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Abstrat. We present a survey of reent results onerned with generalizations of the lassialRiemann-Hilbert transmission problem in the ontext of loop spaes. Spei�ally, we present ageneral formulation of a Riemann-Hilbert problem with values in an almost omplex manifoldand illustrate it by disussing two partiular ases in more detail. First, using the generalizedBirkho� fatorization theorem of A. Pressley and G. Segal we give a riterion of solvability forgeneralized Riemann-Hilbert problems with oe�ients in the loop group of a ompat Lie group.Next, we present a visual example of solution to a Riemann-Hilbert problem with values in theimmersed loop spae of three-dimensional sphere. Finally, we desribe a geometri onstrutionof Fredholm strutures on loop groups and relate them to the anonial Fredholm strutures onKato Grassmannians.Introdution. The aim of this paper is to present a survey of reent developmentswhih emerged in the framework of a geometri approah to Riemann-Hilbert problemssuggested in [3℄, [4℄ and further developed in [5℄, [6℄, [31℄, [21℄, [22℄, [23℄, [7℄, [8℄. Mostof those developments an be naturally formulated in terms of loop groups and, moregenerally, of ertain loop spaes. It is the arising interplay between loop spaes andRiemann-Hilbert problems that we are going to desribe and advoate.It should be noted that the settings and results presented below owe muh to disus-sions and joint investigations with B. Bojarski (f. [7℄, [8℄). Atually, the present paperonly overs a part of the results presented in a joint talk of B. Bojarski and the presentauthor at the �Geometry and topology of manifolds� onferene in B�dlewo in May 2005.The results presented here were obtained by the present author independently and an-nouned in [23℄, [24℄, [25℄. The other results mentioned in the foregoing talk were obtainedjointly with B. Bojarski and will be presented in a forthoming joint publiation.It should be added that di�erent aspets of Riemann-Hilbert problems were disussedin joint papers of B. Bojarski and A. Weber [9℄, [10℄. The author uses this opportunity2000 Mathematis Subjet Classi�ation: Primary 58D15; Seondary 35Q15.The paper is in �nal form and no version of it will be published elsewhere.[411℄ © Instytut Matematyzny PAN, 2007



412 G. KHIMSHIASHVILIto thank Professor B. Bojarski for inspiring ooperation and supporting the idea of thispubliation. Thanks also go to G. Misiolek for several useful disussions on the geometry ofloop groups and detailed omments on his results from [28℄, [29℄ whih strongly in�uenedour disussion of Fredholm strutures on loop groups given in Setion 4.To provide some general bakground and motivation for our onsiderations, notie�rst that loops are atually involved in the very formulation of the Riemann-Hilberttransmission problem. Indeed, nondegenerate matrix funtions on a simple losed ontouran be naturally interpreted as loops in general omplex linear group GL(n, C). Thusloops in GL(n, C) an be thought of as oe�ients of the lassial Riemann-Hilbertproblems. As was shown in [21℄, [22℄, one an formulate a natural analog of Riemann-Hilbert problem where oe�ients are taken from the group of regular loops in a ompatLie group. A onsiderable part of the lassial theory an be extended to this setting andin the present paper we present a solvability riterion in terms of the so-alled generalizedBirkho� fatorization developed in [31℄.Another type of generalization of Riemann-Hilbert problem arises in relation to Gro-mov's theory of pseudoholomorphi mappings between almost omplex manifolds [19℄.Along these lines, a general de�nition of linear onjugation problem in the ontext ofalmost omplex manifolds was suggested in [24℄, [25℄ whih gave a wide extension ofthe lassial Riemann-Hilbert problem. If the almost omplex manifolds in question are�nite-dimensional, a version of Fredholm theory for suh linear onjugation problems anbe derived from Gromov's results. When the soure manifold is just the Riemann sphere
CP1 one obtains Fredholm theory for analyti diss in almost omplex manifolds, whihis a straightforward generalization of the lassial Fredholm theory for Riemann-Hilbertproblem.As a natural next step, it seems reasonable to onsider suh problems in the asewhen a target manifold is in�nite dimensional. As was observed in [31℄, [7℄, loop groupsand restrited (Kato) Grassmannians often have natural almost omplex strutures so itseems natural to onsider Riemann-Hilbert problems for funtions with values in suhspaes. This is the seond type of generalized Riemann-Hilbert problems, alled loopyRiemann-Hilbert problems, whih we onsider in this paper.Reall that, as was revealed in [3℄, [4℄, many geometri aspets of lassial linearonjugation problems with su�iently regular (di�erentiable, Hölder) oe�ients an beformulated and suessfully studied in terms of restrited Grassmannians and loop groups.Thus our loopy Riemann-Hilbert problems reveal new geometri aspets of the lassialRiemann-Hilbert problem. It should be added that some problems of modern mathemat-ial physis (suh as onstrution of instantons in Yang-Mills theory [1℄) appear loselyrelated to our Riemann-Hilbert problems with values in loop spaes. For this reason webelieve that the setting suggested below may appear useful and deserves onsiderationby its own.Let us now say a few words about the struture of the paper. We begin by reall-ing neessary de�nitions and auxiliary results about loop spaes and Riemann-Hilbertproblems. In partiular, we give a general formulation of Riemann-Hilbert problems inthe ontext of almost omplex manifolds. Generalized Riemann-Hilbert problems with



