Tn,yn) in the plane, the signed area S of the corresponding n-gon is defined
by the formula

28 = (r1y2 — y172) + - . - + (Tpy1 — Ynx1). (3.1)

In this section, we use symbol C(n,2) to denote the configuration space of a planar n-gon with
unspecified but fixed sidelength vector I. In other words, C(n,2) is the collection of all possible planar
configurations of an n-gon linkage (i.e., of a polygon with fixed sidelengths). In this context “n-gon
linkage” means essentially the same as “n-gon with fixed (prescribed) sidelengths.”

We wish to deal only with generic sidelengths, which as usual means that the vector of sidelengths
[ is taken from an (unspecified) open dense subset U, of the parameter space of planar n-gons.
In the case of planar polygonal linkages as above, the parameter space is an open subset P, of
the positive n-orthant R’} and one can explicitly indicate a collection of hyperplanes B,,, called the
bifurcation diagram of configuration space C(n,2), such that the aforementioned open subset U, of
generic sidelengths is equal to the complement of B,, in F,. Thus most of our considerations make
sense for planar polygons with the sidelength vector belonging to U,. The connected components of
Uy, called chambers, play an essential role in the topological study of configuration spaces [12].

From the discussion in Sec. 2 it follows that, for generic sidelengths (in the above sense), the
configuration space C'(n,2) is a compact orientable smooth manifold of dimension n3. Moreover, it
is known that the topological type (homeomorphism class) of C(n,2) is the same for all sidelengths
belonging to the same chamber [12]. Actually, C'(n,2) can be defined as a fiber of a proper quadratic
mapping @Q; : R?"=2 — R”~! and the bifurcation diagram B,, can be identified with the set of singular
values of Q; (see [12]).

To see this, note that the action of Iso, (R?) obviously does not change the totality of configurations
of a planar linkage. Thus we can change its position in the plane using the action of this group. In
this way, we can obviously place the first vertex at the origin and the first side along the Oz-axis. It is
also easy to realize that a homothety transformation of polygon does not change the topological type
of its configuration space. Thus we may assume that the first side is of length 1, i.e. I; = 1, without
loss of generality. It follows that we may assume that the first two vertices are v; = (0,0),v2 = (1,0)
and we keep this assumption from now on. This done, it becomes obvious that the configuration space
can be defined as a fiber of a quadratic mapping as above.

In order to complete the precise description of our problem, notice that the signed (oriented) area
of a polygon naturally defines a (infinitely) differentiable function S : C'(n,2) — R on each generic
configuration space. Our aim is to study the critical points of S for a generic sidelength vector
belonging to U,. For n = 4 (planar quadrilaterals) and partially for n = 5 (planar pentagons), we
managed to obtain considerable information about singularities of S using the signature formulas. To
describe our approach to this problem in a consistent way, let us present relevant results about the
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topological structure of configuration spaces C'(4,2). In doing so we freely use standard topological
concepts and methods of singularity theory [2]. The topological structure of configuration spaces of
generic quadrilaterals can be described as follows.

Proposition 3.1. The bifurcation diagram By consists of eight hyperplanes {cia1 + caaa + csasz = 1,
¢i = 1} and its complement in Py has 26 connected components.

Proposition 3.2. Each generic configuration space C(4,2) is homeomorphic either to circle S' or to
the disjoint union of two circles.

Actually, one can also describe all possible topological types of C(4,2) for nongeneric sidelengths as
well, and the signature formulas appear helpful to this end. For example, using the method of Section
2 one easily finds that the Euler characteristic of the planar configuration space of a square is equal
to —3. With some additional work it can be shown that this space is homeomorphic to the union of
three circles each pair of which has a common point, which of course gives the same value of the Euler
characteristic. In fact, performing similar calculations for each component of U, one can show that
the Euler characteristic of moduli spaces of nondegenerate planar quadrilaterals can only take four
values: 0, —1, —2, —3 (formally one could also consider degenerate quadrilaterals where the length of
the longest side is equal to the sum of the other three sidelengths, in which case the configuration
space is obviously one point). Moreover, one can describe the local geometric structure of possible
singularities of C'(4,2) so that the topology of C(4,2) is known in great detail, which gives a sufficient
background for determining the global behavior of an area function on such configuration spaces.

