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1. Statement of the problem

In the Euclidean space Rn+1 of the variables x = (x1, x2, ..., xn) and t we
consider the nonlinear equation of the type

Lfu :=
∂2(2k+1)u

∂t2(2k+1)
−∆2u+ f(u,∇u) = F (x, t), (1.1)

where f and F are given, and u is an unknown real functions,

∇ := ( ∂
∂x1

, ..., ∂
∂xn

, ∂∂t ), ∆ :=
n∑
i=1

∂2

∂x2
i
, n ≥ 2, and k ≥ 0 is an integer number.

For the equation (1.1) we consider the boundary value problem: find in
the cylindrical domain DT := Ω × (0, T ), where Ω is a Lipschitz domain in
Rn, a solution u(x, t) of that equation according to the boundary conditions

∂iu

∂ti

∣∣∣∣
Ω0∪ΩT

= 0, i = 0, ..., 2k, (1.2)

u|ΓT = 0,
∂u

∂ν

∣∣∣∣
ΓT

= 0, (1.3)

where ΓT : ∂Ω×(0, T ) is the lateral face of the cylinder DT , Ω0 : x ∈ Ω, t = 0
and ΩT : x ∈ Ω, t = T are the lower and upper bases of this cylinder,
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respectively, while ∂
∂ν is a derivative with respect to the outer normal to

the boundary ∂DT of the domain DT . For T = ∞ we have D∞ = Ω ×
(0,∞),Γ∞ = ∂Ω× (0,∞).

Below, for function f = f(s0, s1, ..., sn+1), (s0, s1, ..., sn+1) ∈ Rn+2 we
assume that

f ∈ C(Rn+2) (1.4)

and

|f(s0, s1, ..., sn+1)| ≤M +

n+1∑
i=0

Mi|si|αi ∀s = (s0, s1, ..., sn+1) ∈ Rn+2, (1.5)

where M,Mi, αi = const > 0, i = 0, 1, ..., n+ 1.

To research of initial and mixed problems for the high order semilinear
hyperbolic equations having a structure different from (1.1) is dedicated nu-
merous literature (for example, see works [1], [3], [5], [8-10], [13-14], [18-19]
and literature cited there). Some of the results in this direction have been
discussed in workshop materials [6, 7].

Note that the left side part of the operator Lf from (1.1), i.e. L0 is a
hyppoelliptic operator [4].

Denote by C4,4k+2(DT ) the space of functions u continuous in DT and

having there continuous partial derivatives ∂βxu,
∂lu
∂tl

, where ∂βx = ∂|β|

∂x
β1
1 ...∂xβnn

,

β = (β1, ..., βn), |β| =
∑n
i=1 βi ≤ 4; l = 1, ..., 4k + 2.

Let

C4,4k+2
0 (D̄T , ∂DT ) :=

{
u ∈ C4,4k+2(DT ) : u|ΓT = ∂u

∂ν

∣∣
ΓT

= 0,

∂iu
∂ti

∣∣∣
Ω0∪ΩT

= 0, i = 0, ..., 2k

}
.

Let u ∈ C4,4k+2
0 (DT , ∂DT ) be a classical solution of the problem (1.1),

(1.2), (1.3). Multiplying both parts of the equation (1.1) by an arbitrary

function ϕ ∈ C4,4k+2
0 (D̄T , ∂DT ) and integrating the obtained equation by

parts over the domain DT , we obtain

−
∫
DT

[
∂2k+1u

∂t2k+1
· ∂

2k+1ϕ

∂t2k+1
+ ∆u ·∆ϕ

]
dxdt+

∫
DT

f(u,∇u)ϕdxdt =

=

∫
DT

Fϕdxdt ∀ϕ ∈ C4,4k+2
0 (D̄T , ∂DT ). (1.6)

We take the equality (1.6) as a basis for our definition of the weak
generalized solution u of the problem (1.1), (1.2), (1.3).

Introduce the Hilbert spaceW 2,2k+1
0 (DT ) as a completion of the classical

space C4,4k+2
0 (DT , ∂DT ) with respect to the norm

||u||2
W 2,2k+1

0 (DT )
=
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=

∫
DT

[
u2 +

n∑
i=1

( ∂u
∂xi

)2

+

n∑
i,j=1

( ∂2u

∂xi∂xj

)2

+

2k+1∑
i=1

(∂iu
∂ti

)2
]
dxdt(1.7)

of the classical space C4,4k+2
0 (D̄T , ∂DT ).