LOOP SPACES AND RIEMANN-HILBERT PROBLEMS 413oe�ients in loop groups are disussed in setion 2. In setion 3 we give some expliitexamples of solutions to Riemann-Hilbert problems with values in loop spaes. In on-lusion we give an expliit onstrution of Fredholm strutures on loop groups and relatethem to the anonial Fredholm strutures on the Kato Grassmannians onstruted in [8℄.1. Preliminaries on loop spaes and Riemann-Hilbert problems. We begin withrealling a few basi onepts and de�nitions. Let X be a topologial spae and T = S1be the unit irle. Reall that the free loop spae LX of X is de�ned as the set of allontinuous maps T → X endowed with the ompat-open topology [14℄. If x0 ∈ X is adistinguished point then the based loop spae ΩX is de�ned as the set of all those loopswhih send the number 1 ∈ T to the distinguished point x0.We are only interested in the ase when X = M is a smooth (in�nitely di�erentiable)manifold of positive dimension. Then one an also onsider subspaes onsisting of loops ofa �xed regularity lass (Ck, Hölder, Sobolev). All of them are referred to as loop spaesof M and denoted by symbols LM or ΩM deorated by appropriate indies and/orexponents.It is well known that loop spaes of Riemannian manifold M arry a number ofinteresting geometri strutures. In partiular, they often have natural omplex or almostomplex strutures [31℄, [26℄ and they an also be endowed with various natural metrisindued from the metri on M . Of the main interest for us is the ase when M = G is aompat Lie group with a left-invariant metri [14℄.Then loop spaes LG and ΩG endowed with pointwise multipliation of loops beomein�nite-dimensional topologial groups. Groups of suh type are alled loop groups [31℄.One an obtain Banah Lie groups by onsidering only loops of appropriate regularitylass (e.g., Sobolev).The group of based loops ΩG has a natural omplex struture for whih the opera-tor J is de�ned as the Hilbert transform on the Lie algebra of ΩG [31℄. Almost omplexstrutures on loop spaes of three-dimensional manifolds were introdued by J.-L. Brylin-ski [12℄ and L. Lempert [26℄. We use those strutures to formulate the Riemann-Hilbertproblem for loop valued funtions.Another aim we pursue in this paper is to show that loop groups an be endowedwith so-alled Fredholm strutures [15℄. Suh strutures were �rst onstruted using thegeneralized Riemann-Hilbert problems introdued in [21℄. Now we wish to show that thesame strutures an be onstruted using the riemannian exponential mapping on loopgroups. This onstrution is presented in setion 4. Fredholm strutures on loop groupshave already been disussed in the literature (see, e.g., [17℄, [21℄, [8℄, [25℄). Howeverour onstrution, whih relies on the properties of Riemannian exponential mappingestablished in [28℄, [29℄, essentially di�ers from the approahes used in preeding paperson the same topi.We give now a formulation of Riemann-Hilbert problem in the ontext of almostomplex manifolds appropriate for the topis onsidered below. Before doing so, notiethat there exist nowadays a number of ommonly used onepts of Riemann-Hilbertproblem. We only deal with Riemann-Hilbert problems onsidered as boundary value



414 G. KHIMSHIASHVILIproblems for holomorphi funtions. A general formulation of Riemann-Hilbert problemof suh type was given in [24℄. Here we elaborate upon the de�nition from [24℄ so that itbeomes appliable to holomorphi funtions of one omplex variable with values in loopspaes of ertain types.Reall that an almost omplex struture J on a smooth manifold M is de�ned as asmooth family of linear operators Jp = J(p) in tangent spaes TpM, p ∈ M, suh that
J2

p = −I (here and in the sequel I always denotes the identity mapping of the orre-sponding spae). In partiular, eah omplex manifold (for example, C
n or CP

n) has aanonial omplex struture de�ned by the operator of multipliation by ı in eah tangentspae. The onept of holomorphi mapping between omplex manifolds is generalized inthe ontext of almost omplex manifolds as follows.Consider two almost omplex manifolds (M, J) and (N, J ′). A di�erentiable mapping
F : M → N is alled holomorphi if its di�erential dF intertwines the given almostomplex strutures, namely:(1) dF (p)Jp = J ′

