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ABSTRACT
One boundary value problem for a class of higher-order semilin-
ear partial differential equations is considered. Theorems on exis-
tence, uniqueness and nonexistence of solutions of this problem are
proved.
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1. Statetement of the problem

In the Euclidian spaceR
n of the variables x = (x1, . . . , xn) and twe consider the semilinear

equation of the type

Lf := ∂4ku
∂t4k

−
n∑

i,j=1

∂

∂xj

(
aij

∂u
∂xi

)
+ f (u) = F, (1)

where f : R → R is a given continuous function, aij = aji = aij(x), i, j = 1, . . . , n, F =
F(x, t) are given, andu = u(x, t) is an unknown real functions, k is a natural number,n ≥ 2.

For the equation (1) we consider the boundary value problem: find in the cylindrical
domain DT := � × (0,T), where � is an open Lipschitz domain in R

n, a solution u =
u(x, t) of that equation according to the boundary conditions

u|� = 0, (2)

∂ iu
∂ti

∣∣∣∣
�0∪�T

= 0, i = 0, . . . , 2k − 1, (3)
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where � := ∂� × (0,T) is the lateral face of the cylinder DT , �0 : x ∈ �, t = 0 and �T :
x ∈ �, t = T are upper and lower bases of this cylinder, respectively.

A numerous literature is dedicated to the research of initial and mixed problems for
the high order semilinear hyperbolic equations having a structure different from (1) for
example, see works [1–11] and works cited there). Note that some of the results in this
direction have been discussed in the workshop materials [12].

Denote by C2,4k(D̄T , ∂DT) the space of functions u continuous in D̄T , having contin-
uous partial derivatives ∂u/∂xi, ∂2u/∂xi∂xj, ∂ lu/∂tl, i, j = 1, . . . , n; l = 1, . . . , 4k, in D̄T .
Assume

C2,4k
0 (D̄T , ∂DT) :=

{
u ∈ C2,4k(D̄T) : u|� = 0,

∂ iu
∂ti

∣∣∣∣
�0∪�T

= 0, i = 0, . . . , 2k − 1

}
.

Let aij = aij(x) ∈ C1(�̄), i, j = 1, . . . , n, and u ∈ C2,4k
0 (D̄T , ∂DT) be a classical solution

of the problem (1)–(3). Multiplying both parts of the equation (1) by an arbitrary function
ϕ ∈ C2,4k

0 (D̄T , ∂DT) and integrating the obtained equation by parts over the domain DT ,
we obtain

∫
DT

⎡
⎣∂2ku

∂t2k
· ∂2kϕ

∂t2k
+

n∑
i,j=1

aij(x)
∂u
∂xi

∂ϕ

∂xj

⎤
⎦ dxdt +

∫
DT

f (u)ϕ dxdt

=
∫
DT

Fϕ dxdt ∀ ϕ ∈ C2,4k
0 (D̄T , ∂DT). (4)

Below, we assume that the operator K := ∑n
i,j=1 ∂/∂xj(aij(x)(∂u/∂xi)) is strongly elliptic

in �̄, i.e.

k0|ξ |2 ≤
n∑

i,j=1
aij(x)ξiξj ≤ k1|ξ |2 ∀x ∈ �̄, ξ = (ξ1, . . . , ξn) ∈ R

n, (5)

where k0, k1 = const > 0, |ξ |2 = ∑n
i=1 ξi

2. Note that (5) implies the hypoellipticity of the
linear part of the operator from (1), i.e. L0 is hyppoelliptic for each x = x0 ∈ �̄ [13].

Introduce the Hilbert spaceW1,2k
0 (DT) as a completion with respect to the norm

‖u‖2
W1,2k

0 (DT)
=
∫
DT

[
u2 +

2k∑
i=1

(
∂ iu
∂ti

)2

+
n∑

i=1

(
∂u
∂xi

)2
]
dxdt (6)

of the classical space C2,4k
0 (D̄T , ∂DT).