Remark 1.1. It follows from (1.7) that if u ∈ W 2,2k+1
0 (DT ), then

u ∈
o

W 1
2 (DT ) and ∂2u

∂xi∂xj
, ∂

lu
∂tl
∈ L2(DT ); i, j = 1, ..., n; l = 1, ..., 2k + 1.

Here Wm
2 (DT ) is the well-known Sobolev space consisting of the elements of

L2(DT ), having up to the m-th order generalized derivatives from L2(DT ),
and
o

W 1
2 (DT ) =

{
u ∈W 1

2 (DT ) : u|∂DT = 0
}

, where the equality u|∂DT = 0 is

understood in the sense of the trace theory [12]. Moreover, in the case when
the domain Ω is convex, implying that DT is also convex, since the following
estimate is valid [12]∫

DT

[
n∑

i,j=1

( ∂2u

∂xi∂xj

)2

+

n∑
i=1

( ∂2u

∂xi∂t

)2

+
(∂2u

∂t2

)2
]
dxdt ≤

c

∫
DT

[ n∑
i=1

∂2u

∂x2
i

+
∂2u

∂t2

]2
dxdt

∀u ∈
o

C2(DT , ∂DT ) := {u ∈ C2(DT ) : u|∂DT = 0} (1.8)

with positive constant c, not dependent on u and domain DT , then from (1.7)
we obtain continuous embedment of the spaces

W 2,2k+1
0 (DT ) ⊂W 2

2 (DT ). (1.9)

Below, we assume that domain Ω is convex.
Remark 1.2. As it is known the space W 2

2 (DT ) is continuously and

compactly embedded into Lp(DT ) for p < 2(n+1)
n−3 when n > 3 and for any

p ≥ 1 when n = 2, 3; analogously, the space W 1
2 (DT ) is continuously and

compactly embedded into Lq(DT ) for q < 2(n+1)
n−1 [14]. Therefore, taking into

account continuous embeddment of spaces (1.9), the inequality (1.5) and due
to the properties of the Nemitskii operators Ni, i = 0, 1, ..., n + 1, acting by
formulas Niv = |v|αi [11], we obtain that the nonlinear operator

N : W 2,2k+1
0 (DT )→ L2(DT ) (1.10)

acting by formula

Nu = f(u,∇u) (1.11)

is continuous and compact if the powers of nonlinearity αi in the right side
part of inequality (1.5) satisfy the following inequalities:

1 < α0 <
n+ 1

n− 3
for n > 3; α0 > 1 for n = 2, 3; (1.12)

1 < αi <
n+ 1

n− 1
, i = 1, ..., n+ 1, n ≥ 2. (1.13)
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Besides, from the remarks made above it follows that if u ∈ W 2,2k+1
0 (DT )

then f(u,∇u) ∈ L2(DT ) and for um → u in the space W 2,2k+1
0 (DT ) we have

f(um,∇um)→ f(u,∇u) in the space L2(DT ).
Definition 1.1. Let function f satisfy the conditions (1.4), (1.5), (1.12)

and (1.13); F ∈ L2(DT ). The function u ∈ W 2,2k+1
0 (DT ) is said to be a

weak generalized solution of the problem (1.1), (1.2), (1.3), if for any ϕ ∈
W 2,2k+1

0 (DT ) the integral equality (1.6) is valid.

2. Reduction of the problem (1.1), (1.2), (1.3) to the
nonlinear functional equation

In the space C4,4k+2
0 (DT , ∂DT ), together with scalar product

(u, v)0 =

∫
DT

[
u · v +

n∑
i=1

∂u

∂xi

∂v

∂xi
+

n∑
i,j=1

∂2u

∂xi∂xj

∂2v

∂xi∂xj
+

+

2k+1∑
i=1

∂iu

∂ti
∂iv

∂ti

]
dxdt (2.1)

with the norm ||u||0 = ||u||W 2,2k+1
0 (DT ), defined by the right side part of the

equality (1.7), let us introduce the following scalar product

(u, v)1 =

∫
DT

[
∂2k+1u

∂t2k+1

∂2k+1v

∂t2k+1
+ ∆u ·∆v

]
dxdt (2.2)

with the norm

||u||21 =

∫
DT

[(∂2k+1u

∂t2k+1

)2

+ (∆u)2

]
dxdt, (2.3)

where u, v ∈ C4,4k+2
0 (DT , ∂DT ).