F (p)dF (p),for eah p ∈ M . Sometimes suh mappings are alled pseudo-holomorphi (f. [19℄) butwe prefer to omit the pre�x �pseudo� sine this annot lead to a misunderstanding inthe sequel. As is well known, the loal desription of suh mappings is losely related toBers-Vekua equation and generalized analyti funtions [19℄, [5℄.It is easy to verify that, for �nite-dimensional omplex manifolds, the above de�nitiongives the usual onept of holomorphi mapping. In partiular, taking a domain in theomplex plane endowed with the anonial omplex struture we get a onept of holo-morphi funtion of one omplex variable with values in an almost omplex manifold N .If M or/and N are in�nite-dimensional omplex manifolds modeled on omplex Banahspaes, proving equivalene of the two de�nitions of holomorphi map requires some arebut we need not disuss here those nuanes.If M is a one-dimensional omplex manifold (Riemann surfae) then the image of aholomorphi mapping M → N is alled a holomorphi urve in N . In partiular, if M is adomain in C, suh an image is alled an analyti dis. If M = CP is the Riemann spherethen its holomorphi images are alled holomorphi spheres. Obviously, a holomorphisphere is a union of two analyti diss glued along their boundaries. In the third setionwe present an example of suh situation in the loop spae of a 3-sphere.In order to formulate Riemann-Hilbert problem in almost omplex setting, supposemoreover that M is deomposed into two (open) parts M+, M− by a smooth divisor(hypersurfae) Γ. Introdue the funtion spaes as follows. For an open subset U ⊂ M ,let A(U, N) denote the set of all mappings de�ned and ontinuous in U taking theirvalues in N and holomorphi in U . Fix �nally a ontinuous mapping (urrent) Φ on Γwith values in a subgroup G of in�nite-dimensional Lie-Frehet group Diff N onsistingof smooth di�eomorphisms of N .Then Riemann-Hilbert problem de�ned by quintiple (M, N, Γ, G, Φ) is formulated asthe problem of desribing the totality of pairs (X+, X−) ∈ A((M+, N) × A(X−, N))



LOOP SPACES AND RIEMANN-HILBERT PROBLEMS 415satisfying the following ondition on divisor Γ:(2) X+(p) = Φ(p)(X−(p)), p ∈ Γ,where Φ(p) ats on X−(p) as an element of DiffN . Notie that by taking M = C, Γ =

{|z| = 1}, N = C
n, G = GL(n, C), and some (n × n)-matrix-funtion on Γ in the roleof Φ, one obtains a lassial version of Riemann-Hilbert problem alled the problem oflinear onjugation (f. [30℄, [4℄, [22℄). If we take M = C, Γ = {|z| = 1} and N equal to aomplex representation spae of a ompat Lie group G, then we ome to the generalizedlinear onjugation problem onsidered in the next setion.Thus we see that eah pair of almost omplex manifolds (M, N) yields a olletionof analyti problems whose nature strongly depends on the geometry and topology ofthe manifolds and group G onsidered. The lassial theory of Riemann-Hilbert problemand singular integral equations appears as a partiular ase of this general sheme. In ashort review like this one it makes no sense to disuss the general sheme in depth so wejust desribe some new aspets and phenomena appearing when N is taken to be a loopspae with an almost omplex struture. The most natural examples are given by groupsof loops in a ompat Lie group [31℄ and immersed loop spaes of 3-folds [12℄. Up to ourknowledge, Riemann-Hilbert problems of the above type have never been disussed inthe literature even for these onrete examples so in the sequel we make an attempt to�ll this gap.It appears more onvenient to use a little bit more geometri language. Namely, inomplete analogy with the �nite-dimensional setting, while dealing with Riemann-Hilbertproblems in loop spaes one is inevitably led to onsidering images of holomorphimappings of diss into a given loop spae. Thus it beomes neessary to deal with analytidiss in ertain loop spaes whih ould be alled loop-valued analyti diss in order todistinguish them from the usual analyti diss in �nite-dimensional omplex manifolds.For brevity, we all them loopy analyti diss. Similar geometri objets in loop spaes of3-folds were earlier onsidered by J.-L. Brylinski [12℄ and L. Lempert [26℄ and appearedto be related to interesting geometri onstrutions. We use this terminology and relatedonstrutions in setion 3.2. Riemann-Hilbert problems with oe�ients in loop groups. In this setionwe desribe a generalization of the linear onjugation problem introdued in [21℄ andfurther investigated in [22℄, [23℄. Consider the Riemann sphere P = C deomposed asthe union of the unit dis D+, unit irle T , and exterior domain D−, whih ontainsthe in�nite point ∞ denoted by N (�North Pole�). The main innovation is to permitoe�ients from a loop group. More preisely, we take funtions on the irle with valuesin a ompat Lie group G as oe�ients and searh for pieewise holomorphi mappingswith values in a given representation spae of G. The preise statement of the problem isgiven below, and the rest of the setion is devoted to its investigation. It appears that inthe ase of a ompat Lie group G one an develop a reasonable theory analogous to thelassial one whih relies on the reent generalization by A. Pressley and G. Segal [31℄ ofthe well-known fatorization theorem due to G. Birkho� [30℄. It is easy to indiate severalnatural regularity lasses for oe�ients whih guarantee that the problem is desribed