Let us now explain how one can count the critical points of S. Assume as above that [; =1,
v1 = (0,0), and ve = (1,0). Then C(4,2) is defined by three obvious quadratic equations with
four unknown coordinates of movable vertices vs,vs. The area function in this case is given by
2S = x3ysr4ys + y3. One can now introduce Lagrange multipliers cj,co,c3 and obtain a (7 x 7)-
system of quadratic equations (first four coordinates of) the solutions to which give the critical points
of S. It is not difficult to compute the Jacobian of these equations and see that it is not identically
equal to zero. Hence the equations are algebraically independent and the set of solutions is finite. It
follows that the number of critical points of S is also finite and equal to the number of real solutions
to this system. Since the Euler characteristic of the solution set can be effectively computed using the
signature formulas, we conclude that the number of critical points of S can be found for each concrete
sidelength vector [ € Uy. Using a standard topological argument, it is easy to show that the qualitative
behavior of S remains the same for each component of Uy. Thus, for a complete investigation of the
area function it is sufficient to choose a vector of sidelengths in each component of U, and find the
number of critical points for those concrete sidelengths using Theorem 1.1.

Realization of this program yields the following results. If a generic configuration space has one
component (homeomorphic to a circle), then the number of critical points is equal to 2 (one maximum
and one minimum). If a generic configuration space has two components, then the number of critical
points is equal to 4 (one maximum and one minimum on each component). It can be verified that all
these critical points are nondegenerate, and so S is a Morse function on C(4,2).

One can further explain this conclusion as follows. Recall that a polygon is called cyclic [20] if it
can be inscribed in a circle (i.e., if it has a circumscribed circle). According to a classical result of
J.Steiner, each polygonal linkage L has a convex cyclic configuration and S attains its maximum, say
M, precisely at this configuration (see, e.g., [8]). Due to the skew-symmetry of the oriented area, the
minimum value of S is —M and it is attained at the configuration obtained from the preceding one
by reflection in the first side of linkage L, which in our setting obviously reduces to changing the signs
of ordinates of all vertices (since the first side is placed on the Ox-axis). One can explicitly compute
M by the Brahmagupta formula:

1
M? = 1—6(2a2b2 +oo 422 —at bt =t —dt + 8abed) = (p—a)(p—b)(p—c)(p—d), (3.2)
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where a, b, ¢, and d are the sidelengths and p is the half-perimeter of L [20] (thus this is a direct
generalization of the classical Heron formula for the area of a triangle).

If the configuration space has two components, then S is positive on one of them and negative on the
other. On the positive component, the maximum is again realized by the convex cyclic configuration.
In this case there also exists a self-intersecting cyclic configuration of L which corresponds to the
minimum of S on this component. This is the first manifestation of the curious fact that cyclic
configurations provide critical points of the area function. According to D. Robbins [20], the area of
a self-intersecting cyclic configuration is given by the following analog of the Brahmagupta formula:

1
m? = E(2a2b2 + . 4 23d% — ot — b — ¢ — d* — 8abed). (3.3)

Thus, the minimum of S on the positive component can also be computed explicitly. Of course,
the same picture, modulo the sign, is observed for the “negative” component. With a little more
work one can verify that the critical points of S are nondegenerate, i.e., S is a Morse function on
C(4,2). Moreover, the amount of critical points is the minimal one permitted by the topology of the
configuration space, hence it is determined by the topology of the configuration space and remains
the same for each component of Uy.

These observations can be briefly summarized as follows: the signed area defines an exact Morse
function S on the configuration space of a generic quadrilateral linkage and the critical points of .S are
given by the cyclic configurations of the quadrilateral considered. This is in fact a quite instructive
conclusion because it remains meaningful and illuminating for planar polygons with arbitrary number
of sides.