Lemma 2.1. The inequalities

c1||u||0 ≤ ||u||1 ≤ c2||u||0 ∀u ∈ C4,4k+2
0 (DT , ∂DT ) (2.4)

hold, where the positive constants c1 and c2 do not depend on u.

Proof. If u ∈ C4,4k+2
0 (DT , ∂DT ) then all the more the function u(·, t) ∈

C2(Ω), u(·, t)|∂Ω = 0 for fixed t ∈ [0, T ] and according to the known inequality
[12] ∫

Ω

[
u2(·, t) +

n∑
i=1

(∂u(·, t)
∂xi

)2
]
dx ≤ c0

∫
Ω

(
∆u(·, t)

)2
dx, (2.5)

where the positive constant c0 = c0(Ω) does not depend on t ∈ [0, T ]. Inte-
grating the inequality (2.5) with respect to t ∈ [0, T ] we obtain∫

DT

[
u2 +

n∑
i=1

( ∂u
∂xi

)2
]
dxdt ≤



One boundary value problem for a higher-order nonlinear equation 5

c0

∫
DT

(∆u)2dxdt ∀u ∈ C4,4k+2
0 (DT , ∂DT ). (2.6)

Now let us estimate the values∫
DT

(∂iu
∂ti

)2

dxdt, i = 1, ..., 2k,

by the value ∫
DT

(∂2k+1u

∂t2k+1

)2

dxdt.

Since u ∈ C4,4k+2
0 (DT , ∂DT ) satisfies the equalities (1.2), then

∂iu(·, t)
∂ti

=
1

(2k − i)!

∫ t

0

(t− τ)2k−i ∂
2k+1u(·, τ)

∂t2k+1
dτ, i = 1, ..., 2k. (2.7)

Using the Cauchy’s inequality from (2.7) we have(∂iu(·, t)
∂ti

)2

≤ 1

((2k − i)!)2

∫ t

0

(t− τ)2(2k−i)dτ

∫ t

0

(∂2k+1u(·, τ)

∂t2k+1

)2

dτ =

=
t4k−2i+1

((2k − i)!)2(4k − 2i+ 1)

∫ t

0

(∂2k+1u(·, τ)

∂t2k+1

)2

dτ ≤

≤ T 4k−2i+1

∫ T

0

(∂2k+1u(·, τ)

∂t2k+1

)2

dτ,

whence we obtain∫ T

0

(∂iu(·, t)
∂ti

)2

dt ≤ T 4k−2i+2

∫ T

0

(∂2k+1u(·, τ)

∂t2k+1

)2

dτ, i = 1, ..., 2k. (2.8)

Integrating both parts of the inequality (2.8) over domain Ω we get∫
DT

(∂iu
∂ti

)2

dxdt ≤ T 4k−2i+2

∫
DT

(∂2k+1u

∂t2k+1

)2

dxdt, i = 1, ..., 2k. (2.9)

Finally, since the domain Ω is convex and thereafter the inequality (1.8)
is valid, then from (1.7), (2.3), (2.6) and (2.9) it is clear that (2.4) is valid.
The Lemma 2.1 is proved.

Remark 2.1. In view of the Lemma 2.1 by completion of the space

C4,4k+2
0 (DT , ∂DT ) by the norm (2.3) we obtain the same Hilbert space

W 2,2k+1
0 (DT ) with equivalent scalar products.

Remark 2.2. First let us consider the linear problem corresponded to
(1.1), (1.2), (1.3), i.e. when f = 0. In this case for F ∈ L2(DT ) we introduce

analogously a notion of a weak generalized solution u ∈W 2,2k+1
0 (DT ) of this

problem for which due to (1.6), (2.2) it is valid the following integral equality

(u, ϕ)1 =

∫
DT

[
∂2k+1u

∂t2k+1
· ∂

2k+1ϕ

∂t2k+1
+ ∆u ·∆ϕ

]
dxdt = −

∫
DT

Fϕdxdt (2.10)

∀ϕ ∈W 2,2k+1
0 (DT ).
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Taking into account (2.6) we have∣∣∣∣∫
DT

Fϕdxdt

∣∣∣∣ ≤ ||F ||L2(DT )||ϕ||L2(DT ) ≤

≤ ||F ||L2(DT )||ϕ||0 ≤ c
1
2 ||F ||L2(DT )||ϕ||1. (2.11)