416 G. KHIMSHIASHVILIby a Fredholm operator in orresponding funtional spaes. A natural framework forour disussion is provided by a generalized Birkho� fatorization theorem and Birkho�strati�ation of a loop group so we present �rst some auxiliary onepts and results.Let G be a onneted ompat Lie group of the rank p with the Lie algebra A. Asis well known [31℄, eah of suh groups has a omplexi�ation GC with the Lie algebra
AC = A⊗C. This fat is very important as it provides omplex strutures on loop groupsand this is the main reason why our disussion is restrited to ompat groups. Let LGdenote the group of ontinuous loops in G endowed with the point-wise multipliationand usual topology [31℄. We need some regularity onditions on loops and for the sakeof simpliity let us �rst assume that all loops under onsideration are (at least one)ontinuously di�erentiable. For an open set U in P let A(U, Cn) denote the subset of
C(Ũ , Cn) formed by those vetor-funtions whih are holomorphi in U . Assume alsothat we are given a �xed linear representation r of the group G in a vetor spae V . Forour purposes it is natural to assume that V is a omplex vetor spae. Notie that for aompat group one has a omplete desription of all omplex linear representations [31℄.We are now in the position to formulate the problem we are interested in. Namely,having �xed a loop f ∈ LG, the (homogeneous) generalized linear onjugation prob-lem (GLCP) Rf with oe�ient f is formulated as a question about the existene andardinality of pairs (X+, X−) ∈ A(D+, V ) × A(D−, V ) with X−(N) = 0 satisfying thetransition ondition on T(3) X+(z) = r(f(z)) · X−(z).For any loop h on V we obtain also an inhomogeneous problem Rf,h (with the right-hand side h) by replaing the transition equation (3) by the ondition(4) X+(z) − r(f(z)) · X−(z) = h(z).In other words, we are interested in the kernel and okernel of the natural linearoperator Tf expressed by the left-hand side of the formula (4) and ating from the spaeof pieewise holomorphi vetor-funtions on P with values in V into the loop spae LV .To avoid annoying repetition, when dealing with the inhomogeneous GLCP it will alwaysbe assumed that the loop h is Hölder-ontinuous, whih is a usual assumption in thelassial theory [30℄.Remark 1. In the partiular ase when G = U(n) is the unitary group we get that
GC = GL(n, C) is the general linear group. If we take r to be the standard representationon Cn, then we obtain the lassial linear onjugation problem. Note that even in thislassial ase one obtains a plenty of suh problems at the expense of taking variousrepresentations of U(n), and the result below an be best illustrated in this situation.Needless to say, the same piture is observed for all groups but as a matter of fatonly irreduible representations of simple groups are essential. Moreover, the exeptionalgroups of Cartan's list will also be exluded and the remaining groups will be termed as�lassial simple groups�. It would not be appropriate to reprodue and disuss here allneessary onepts and onstrutions from the theory of Lie groups. All neessary resultson Lie groups, in a form suitable for our purposes, are ontained in [31℄ and we repeatedlyrefer to this book in the sequel.



LOOP SPACES AND RIEMANN-HILBERT PROBLEMS 417Let f be a loop on G. We would like to assoiate with f some numerial invariantanalogous to the lassial partial indies [30℄. To this end let us hoose a maximal torus
T p in G and a system of positive roots. Then following [31℄ one an de�ne the nilpotentsubgroups N±

0 of GC whose Lie algebras are spanned by the root vetors of AC orre-sponding to the positive (respetively negative) roots. We also introdue subgroups L±of LGC formed by the loops whih are the boundary values of holomorphi mappings ofthe domain B+ (respetively B−) into the group GC, and the subgroups N± onsistingof the loops from L+ (respetively L−) suh that f(0) belongs to N+
0 (respetively f(N)belongs to N−