Remark 1.1: It follows from (6) that if u ∈ W1,2k
0 (DT), then u ∈ W1

2
o
(DT) and ∂ iu/∂ti ∈

L2(DT), i = 2, . . . , 2k. Here W1
2(DT) is the well-known Sobolev space [14] consisting of

the elements of L2(DT), having the first order generalized derivatives from L2(DT), and
W1

2
o
(DT) = {u ∈ W1

2(DT) : u|∂DT = 0}, where the equality u|∂DT = 0 is understood in
the sense of the trace theory [14].

We take the equality (4) as a basis for our definition of the weak generalized solution u
of the problem (1), (2), (3).
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Below, on the function f = f (u) we impose the following requirements

f ∈ C(R), |f (u)| ≤ M1 + M2|u|α , u ∈ R, (7)

whereMi = const ≥ 0, i = 1, 2, and

0 ≤ α = const <
n + 1
n − 1

. (8)

Remark 1.2: The embedding operator I : W1
2(D̄T) → Lq(DT) represents a linear con-

tinuous compact operator for 1 < q < 2(n + 1)/(n − 1), when n>1 [14]. At the same
time the Nemytsky operator N : Lq(DT) → L2(DT), acting by the formula Nu = −f (u),
due to (7) is continuous and bounded if q ≥ 2α [15]. Thus, since due to (8) we have
2α < 2(n + 1)/(n − 1), then there exists a number q such that 1 < q < 2(n + 1)/(n − 1)
and q ≥ 2α. Therefore, in this case the operator

N0 = NI : W1
2
0
(DT) → L2(DT) (9)

will be continuous and compact. Besides, from u ∈ W1,2k
0 (DT) it follows that f (u) ∈

L2(DT) and, if um → u in the spaceW1,2k
0 (DT), then f (um) → f (u) in the space L2(DT).

Definition 1.1: Let the function f satisfy the conditions (7) and (8), F ∈ L2(DT). The func-
tion u ∈ W1,2k

0 (DT) is said to be a weak generalized solution of the problem (1)–(3), if for
any ϕ ∈ W1,2k

0 (DT) the integral equality (4) is valid.

It is not difficult to verify that if the solution of the problem (1)–(3) in the sense of
Definition 1.1 belongs to the class C2,4k

0 (DT , ∂DT), then it will also be a classical solution
of this problem.

2. The solvability of problem (1)–(3)

In the space C2,4k
0 (D̄T , ∂DT), together with the scalar product

(u, v)o =
∫
DT

[
u · v +

2k∑
i=1

∂ iu
∂ti

∂ iv

∂ti
+

n∑
i=1

∂u
∂xi

∂v

∂xi

]
dxdt (10)

with norm || · ||0 = ||u||W1,2k
0 (DT)

defined by the right-hand side part of equality (6), let us
introduce the following scalar product

(u, v)1 =
∫
DT

⎡
⎣∂2ku

∂t2k
∂2kv

∂t2k
+

n∑
i,j=1

aij(x)
∂u
∂xi

∂v

∂xj

⎤
⎦dxdt (11)

with norm

||u||21 =
∫
DT

⎡
⎣(∂2ku

∂t2k

)2

+
n∑

i,j=1
aij(x)

∂u
∂xi

∂u
∂xj

⎤
⎦dxdt, (12)

where u, v ∈ C2,4k
0 (D̄T , ∂DT).
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Lemma 2.1: The inequalities

c1||u||0 ≤ ||u||1 ≤ c2||u||0 ∀ u ∈ C2,4k
0 (D̄T , ∂DT) (13)

hold, where the positive constants c1 and c2 do not depend on u.