According to the Remark 2.1, (2.10) and (2.11) from the Riesz theorem it

follows that there exists a unique function u ∈ W 2,2k+1
0 (DT ) which satisfies

the equality (2.10) for any ϕ ∈ W 2,2k+1
0 (DT ) and for its norm the following

estimate

||u||1 ≤ c
1
2
0 ||F ||L2(DT ) (2.12)

is valid. Thus, introducing the notation u = L−1
0 F , we find that to the linear

problem corresponding to (1.1), (1.2), (1.3), i.e. for f = 0, there corresponds
the linear bounded operator

L−1
0 : L2 (DT )→W 2,2k+1

0 (DT )

and for its norm the estimate∥∥L−1
0

∥∥
L2(DT )→W 2,2k+1

0 (DT )
≤ c

1
2
0 (2.13)

holds by virtue of (2.12).
Remark 2.3. Taking into account Definition 1.1 and Remark 2.2, we

can rewrite the equality (1.6), equivalent to the problem (1.1), (1.2), (1.3) in
the form

u = L−1
0 [−f(u,∇u) + F ] (2.14)

in the Hilbert space W 2,2k+1
0 (DT ). Due to (1.11) equation (2.14) can be

rewritten in the form

u = Au := L−1
0 (−Nu+ F ), (2.15)

where in view of (2.13) and the Remark 1.2, if nonlinear function f =
f(u,∇u) satisfies conditions (1.5), (1.12) and (1.13), then the operator A :

W 2,2k+1
0 (DT ) → W 2,2k+1

0 (DT ) from (2.15) will be continuous and compact
[11].

Below we use well-known multiplicative inequality [12]

||v||p,G ≤ β||vx||α̃m,G||v||1−α̃r,G ∀v ∈
0

W 1
2 (G), G ⊂ Rn+1, (2.16)

α̃ =
(1

r
− 1

p

)(1

r
− 1

m̃

)−1

, m̃ =
(n+ 1)m

n+ 1−m
,

whence taking into account [17]∫
G

|v|dG ≤ (mesG)1− 1
p ||v||p,G , p ≥ 1,

for G = DT ⊂ Rn+1, r = 1,m = 2 and 1 < p ≤ 2(n+1)
n−1 , where the constant

β = const > 0 does not depend on domain G and v, we have [6]

||v||Lp(DT ) ≤ β0(mesDT )
1
p+ 1

n+1−
1
2 ||v|| 0

W 1
2 (DT )

∀v ∈
0

W 1
2 (DT ), (2.17)
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where β0 = const > 0 does not depend on v and T .
Since mesDT = TmesΩ then from (2.17) we have

||v||Lp(DT ) ≤ β1T
1
p+ 1

n+1−
1
2 ||v|| 0

W 1
2 (DT )

∀v ∈
0

W 1
2 (DT ), (2.18)

where β1 = β0(mesΩ)
1
p+ 1

n+1−
1
2 , besides, it is easy to see that the condition

1
p + 1

n+1 −
1
2 > 0 is equivalent to the condition p < 2(n+1)

n−1 .

Further, due to (1.7), (1.9), (2.4), if u ∈ W 2,2k+1
0 (DT ), then according

to the well-known results on existence of traces on the domain boundary for
the functions from the Sobolev spaces W k

2 (DT ), k ≥ 1, we have [12]

∂u

∂t
,
∂u

∂xi
∈

0

W 1
2 (DT ), i = 1, ..., n, ∀u ∈W 2,2k+1

0 (DT ).

Thus, if the inequalities (1.13) are fulfilled, in view of (1.7) and (2.18) we
have[∫

DT

|uxi |2αidxdt

] 1
2

= ||uxi ||
αi
L2αi

(DT ) ≤ β
αi
1 T

αi(
1

2αi
+ 1
n+1−

1
2 )||uxi ||

αi
0

W 1
2 (DT )

≤

≤ βαi1 T
αi(

1
2αi

+ 1
n+1−

1
2 )||u||αi

W 2,2k+1
0 (DT )

= βαi1 T
αi(

1
2αi

+ 1
n+1−

1
2 )||u||αi0 , (2.19)

i = 1, ..., n, ∀u ∈W 2,2k+1
0 (DT ),

analogously,[∫
DT

|ut|2αn+1dxdt

] 1
2

≤ βαn+1

1 T
αn+1( 1

2αn+1
+ 1
n+1−

1
2 )||u||αn+1

0 (2.20)

∀u ∈W 2,2k+1
0 (DT ).