0 ). The following fundamental result was proved in [31℄.Deomposition Theorem. Let G be a lassial simple ompat Lie group, and H =

L2(T, AC) be the polarized Hilbert spae with H = H+ ⊕ H−, where H+ is the usualHardy spae of boundary values of holomorphi loops on AC. Then we have the followingdeomposition of the groups of based loops LG:(i) LG is the union of subsets BK indexed by the lattie of holomorphisms of T intothe maximal torus T p.(ii) BK is the orbit of K · H+ under N− where the ation is de�ned by the usualadjoint representation of G. Every BK is a loally losed ontratible omplex submanifoldof �nite odimension dK in LG, and it is di�eomorphi to the intersetion L+
K of N−with K · L−

1 · K−1, where L−
1 onsists of loops equal to the unit at the in�nite point N .(iii) The orbit of K · H+ under N+ is a omplex ell CK of dimension dK . It isdi�eomorphi to the intersetion L+

K of N+ with K ·L−
1 ·K−1, and meets BK transversallyat the single point K · H+.(iv) The orbit of K · H+ under K · L−

1 · K−1 is an open subset UK of LG, and themultipliation of loops gives a di�eomorphism from BK × CK into UK .Reall that in the lassial ase this result redues essentially to the Birkho� fator-ization theorem for matrix loops [30℄.Let us introdue the orresponding onstrution in our setting. Namely, for a loop fon G the (left) Birkho� fatorization will be alled its representation in the form(5) f = f+ · H · f− ,where f+ belongs to the orresponding group L±G and H is some homomorphism of Tinto T p. Now it is evident that the points (ii) and (iv) of the theorem imply the followingexistene result.Proposition 1. Every di�erentiable (and even Hölder lass) loop in a lassial simpleompat group has a fatorization.Note that we ould also introdue the right fatorization with the reversed order of f+and f− and the result would also be valid. Our hoie of the fatorization type is onsistentwith the problem under onsideration. Taking into aount that any homomorphism Hfrom (5) is determined by a sequene of p integer numbers (k1, . . . , kp), we get that thissequene an be assoiated with any loop f . These natural numbers are alled (left)
G-exponents (or partial G-indies) of f . Their olletion will be denoted K(f).



418 G. KHIMSHIASHVILIIt is easy to prove that K(f) does not atually depend neither on the terms of therepresentation (5) nor on the hoie of the maximal torus. For a given maximal torus theproof of this fat an be obtained as in the lassial ase, while the independene on thehoie of a maximal torus follows from the well-known fat that any two maximal toriare onjugate [31℄. The exponents provide basi analytial invariants of loops and alsopermit a topologial interpretation.Proposition 2. Two loops lie in the same onneted omponent of LG if and only ifthey have the same sum of exponents.This follows easily from the ontratibility of subgroups L± and the point (ii) of theDeomposition Theorem.Remark 2. In the lassial ase when G = U(n) we obtain the usual partial indies, andProposition 2 redues to the evident observation that the onneted omponents of LUnare lassi�ed by the sum of partial indies whih is known to oinide with the inrementof the determinant argument of a matrix funtion along the unit irle [30℄.In these terms it appears possible to give a simple solvability riterion and �nd thedimension of solution spae for an linear onjugation problem with oe�ients in a loopgroup [21℄.Theorem 1. Let G be a ompat Lie group. A linear onjugation problem with oe�ient
f ∈ LG is solvable if and only if there exist nonnegative G-exponents of f . The dimensionof kernel is equal to the sum of all positive exponents of f .The index formula is also analogous to the lassial ase. These results enable one todevelop a su�iently omplete Fredholm theory and investigate the stability propertiesof G-exponents. This theory has several appliations disussed in [22℄, [23℄. One of themost spetaular appliations was the onstrution of pairwise non-isomorphi Fredholmstrutures on loop group LG indexed by irreduible representations of G [23℄. In setion 4we show that Fredholm strutures on loop groups an also be onstruted in an essentiallydi�erent and seemingly more diret way.3. Expliit solution to a loopy Riemann-Hilbert problem in S3. As was men-tioned in setion 1, an interesting instane of our general Riemann-Hilbert problem (2)arises if one takes target manifold N to be the immersed loop spae of a 3-fold. Suhloop spaes were introdued by J.-L. Brylinski [12℄ and have important appliations inmodern mathematial physis. Atually, in this ase one may visualize solutions to suhproblems and we now wish to give an expliit example of suh kind based on the famousHopf �bration S3 → S2.For our purposes it is appropriate to de�ne the Hopf �bration in omplex setting.Consider the unit sphere S3 ⊂ C2 ∼= R4 and the Riemann sphere P = C ∼= S2. Then theHopf �bration H : S3 → S2 is de�ned by sending eah point (z1, z2) ∈ S3 into the ratio ofits oordinates interpreted as a point of P, i.e. H(z1, z2) = z1/z2. It is evident that �bresof H are the the omplex big irles, i.e. intersetions of omplex lines in C

2 with S3, soone an onsider its �inverse� as a map from S2 into the spae of smooth loops on S3.