Proof: If u ∈ C2,4k
0 (D̄T , ∂DT) then for fixed t ∈ [0,T] the function u(·, t) ∈ W1

2
o
(�) and

due to a known inequality [14]

||u(·, t)||2L2(�) ≤ c0
∫

�

n∑
i=1

(
∂u
∂xi

)2
(x, t) dx, (14)

whence, in view of (5), we have

||u(·, t)||2L2(�) ≤ c0
k0

∫
�

n∑
i,j=1

aij(x)
∂u
∂xi

∂u
∂xj

(x, t) dx, (15)

where the positive constants k0 and c0 = c0(�) do not depend on t ∈ [0,T] and u.
Integrating inequalities (14) and (15) on t ∈ [0,T] we obtain

||u||2L2(DT) ≤ c0
∫
DT

n∑
i=1

(
∂u
∂xi

)2
(x, t) dxdt, (16)

||u||2L2(DT) ≤ c0
k0

∫
DT

n∑
i,j=1

aij(x)
∂u
∂xi

∂u
∂xj

(x, t) dxdt. (17)

Let us evaluate the norms ‖∂ iu/∂ti‖L2(DT) for i = 1, . . . , 2k − 1 through
‖∂2ku/∂t2k‖L2(DT). Since u ∈ C2,4k

0 (D̄T , ∂DT) satisfies equalities (3), then it is easy to see
that

∂ iu(·, t)
∂ti

= 1
(2k − i − 1)!

∫ t

0
(t − τ)2k−i−1 ∂2ku(·, τ)

∂t2k
dτ , i = 1, . . . , 2k − 1. (18)

From (18), using Cauchy inequality, we obtain

(
∂ iu(·, t)

∂ti

)2

≤ 1
((2k − i − 1)!)2

∫ t

0
(t − τ)2(2k−i−1) dτ

∫ t

0

(
∂2ku(·, t)

∂t2k

)2

dτ

= t4k−2i−1

((2k − i − 1)!)2 (4k − 2i − 1)

∫ t

0

(
∂2ku(·, t)

∂t2k

)2

dτ

≤ T4k−2i−1
∫ T

0

(
∂2ku(·, τ)

∂t2k

)2

dτ ,

whence∫ T

0

(
∂ iu(·, t)

∂ti

)2

dt ≤ T4k−2i
∫ T

0

(
∂2ku(·, τ)

∂t2k

)2

dτ , i = 1, . . . , 2k − 1. (19)
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Integrating both parts of inequality (19) over the domain � we obtain

∥∥∥∥∂ iu
∂ti

∥∥∥∥
2

L2(DT)

≤ T4k−2i

∥∥∥∥∥∂2ku
∂t2k

∥∥∥∥∥
2

L2(DT)

, i = 1, . . . , 2k − 1. (20)

Due to (5) we have

k0
∫
DT

n∑
i=1

(
∂u
∂xi

)2
dxdt ≤

∫
DT

n∑
i,j=1

aij(x)
∂u
∂xi

∂u
∂xj

dxdt ≤ k1
∫
DT

n∑
i=1

(
∂u
∂xi

)2
dxdt. (21)

Finally, from (6), (12), (16), (17), (20) and (21) we easily obtain (13). Lemma 2.1 is
proved. �

Remark 2.1: If we complete the spaceC2,4k
0 (D̄T , ∂DT) under the norm [12] due to Lemma

2.1, then in view of (10) we obtain the sameHilbert spaceW1,2k
0 (DT)with equivalent scalar

products (10) and (11).

Consider the following condition

lim
|u|→∞

inf
f (u)
u

≥ 0. (22)

Lemma 2.2: Let F ∈ L2(DT) and the conditions (7), (8) and (22) be fulfilled. Then for a
weak generalized solution u ∈ W1,2k

0 (DT) of the problem (1)–(3) the a priori estimate

||u||0 = ||u||W1,2k
0 (DT)

≤ c3||F||L2(DT) + c4 (23)

is valid with constants c3 > 0 and c4 ≥ 0, independent of u and F.