Note that due to (1.13) in the inequalities (2.19) and (2.20) we have

γi = αi

( 1

2αi
+

1

n+ 1
− 1

2

)
> 0, i = 1, ..., n+ 1. (2.21)

At fulfillment of the condition (1.12) due to (2.18) and the well-known
inequality [17]

||v||Lα(G) ≤ (mesG)1−αp ||v||Lp(G), 0 ≤ α ≤ p,
we have[∫

DT

|u|2α0dxdt

] 1
2

≤ βα0
0 T γ0 ||u||α0

0 ∀u ∈W
2,2k+1
0 (DT ), (2.22)

with positive constants β0 and γ0 which do not depend on u and T .
Below we need the following refinement of the first inequality from (2.4).

Due to (1.7), (1.8), (2.3), (2.6) and (2.9) we have

||u||20 ≤
∫
DT

[
c0(∆u)2 + 2c

(
(∆u)2 +

(∂2u

∂t2

)2)
+

2k+1∑
i=1

(∂iu
∂ti

)2]
dxdt ≤
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≤
∫
DT

[
(c0+2c)(∆u)2+2cT 4k−2

(∂2k+1u

∂t2k+1

)2

+
{ 2k+1∑

i=1

T 4k−2i+2
}(∂2k+1u

∂t2k+1

)2
]
dxdt ≤

≤ λ2(T )

∫
DT

[(∂2k+1u

∂t2k+1

)2

+ (∆u)2
]
dxdt =

= λ2(T )||u||21 ∀u ∈W
2,2k+1
0 (DT ), (2.23)

where

λ(T ) =

{
(c0 + 4c+ 2k + 1)

1
2 , T ≤ 1,

(c0 + 4c+ 2k + 1)
1
2T 2k, T > 1.

(2.24)

Now, taking into account (1.5), (2.13), (2.19) - (2.24) we estimate
||Au||W 2,2k+1

0 (DT ) = ||Au||1 from (2.15)

||Au||W 2,2k+1
0 (DT ) ≤ ||L

−1
0 ||L2(DT )→W 2,2k+1

0 (DT )|| −Nu+ F ||L2(DT ) ≤

≤ c
1
2
0 ||Nu||L2(DT ) + c

1
2
0 ||F ||L2(DT ) ≤ c

1
2
0

[ ∫
DT

(
M +M0|u|α0 +

n∑
i=1

Mi|uxi |αi+

+Mn+1|ut|αn+1

)2

dxdt
] 1

2

+ c
1
2
0 ||F ||L2(DT ) ≤ c

1
2
0

[ ∫
DT

(n+ 3)
(
M2 +M2

0 |u|2α0+

+

n∑
i=1

M2
i |uxi |2αi +M2

n+1|ut|2αn+1

)
dxdt

] 1
2

+ c
1
2
0 ||F ||L2(DT ) ≤

≤ (c0(n+ 3))
1
2

[( ∫
DT

M2dxdt
) 1

2

+
(∫

DT

M2
0 |u|2α0dxdt

) 1
2

+

+

n∑
i=1

(∫
DT

M2
i |uxi |2αidxdt

) 1
2

+
(∫

DT

M2
n+1|ut|2αn+1dxdt

) 1
2
]
+c

1
2
0 ||F ||L2(DT ) ≤

≤ (c0(n+ 3))
1
2

[(
M2mesDT

) 1
2

+M0β
α0
0 T γ0 ||u||α0

0 +

n+1∑
i=1

Miβ
αi
1 T γi ||u||αi0

]
+

+c
1
2
0 ||F ||L2(DT ) ≤ (c0(n+ 3))

1
2

n+1∑
i=0

Miβ
αi
i T

γiλαi(T )||u||αi1 +

+(c0(n+ 3))
1
2 (M2mesΩ)

1
2 + c

1
2
0 ||F ||L2(DT ) =

=

n+1∑
i=0

ai(T )||u||αi1 + b(T ) ∀u ∈W 2,2k+1
0 (DT ). (2.25)

Here

ai(T ) = (c0(n+ 3))
1
2Miβ

αi
i T

γiλαi(T ), i = 0, ..., n+ 1, (2.26)

b(T ) = (c0(n+ 3))
1
2 (M2mesΩ)

1
2T

1
2 + c

1
2
0 ||F ||L2(DT ), (2.27)
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besides, in derivation of the estimate (2.25) we used the following obvious
inequalities ( m∑

i=1

ki

)2

≤ m
m∑
i=1

k2
i ,
( m∑
i=1

k2
i

) 1
2 ≤

m∑
i=1

|ki|.