LOOP SPACES AND RIEMANN-HILBERT PROBLEMS 419Let us endow S3 with the standard riemannian metri inherited from the ambientEulidean spae. The sphere S3 endowed with this metri will be alled the round 3-sphere and denoted S3
r . We an now onsider the orresponding Brylinski loop spae

BS3
r [12℄ and get a map H−1 : P → BS3

r . Thus it beomes possible to treat the lattermap from the viewpoint developed in previous setions. A straightforward alulationshows that its di�erential dH−1 intertwines the almost omplex strutures on P and BS3
rand so it de�nes a holomorphi urve in BS3

r . Details of the argument an be foundin [24℄.Correspondingly, the restrition of H−1 on any dis in P de�nes a loopy analyti disin BS3
r . In partiular, taking the unit dis and its omplement we get a solution to loopyRiemann-Hilbert problem (2) with the onstant oe�ient whose value at eah point

p ∈ S1 = {z ∈ C : |z| = 1} is the identity mapping of BS3
r . In terms of analyti diss,one an state that S3

r is the union of images of two loopy analyti diss. Despite theirsimpliity, these observations lead to an instrutive onlusion provided by the followingtheorem from [24℄.Theorem 2. The map H−1 de�nes a holomorphi embedding of the Riemann sphere intothe spae of oriented immersed loops on S3
r . In other words, H−1 de�nes a holomorphiurve in BS3

r . In partiular, a round 3-sphere S3
r an be represented as a union of twoloopy analyti diss glued along their boundaries, i.e., S3

r foliated by the omplex greatirles is a solution to a loopy Riemann-Hilbert problem in BS3.We an now use the above observations and stereographi projetion Π : S3 → R3in order to obtain a similar geometri piture in R3, whih, in partiular, enables one tovisualize ertain analyti diss in R
3. It is well known that the image of the unit disunder Φ = Π ◦ H−1 is a solid torus T bounded by a round torus (torus of revolution)

T ∼= T 2 in R3 (see, e.g., Ch.10 in [2℄). The same holds for any dis in C ⊂ P entered atthe origin.It is also known (but probably not so �well-known�) that the images of omplex bigirles under Π are genuine (metri) irles whih have been disovered by I.Villareau(nowadays they are alled Villareau irles [2℄). They an be de�ned as the intersetionsof a round torus T 2
r with the bitangent plane passing through the enter of torus T 2

r [2℄.Thus the preimages Φ−1(w) of points w from the unit dis are exatly the Villareauirles.On eah round torus T 2
r , Villareau irles ome in two families eah of whih onsistsof noninterseting irles. Two Villareau irles belonging to the same family will bealled oherent. Thus eah of the two families of oherent Villareau irles de�nes afoliation of a round torus. Any two irles in the same family on a given round torus arelinked with the linking number 1 whih orresponds to the well-known fat that the Hopfinvariant of Hopf �bration is equal to one.Consider now a round solid torus Tr de�ned as the losure of interior of a round torus

T 2
r . Obviously, Tr is a union of ontinual family of oaxial round tori lying inside Tr andthe axial irle whih is equal to the intersetion of their interiors. One sees now thatthe family of oherent Villareau irles of all those round tori an be hosen in suh away that together with axial irle they give a foliation of Tr by loops (irles) whih are