It is now natural and intriguing to investigate this issue for pentagon linkages. We were able to show
that similar phenomena are indeed observed for certain pentagons. Consider, for example, a pentagon
with I} =1, ly =15 = 2, and I3 = [y = 1/3. It is easy to see that its configuration space C(5,2) is
homeomorphic to a disjoint union of two tori 72. On the “positive” component of configuration space,
function S has one maximum attained at the convex cyclic configuration and three other critical points
(one minimum and two saddle-points) attained at self-intersecting cyclic configurations. In this case
one can also compute the critical values of S using the generalized Heron polynomials introduced by
D. Robbins [20] (see also [22]). Moreover, one can prove that S is a Morse function on C(5,2). So in
this case we also obtain quite detailed information about the critical points of S.

As we have seen, cyclic configurations naturally appear in the singularity analysis of S. In view of
the above, it is natural to consider them in parallel with the “critical” configurations of L corresponding
to the critical points of S. A natural strategy of further research is then to count configurations of
both types for all chambers (components) of Us and verify if the foregoing conclusion holds for generic
pentagon linkages.

In general, using the same approach as for planar quadrilaterals, it is easy to see that the critical
configurations in a generic configuration space C'(n,2) can be counted as the real solutions to a certain
(3n —5) x (3n — 5)-system of quadratic equations. It is also easy to see that the cyclic configurations
correspond to the roots of a (2n — 1) x (2n — 1)-system of quadratic equations. One just adds three
unknowns defined as the radius and coordinates of the center C' of the circumscribed circle and adds
n quadratic equations expressing the fact that squared distances from all vertices to C' are equal to
the radius. Thus the exceptional configurations of both types can be effectively counted using the
signature formula for Euler characteristic indicated in Theorem 1.1.

This approach enabled us to obtain considerable information about the critical and cyclic configu-
rations of planar pentagons using the computer programs for calculating the degree of mapping. In
all the cases considered, the results obtained on this way are similar to those for planar quadrilaterals.
There is good evidence that the methods described above will allow us to completely investigate this
problem for generic pentagon linkages. At the same time, our discussion suggests a sort of research
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program concerned with the critical points of a signed area function, which is outlined in the last
section.

4. Conjectures and Remarks

The results and considerations presented above suggest four general conjectures on the critical
points of a signed area function on the configuration space of a generic planar polygon.

Conjecture 1. The critical points of signed area function are given by the cyclic configurations of a
generic polygon.

If this is really so, one can visualize the critical points and critical values of the area function in
a purely geometric way by merely constructing all cyclic configurations. The problem of counting
and constructing cyclic polygons was considered in [20, 22]. The geometric results contained in those
papers agree with the ones obtained by our methods, which provides additional evidence in favor of
this conjecture.

Conjecture 2. All critical points of a signed area function on the configuration space of a generic
polygon are nondegenerate.

This conjecture is highly plausible for certain general reasons and should follow by a proper appli-
cation of transversality theorems [2].

Conjecture 3. The number of critical points and their types (Morse indices) are determined by the
topology of a generic configuration space.

There also exists a stronger version of this conjecture stating that the area defines an exact Morse
function on generic configuration space. Since the number and indices of critical points of an exact
Morse function are determined by the topology of the underlying manifold, the latter conjecture is
indeed stronger. A would-be corollary is that the number and indices of critical points remain the same
over each component of U,,. There is good evidence that this fact can be proved by a “wall-crossing”
argument described in [12].

Conjecture 4. The critical values of an area function on the configuration space of a generic polygon
can be explicitly calculated in terms of sidelengths.

The results of [20, 22] suggest also a stronger version of this conjecture which says that the set of
critical values coincides with the set of real roots of the generalized Heron polynomial introduced by
D. Robbins [20]. We believe that these conjectures are plausible and instructive. If they hold true,
one obtains a conceptual generalization of previously known results on areas of cyclic polygons [8, 20,
22].
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