Let us simplify the right hand part of the estimate (2.25). Since αi >
1, i = 0, ..., n + 1, then for ||u1|| ≤ 1 we have ||u||αi1 ≤ 1, and for ||u||1 > 1
we have ||u||αi1 ≤ ||u||α1 , where

α = max
0≤i≤n+1

αi > 1. (2.28)

Therefore, from (2.25) we obtain

||Au||W 2,2k+1
0 (DT ) ≤ a(T )||u||α1 + b1(T ) ∀u ∈W 2,2k+1

0 (DT ), (2.29)

where

a(T ) =

n+1∑
i=0

ai(T ), b1(T ) =

n+1∑
i=0

ai(T ) + b(T ), (2.30)

where ai(T ), i = 0, ..., n + 1, and b(T ) are defined by the equalities (2.26)
and (2.27).

3. The cases of existence and absence of solutions of the
problem (1.1), (1.2), (1.3)

In this section, assuming that the function F is defined in the domain D∞
and

F |DT ∈ L2(DT ) ∀T > 0,

under the assumptions regarding the nonlinear function f we prove the ex-
istence of positive number T0 such that for 0 < T < T0 the problem (1.1),

(1.2), (1.3) has at least one generalized solution u ∈W 2,2k+1
0 (DT ) in the sense

of Definition 1.1, while for sufficiently large T this problem may not have a
solution in the domain DT . Generally speaking, the number T0 depends on
F .

According to the Remark 2.3 the solvability of the problem (1.1), (1.2),
(1.3) is equivalent to the solvability of functional equation (2.15) in the

Hilbert space W 2,2k+1
0 (DT ), in which operator A, acting by formula (2.15),

is continuous and compact. For clarification of the question of solvability of
functional equation (2.15) consider the following algebraic equation

azα + b1 = z (3.1)

with respect to unknown z > 0, where a = a(T ) and b1 = b1(T ), defined by
equality (2.30) take part in the estimate (2.29) for the value ||Au||W 2,2k+1

0 (DT ).

For T > 0 due to (2.26), (2.27) and (2.30) it is clear that a > 0 and
b1 ≥ 0. Simple analysis, analogous to that given in [17], for α = 3 shows that:

1) for b1 = 0 equation (3.1) together with root z1 = 0 has only one

positive root z2 = a−
1

α−1 ;
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2) if b1 > 0, then for 0 < b1 < b0, where

b0 = [α−
1

α−1 − α−
α
α−1 ]a−

1
α−1 , (3.2)

equation (3.1) has two positive roots z1 and z2, 0 < z1 < z2. For b = b0 these
roots coincide and we have only one positive root

z1 = z2 = z0 = (αa)−
1

α−1 ;

3) for b1 > b0 equation (3.1) does not have nonnegative roots.
Note that in the case 0 < b1 < b0 there hold the following inequalities

z1 < z0 = (αa)−
1

α−1 < z2.

In view of (2.24), (2.26), (2.27), (2.30) and (3.2) the condition b1 < b0
is equivalent to the condition

g(T ) := a
α
α−1 (T ) + a

1
α−1 (T )

[
(c0(n+ 3)M2TmesΩ)

1
2 + c

1
2
0 ||F ||L2(DT )

]
<

< α−
1

α−1 − α−
α
α−1 . (3.3)

Since the Lebesque measure is absolutely continuous and F ∈ L2,loc(D∞),
F |DT ∈ L2(DT ) ∀T > 0, and limT→0 mesDT = 0, then

lim
T→0
||F ||L2(DT ) = 0. (3.4)

Further, due to (2.21) and since γ0 > 0 in (2.2), and also (2.26), (2.28),
(2.30) and (3.3), (3.4) we have

lim
T→0

g(T ) = 0. (3.5)

At the same time due to (2.28) the right hand part of inequality (3.3)
is positive. Therefore, there exists a positive number T0 = T0(F ) such that
b1 < b0 when the condition

0 < T < T0(F ) (3.6)

is fulfilled. Thus, if T satisfies inequality (3.6), then operator

A : W 2,2k+1
0 (DT )→W 2,2k+1

0 (DT ),

acting by formula (2.15), maps the ball B(0, z2) := {u ∈ W 2,2k+1
0 (DT ) :

||u||W 2,2k+1
0 (DT ) ≤ z2} into itself, where z2 = z2(T ) is a maximal positive root

of the equation (3.1). Indeed, if u ∈ B(0, z2), then due to (2.29) and (3.1) we
have

||Au||W 2,2k+1
0 (DT ) ≤ a||u||

α
1 + b1 ≤ azα2 + b1 = z2.