420 G. KHIMSHIASHVILImutually linked with the linking number 1. Taking into aount the above remarks weonlude that a Villareau round torus gives a preise piture of a loopy analyti dis in
R3 whih we all Villareau toroid. Thus we have established the following �nal result.Proposition 3. Eah round solid torus in R3 foliated by Villareau irles is the imageof an analyti dis in BR3.To our mind, this beautiful geometri piture alone gives a su�ient justi�ation forthe setting and onsiderations presented above. Using methods of nonlinear analysis it ispossible to show that one an deform a Villareau toroid in suh a way that all leaves ofthe foliation remain losed and it still represents a loopy analyti dis. Suh deformationsan be desribed by expliit equations using methods of deformation theory. For us themain point is that they provide examples of loopy analyti diss di�erent from Villareautoroids.Proposition 4. There exist small perturbations of the Villareau toroid whih an berepresented as the images of loopy analyti diss.This fat may be used to onstrut solutions to loopy Riemann-Hilbert problemswith non-onstant oe�ients whih are su�iently lose to the identity. It would bevery interesting to onstrut similar examples with oe�ients not neessarily lose toidentity. Clearly, similar onstrutions and results make sense for other 3-folds foliatedby loops, for example, for tangent irle bundles of ompat orientable two-dimensionalsurfaes without boundary. One an also onsider similar problems for Seifert �brations,whih suggests a number of interesting open problems (f. [24℄).4. Fredholm strutures on loop spaes. We pass now to Fredholm strutures onloop spaes and begin with neessary de�nitions from funtional analysis. For a Banahspae E, let L(E) denote the algebra of bounded linear operators in E endowed with thenorm topology. Let F (E)(Fk(E)) denote the subset of Fredholm operators (of index k).Let also GL(E) stand for the group of units and L(E) and denote by GC(E) the so-alledFredholm group of E de�ned as the set of all invertible operators from L(E) having theform �identity plus ompat�.Reall that a Fredholm struture on a smooth manifold M modeled on (in�nite di-mensional) Banah spae E is de�ned as a redution of the strutural group GL(E) oftangent bundle TM to subgroup GC(E) [15℄. In the sequel we only deal with the asewhen E = H is a separable Hilbert spae and M is taken to be the group of Sobolev
H1-loops in a ompat Lie group G.Sine GL(H) is ontratible F0(H) is the lassifying spae for GC(H) bundles [15℄. Fora Hilbert manifold M , de�ning a Fredholm struture on M is equivalent to onstrutingan index zero Fredholm map M→H [16℄. It was also shown in [16℄ that a Fredholmstruture on M an be onstruted from a smooth map Φ : M → F0(H), i.e., from asmooth family of index zero Fredholm operators parameterized by points of M . This isatually the most e�etive way of onstruting Fredholm strutures whih has alreadybeen used in [17℄, [22℄.



LOOP SPACES AND RIEMANN-HILBERT PROBLEMS 421We are now going to desribe an expliit onstrution of suh families on appropriateloop groups using the Riemannian exponential mapping desribed in the �rst setion. Inthe sequel we freely use its properties established in [28℄, [29℄. Atually, the very idea ofonstruting Fredholm strutures using exponential mapping appeared in relation withresults of [28℄, [29℄ where it was proven that, for a ompat Lie group G, the exponentialmap exp = expe : LA→LG is a Fredholm map of index zero. This fat is ruial for theonstrution presented in the next setion. Moreover, in [28℄, [29℄ one �nds a more generalargument whih derives the fredholmness of exponential mapping from the ompatnessof urvature operators and permits further generalizations to more general lasses of loopspaes.Fredholm strutures on loop groups already gained some attention in [17℄, [18℄, [23℄.We present now a very expliit onstrution whih may have ertain advantages fromthe point of view of further generalizations. A losely related onstrution of Fredholmstruture on the so-alled restrited in�nite Grassmannian was given in [8℄.We ahieve our goal by indiating an expliitly given family of index zero Fredholmson LG = H1(T, G). Disussions with G. Misiolek were ruial for �nding an appropriateexpliit onstrution. Reall that by LA we denote the loop algebra onsisting of H1-loopsin Lie algebra A and there is de�ned the exponential map expe : LA → LG. For g ∈ LG,let expg : TgLG → LG be the exponential map at point g. Let v ∈ LA and γv be theorresponding geodesi through e in the diretion of v, i.e., γv(t) = expe(tv). Let further
J be the Jaobi vetor �eld along γv with J(0) = 0,∇γv

J(0) = w, where w ∈ LA. Inother words, J(t) = dexpe(tv)(tw).Put u(t) = τv
0,t(J(t)) ∈ LA then u is a solution to the initial problem(6) ∂2

t u + τv
0,t ◦ R(τv

t,0u, γ̇v)γ̇v = 0, u(0) = 0, ∂tu(0) = w.Then we an de�ne a linear transformation Ψ(e) : LA→LA by putting Ψ(e) = Et,e(v),where Et,e(v)w = u(t). Notie that this operator is of the form tI + Kt, where Kt is aompat operator smoothly depending on t. Let moreover v′, w′ ∈ TgLG and onsiderthe geodesi γv′(t) = expg(tv
′), where expg : TgLG→LG is the exponential map at point

g. As above, let Jg be a Jaobi vetor �eld on γ′ with Jg(0) = 0, ∇γ̇g
Jg(0) = w′, andlet τv′

t,0 : TgLG→Tγg(t)LG be parallel translation. Put now ug(t) = τv′

t,0 ◦ Jg(t) and notiethat ug(t0 is a solution to(7) ∂2
t ug + τv′

0,t ◦ R(τv′

t, 0ug, γ̇g)γ̇g = 0, ug(0) = 0, ∂tug(0) = wg.Thus puttingEt,g(v
′)(w′) = ug(t) we obtain a linear endomorphism of TgLG. Considernow the map(8) g 7→ Ψ(g)(·) = Lg−1∗g ◦ Et,g(v