Proof: Since f ∈ C(R), then from (22) it follows that for each ε > 0 there exists a number
Mε ≥ 0 such that

uf (u) ≥ −Mε − εu2 ∀u ∈ R. (24)

Assuming that ϕ = u ∈ W1,2k
0 (DT) in equality (4) and taking into account (24) and (12),

for each ε > 0 we have

||u||21 = −
∫
DT

uf (u) dxdt +
∫
DT

Fu dxdt ≤ Mε mesDT + ε

∫
DT

u2 dxdt

+
∫
DT

(
1
4ε

F2 + εu2
)

dxdt = 1
4ε

||F||2L2(DT) + Mε mesDT + 2ε||u||2L2(DT)

≤ 1
4ε

||F||2L2(DT) + Mε mesDT + 2ε||u||20. (25)

Due to (13) from (25) we have

c21||u||20 ≤ ||u||21 ≤ 1
4ε

||F||2L2(DT) + Mε mesDT + 2ε||u||20,
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whence, for ε = 1
4c

2
1 we obtain

||u||20 ≤ 2c−4
1 ||F||2L2(DT) + 2c−2

1 Mε mesDT .

From the last inequality follows (23) for c3 = 2c−4
1 and c4 = 2c−2

1 Mε mesDT , where ε =
1
4c

2
1. Lemma 2.2 is proved. �

Remark 2.2: First we consider a linear problem correspondent to (1)–(3), i.e. when f =0.
In this case for F ∈ L2(DT) we analogously introduce a notion of a weak generalized
solution u ∈ W1,2k

0 (DT) of this problem for which it is valid the integral equality

(u,ϕ)1 =
∫
DT

⎡
⎣∂2ku

∂t2k
∂2kϕ

∂t2k
+

n∑
i,j=1

aij(x)
∂u
∂xi

∂ϕ

∂xj

⎤
⎦ dxdt

=
∫
DT

Fϕ dxdt ∀ϕ ∈ W1,2k
0 (DT). (26)

In view of (13) we have∣∣∣∣
∫
DT

Fϕ dxdt
∣∣∣∣ ≤ ||F||L2(DT)||ϕ||L2(DT)

||F||L2(DT)||ϕ||0 ≤ c−1
1 ||F||L2(DT)||ϕ||1. (27)

Due toRemark 2.1, (26) and (27) from theRiess theorem it follows the existence of a unique
function u ∈ W1,2k

0 (DT) which satisfies equality (26) for any ϕ ∈ W1,2k
0 (DT) and for its

norm is valid the estimate

||u||1 ≤ c−1
1 ||F||L2(DT). (28)

Due to (13) from (28) we obtain

||u||0 = ||u||W1,2k
0 (DT)

≤ c−2
1 ||F||L2(DT). (29)

Thus, introducing the notationu = L−1
0 F, we find that to the linear problem corresponding

to (1)–(3), i.e. when f =0, there corresponds the linear bounded operator

L−1
0 : L2(DT) → W1,2k

0 (DT)

and for its norm the estimate

||L−1
0 ||L2(DT)→W1,2k

0 (DT)
≤ c−2

1 (30)

holds by virtue of (29).
Taking into account Definition 1.1 and Remark 2.2, we can rewrite the equality (4),

equivalent to the problem (1)–(3) in the form

u = L−1
0
[−f (u) + F

]
(31)

in the Hilbert spaceW1,2k
0 (DT).
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Remark 2.3: Since due to (6) and Remark 1.1 the space W1,2k
0 (DT) is continuously

embedded into the space W1
2
0
(DT), taking into account (9) from Remark 1.2, when the

conditions (7) and (8) are fulfilled, we see that the operator

N1 = NII1 : W1,2k
0 (DT) → L2(DT),

where I1 : W1,2k
0 (DT) → W1

2
0
(DT) is the embedding operator, is likewise continuous and

compact.

We rewrite the equation (31) as

u = Au := L−1
0 (N1u + F) . (32)

Then, taking into account (30) and Remark 2.3, we conclude that the operator A :
W1,2k

0 (DT) → W1,2k
0 (DT) from (32) is continuous and compact. At the same time accord-

ing to the a priori estimate (23) of Lemma 2.2 in which the constants c3 = 2c−4
1 and

c4 = 2c−2
1 Mε mesDT , ε = 1

4c
2
1 for any parameter τ ∈ [0, 1] and for every solution u ∈

W1,2k
0 (DT) of equation u = τAu with the above-mentioned parameter the a priori esti-

mate (23) is valid with the same constants c3 > 0 and c4 ≥ 0, independent of u, F and τ .
Therefore, by the Schaefer’s fixed point theorem [16] equation (32) and hence the prob-
lem (1)–(3) has at least one weak generalized solution u from the spaceW1,2k

0 (DT). Thus,
the following theorem is valid.