Therefore, taking into account that operator A is continuous and compact and

maps closed convex ball B(0, z2) ⊂ W 2,2k+1
0 (DT ) into itself, then according

to the Schauder’s theorem [2] the equation (2.15) has at least one solution u

from the space W 2,2k+1
0 (DT ).

Thus, the following theorem is valid.
Theorem 3.1. Let Lipschitz domain Ω be convex; function f sat-

isfy conditions (1.4), (1.5), (1.12), (1.13); function F be defined in D∞ and
F |DT ∈ L2(DT ) ∀T > 0. Then there exists a number T0 = T0(F ) > 0 such
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that for any positive number T < T0 the problem (1.1), (1.2), (1.3) has at

least one weak generalized solution u ∈ W 2,2k+1
0 (DT ) in the sense of the

Definition 1.1.

Now let us consider the cases of absence of a solution of the problem
(1.1), (1.2), (1.3).

Theorem 3.2. Let Ω : |x| < 1, function F 0 be defined in D∞ and for
fixed T > 0, F 0|DT ≥ 0, ||F 0|DT ||L2(DT ) 6= 0 and F = µF 0, µ = const > 0.
Then, if function f = f(s0, s1, ..., sn+1) satisfies conditions (1.4), (1.5), (1.12),
(1.13) and

f(s0, s1, ..., sn+1) ≤ −|s0|α ∀(s0, s1, ..., sn+1) ∈ Rn+2, (3.7)

where α = const > 1, there exists a number µ0 = µ0

(
F 0, α

)
> 0 such that

for µ > µ0 the problem (1.1), (1.2), (1.3) cannot have a weak generalized

solution in the space W 2,2k+1
0 (DT ).

Proof. Assume that the conditions of the theorem are fulfilled and the
solution u ∈W 2,2k+1

0 (DT ) of the problem (1.1), (1.2), (1.3) does exist for any
fixed µ > 0. Then the equality (1.6) takes the form∫

DT

f(u,∇u)ϕdxdt =

∫
DT

[∂2k+1u

∂t2k+1
· ∂

2k+1ϕ

∂t2k+1
+ ∆u ·∆ϕ

]
dxdt+

+µ

∫
DT

F 0ϕdxdt ∀ϕ ∈W 2,2k+1
0 (DT ). (3.8)

By integration by parts it can be easily verified that∫
DT

[∂2k+1u

∂t2k+1
· ∂

2k+1ϕ

∂t2k+1
+ ∆u ·∆ϕ

]
dxdt =

∫
DT

u
[
− ∂2(2k+1)ϕ

∂t2(2k+1)
+ ∆2ϕ

]
dxdt =

= −
∫
DT

uL0ϕdxdt ∀ϕ ∈ C4,4k+2
0 (DT , ∂DT ), (3.9)

where the space C4,4k+2
0 (DT , ∂DT ) is defined in the first section, besides,

C4,4k+2
0 (DT , ∂DT ) ⊂W 2,2k+1

0 (DT ).

In view of (3.9) we rewrite the equality (3.8) as follows

−
∫
DT

f(u,∇u)ϕdxdt =

∫
DT

uL0ϕdxdt−

−µ
∫
DT

F 0ϕdxdt ∀ϕ ∈ C4,4k+2
0 (DT , ∂DT ). (3.10)

Below we will use the method of test functions [15]. As a test function

we take ϕ ∈ C4,4k+2
0 (DT , ∂DT ) such that ϕ|DT > 0. Due to (3.7) from (3.10)
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we have∫
DT

|u|αϕdxdt ≤
∫
DT

uL0ϕdxdt− µ
∫
DT

F 0ϕdxdt ∀ϕ ∈ C4,4k+2
0 (DT , ∂DT ).