′) ◦ Lg∗e : LA→LA.We laim that it atually de�nes a smooth family of index zero Fredholms. Indeed,let us rewrite the above formula as follows:
Ψ(g)(·) = Lg−1∗g(τ

v′

0,t(Lg∗exp
e
(tv)Lg−1∗g(tv

′) ◦ dexpe(Lg−1∗g(tv′)) ◦ Lg−1∗g ◦ Lg∗e(t(·)))

= Lg1∗g ◦ τv′

0,t ◦ Lg∗exp
e
(tv) ◦ dexpe(tv)(t(·)) = Lg1∗g ◦ τv′

0,t ◦ Lg∗exp
e
(tv) ◦ τv

t,0(Et,e(t·)).



422 G. KHIMSHIASHVILINotie now that dexpe(tv) is an operator of the form �invertible plus ompat� whileall other operators in the last expression are bounded invertible operators. This impliesthat the omposition is still an operator of the form �invertible plus ompat� hene it isa Fredholm operator of index zero. It is easy to see that the above family of index zeroFredholms is smoothly depends on point g ∈ LG.Colleting these observations together and taking into aount the main result of[16℄ we an end up with a smooth Fredholm struture on LG. It is now easy to seethat the exponential map beomes a Fredholm map of index zero with respet to theanonial Fredholm struture on LA and the Fredholm struture on LG provided by ouronstrution. In this way we arrive to the following result.Theorem 3. The group LG of free Sobolev H1-loops in a ompat Lie group G endowedwith H1-metri has a smooth Fredholm struture suh that the riemannian exponentialmapping exp : TeLG → LG beomes a Fredholm map of index zero.Remark 3. It an be atually shown that the Fredholm struture provided by the the-orem is uniquely de�ned up to the onordane by the requirement that the exponentialmap is Fredholm of index zero. Thus we obtain a anonial onordane lass of Fredholmstrutures on LG.Remark 4. As was proven in [16℄, eah Fredholm struture on manifold M induesa zero index Fredholm map of M in its model. It is now natural to onjeture thatsuh a map of LG into TeLG an be obtained by onstruting a sort of �pseudo-inverse�to exponential map exp. It would be instrutive to �nd an expliit desription of suha pseudo-embedding. It would be also interesting to de�ne the same struture by anexpliitly given atlas on LG.Using the general tehniques of Fredholm strutures theory, one an derive someimmediate onsequenes of the results presented above.Corollary 1. The Fredholm struture indued by exponential mapping exists on a basedloop group.Corollary 2. The Fredholm strutures on based loop groups are ompatible with theFredholm strutures on the restrited Grassmannians onstruted in [8℄.Furthermore, existene of Fredholm strutures on loop groups enables one to studyfuntorial properties of those groups in the framework of global analysis. For example, itis easy to verify that eah homomorphism of Lie groups φ : G→H indues an index zeroFredholm map Lφ : LG→LH. Sine an integer-valued mapping degree is well-de�nedfor index zero Fredholm maps, one gets an integer deg Lφ and it beomes tempting toalulate it in terms of algebrai properties of homomorphism φ. Analyzing the aboveonstrution one �nds out that Fredholm strutures an be onstruted on more generalloop spaes when the ambient manifold M need not be a Lie group.In fat, in order to perform the key onstrution of index zero Fredholms one just needsto have a anonial way of identifying an arbitrary tangent spae with the tangent spaeat referene point. This an be ahieved, for example, for a parallelizable manifold Mand for some lasses of homogeneous spaes of not neessarily ompat Lie groups. The



LOOP SPACES AND RIEMANN-HILBERT PROBLEMS 423fat that this family onsists of index zero Fredholms would follow from the fat thatthe exponential map is Fredholm. Thus our onstrution is appliable for loop spaessatisfying these two onditions. In suh way we obtain the following generalization ofTheorem 3.Theorem 4. Let M be a parallelizable ompat smooth riemannian manifold. Then thespae of free H1-loops LM an be endowed with a natural Fredholm struture suh thatthe riemannian exponential map is a Fredholm map of index zero.In partiular, immersed loop spaes of three-dimensional manifolds an be endowedwith Fredholm strutures and one may wish to ompare them with the strutures omingfrom the loopy Riemann-Hilbert problems. Summing up, we believe that the resultspresented in this paper on�rm that the interplay between loop spaes and Riemann-Hilbert problems leads to interesting problems and deserves further investigation.
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