Theorem 2.1: Let the conditions (7), (8) and (22) be fulfilled. Then for any F ∈ L2(DT) the
problem (1)–(3) has at least one weak generalized solution u ∈ W1,2k

0 (DT).

3. Uniqueness of the solution of problem (1)–(3)

Theorem 3.1: Let f be a monotone function and satisfy the conditions (7), (8). Then for any
F ∈ L2(DT) the problem (1)–(3) cannot have more than one weak generalized solution in the
space W1,2k

0 (DT).

Proof: Let F ∈ L2(DT), and moreover, let u1 and u2 be two weak generalized solutions of
the problem (1)–(3) from the spaceW1,2k

0 (DT), i.e. according to (4) the equalities

∫
DT

⎡
⎣∂2kum

∂t2k
∂2kϕ

∂t2k
+

n∑
i,j=1

aij(x)
∂um
∂xi

∂ϕ

∂xj

⎤
⎦ dxdt

= −
∫
DT

f (um)ϕ dxdt +
∫
DT

Fϕ dxdt ∀ ϕ ∈ W1,2k
0 (DT), (33)

are valid,m=1,2.
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From (33), for the difference v = u2 − u1 we have

∫
DT

⎡
⎣∂2kv

∂t2k
∂2kϕ

∂t2k
+

n∑
i,j=1

aij(x)
∂v

∂xi
∂ϕ

∂xj

⎤
⎦ dxdt

= −
∫
DT

(
f (u2) − f (u1)

)
ϕ dxdt ∀ϕ ∈ W1,2k

0 (DT). (34)

Putting ϕ = v ∈ W1,2k
0 (DT) in the equality (34), in view of (12) we obtain

||v||1 = −
∫
DT

(
f (u2) − f (u1)

)
(u2 − u1) dxdt. (35)

Since f is a monotone function, we have

(
f (s2) − f (s1)

)
(s2 − s1) ≥ 0 ∀ s1, s2 ∈ R

n. (36)

From (13), (35) and (36) it follows that

c1||v||0 ≤ ||v||1 ≤ 0,

whence we find that v=0, i.e. u2 = u1, and hence the proof of the Theorem 3.1 is complete.
�

From Theorem 2.1 and 3.1 in its turn it follows

Theorem3.2: Let f be amonotone function and satisfy the conditions (7), (8) and (22). Then
for any F ∈ L2(DT) the problem (1)–(3) has a unique weak generalized solution in the space
W1,2k

0 (DT).

4. Nonexistence of a solution of problem (1)–(3)

Let for simplicity � : |x| < 1.

Theorem 4.1: Let F0 ∈ L2(DT), ||F0||L2(DT) 
= 0, F0 ≥ 0 and F = μF0, μ = const > 0.
Then, if conditions (7), (8) are fulfilled and f (u) ≤ −|u|α ∀u ∈ R

n, α > 1, there exist a
number μ0 = μ0(F0,α) > 0 such that for μ > μ0 the problem (1)–(3) cannot have a weak
generalized solution in the space W1,2k

0 (DT).

Proof: Assume that the conditions of the theorem are fulfilled and the solution u ∈
W1,2k

0 (DT) of the problem (1)–(3) exists for any fixed μ > 0. Then the equality (4) takes
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the form

∫
DT

⎡
⎣∂2ku

∂t2k
· ∂2kϕ

∂t2k
+

n∑
i,j=1

aij(x)
∂u
∂xi

∂ϕ

∂xj

⎤
⎦ dxdt = −

∫
DT

f (u)ϕ dxdt

+ μ

∫
DT

F0ϕ dxdt ∀ ϕ ∈ W1,2k
0 (DT). (37)

By integration by parts it can be easily verified that

∫
DT

⎡
⎣∂2ku

∂t2k
· ∂2kϕ

∂t2k
+

n∑
i,j=1

aij(x)
∂u
∂xi

∂ϕ

∂xj

⎤
⎦ dxdt

=
∫
DT

u

⎡
⎣∂4kϕ

∂t4k
−

n∑
i,j=1

∂

∂xj

(
aij

∂ϕ

∂xi

)⎤⎦ϕ dxdt

=
∫
DT

uL0 ϕ dxdt ∀ϕ ∈ C2,4k
0 (D̄T , ∂DT), (38)

where the space C2,4k
0 (D̄T , ∂DT) was introduced in the first section, besides

C2,4k
0 (D̄T , ∂DT) ⊂ W1,2k

0 (DT).

In view of (38) and conditions of the theorem from (37) we obtain∫
DT

|u|αϕ dxdt ≤
∫
DT

uL0 ϕ dxdt − μ

∫
DT

F0ϕ dxdt ∀ϕ ∈ C2,4k
0 (D̄T , ∂DT). (39)

Below we use the method of test functions [17]. As a test function we take ϕ ∈
C2,4k
0 (D̄T , ∂DT) such that ϕ|DT > 0. If in Young’s inequality with parameter ε > 0

ab ≤ ε

α
aα + 1

α′εα′−1 b
α′
; a, b ≥ 0, α′ = α

α − 1

we take a = |u|ϕ1/α , b = |L0ϕ|/ϕ1/α , then taking into account thatα′/α = α′ − 1we have

|uL0ϕ| = |u|ϕ1/α |L0ϕ|
ϕ1/α ≤ ε

α
|u|αϕ + 1

α′εα′−1
|L0ϕ|α′

ϕα′−1 . (40)

From (39), (40) we have the inequality

(
1 − ε

α

) ∫
DT

|u|αϕ dxdt = 1
α′εα′−1

∫
DT

|L0ϕ|α′

ϕα′−1 dxdt − μ

∫
DT

F0ϕ dxdt,

whence for ε < α we get

∫
DT

|u|αϕ dxdt ≤ α

(α − ε)α′εα′−1

∫
DT

|L0ϕ|α′

ϕα′−1 dxdt − αμ

α − ε

∫
DT

F0ϕ dxdt. (41)
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Taking into account the equalities α′ = α/(α − 1),α = α′/(α′ − 1) and min0<ε<α α/

((α − ε)α′εα′−1) = 1 which is achieved at ε = 1, from (41) we find that∫
DT

|u|αϕ dxdt ≤
∫
DT

|L0ϕ|α′

ϕα′−1 dxdt − α′μ
∫
DT

F0ϕ dxdt. (42)

Note that it is not difficult to show the existence of a test function ϕ such that

ϕ ∈ C2,4k
0 (D̄T , ∂DT), ϕ|DT > 0, κ0 =

∫
DT

|L0ϕ|α′

ϕα′−1 dxdt < +∞. (43)

Indeed, as it can be easily verified, the function

ϕ(x, t) = [(1 − |x|2)t(T − t)]m

for a sufficiently large positivem satisfies conditions (43).
Since by the condition of the theorem F0 ∈ L2(DT), ||F0||L2(DT) 
= 0, F0 ≥ 0, and

mesDT < +∞, due to the fact that ϕ|DT > 0 we have

0 < κ1 =
∫
DT

F0ϕ dxdt < +∞. (44)

Denote by g(μ) the right-hand side of the inequality (42) which is a linear function with
respect to μ. From (43) and (44) we have

g(μ) < 0 for μ > μ0 and g(μ) > 0 for μ < μ0, (45)

where

g(μ) = κ0 − α′μκ1, μ0 = κ0

α′κ1
> 0.

Owing to (45) for μ > μ0, the right-hand side of the inequality (42) is negative, whereas
the left-hand side of that inequality is nonnegative. The obtained contradiction proves the
theorem. �
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