(3.11)

If in Young’s inequality with parameter ε > 0

ab ≤ ε

α
aα +

1

α′εα′−1
bα
′
; a, b ≥ 0, α′ =

α

α− 1

we take a = |u|ϕ1/α, b = |L0ϕ|/ϕ1/α, then taking into account that α′/α =
α′ − 1 we will have

|uL0ϕ| = |u|ϕ1/α |L0ϕ|
ϕ1/α

≤ ε

α
|u|αϕ+

1

α′εα′−1

|L0ϕ|α
′

ϕα′−1
. (3.12)

From (3.11), (3.12) we have the inequality(
1− ε

α

) ∫
DT

|u|αϕdxdt ≤ 1

α′εα′−1

∫
DT

|L0ϕ|α
′

ϕα′−1
dxdt− µ

∫
DT

F 0ϕdxdt,

whence for ε < α we get∫
DT

|u|αϕdxdt ≤ α

(α− ε)α′εα′−1

∫
DT

|L0ϕ|α
′

ϕα′−1
dxdt− αµ

α− ε

∫
DT

F 0ϕdxdt.

(3.13)

Taking into account the equalities α′ = α
α−1 , α = α′

α′−1 and

min
0<ε<α

α
(α−ε)α′εα′−1 = 1 which is achieved at ε = 1, from (3.13) we find that∫

DT

|u|αϕdxdt ≤
∫
DT

|L0ϕ|α
′

ϕα′−1
dxdt− α′µ

∫
DT

F 0ϕdxdt. (3.14)

Note that it is not difficult to show the existence of a test function ϕ
such that

ϕ ∈ C4,4k+2
0 (DT , ∂DT ), ϕ|DT > 0, κ0 =

∫
DT

|L0ϕ|α
′

ϕα′−1
dxdt < +∞. (3.15)

Indeed, as it can be easily verified, the function

ϕ(x, t) = [(1− |x|2)t(T − t)]m

for a sufficiently large positive m satisfies conditions (3.15).

Since by the condition of the theorem F 0 ∈ L2 (DT ),
∥∥F 0

∥∥
L2(DT )

6= 0,

F 0 ≥ 0, and mesDT < +∞, due to the fact that ϕ|DT > 0 we will have

0 < κ1 =

∫
DT

F 0ϕdxdt < +∞. (3.16)
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Denote by g (µ) the right-hand side of the inequality (3.14) which is a
linear function with respect to µ, and by (3.15), (3.16) we will have

g(µ) < 0 for µ > µ0 and g(µ) > 0 for µ < µ0, (3.17)

where

g(µ) = κ0 − α′µκ1, µ0 =
κ0

α′κ1
> 0.

Owing to (3.17) for µ > µ0, the right-hand side of the inequality (3.14)
is negative, whereas the left-hand side of that inequality is nonnegative. The
obtained contradiction proves the theorem.

Remark 3.1. Note that in the Theorem 3.2 for simplicity we assume
Ω : |x| < 1. However, this theorem is valid in more general case, when Ω
represents a convex, sufficiently smooth domain. Our assumption was caused
by the construction of a test function ϕ satisfying conditions (3.15) according
to the formula

ϕ(x, t) = [(1− |x|2)t(T − t)]m (3.18)

for a sufficiently large positive m. If the boundary of the convex domain Ω
is given by the equation ∂Ω : ω(x) = 0, where ∇xω|∂Ω 6= 0, ω|Ω > 0 and
ω ∈ C4(Rn), then, instead of the test function defined by formula (3.18), we
should take

ϕ(x, t) = [ω(x)t(T − t)]m,
where m is a sufficiently large positive number, and in this case the Theorem
3.2 remains valid.

4. One case of solvability of the problem (1.1), (1.2),
(1.3)

Let function f in the equation (1.1) depend only on variable u and satisfy
conditions

f ∈ C(R), |f(u)| ≤M +M0|u|α0 ∀u ∈ R, (4.1)

where α0 = const satisfies conditions (1.12). Consider the following condition

lim
|u|→∞

sup
f(u)

u
≤ 0. (4.2)

Lemma 4.1. Let Lipschitz domain Ω be convex,F ∈ L2 (DT ) and the
conditions (4.1), (4.2), (1.12) be fulfilled. Then for a weak generalized solution

u ∈W 2,2k+1
0 (DT ) of the problem (1.1), (1.2), (1.3) the a priori estimate

||u||0 = ||u||W 2,2k+1
0 (DT ) ≤ c3||F ||L2(DT ) + c4 (4.3)

is valid with constants c3 > 0 and c4 ≥ 0, independent of u and F .
Proof. Since f ∈ C(R), then from (4.2) it follows that for each ε > 0

there exists a number Mε ≥ 0 such that

uf(u) ≤Mε + εu2 ∀u ∈ R. (4.4)
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Putting ϕ = u ∈ W 2,2k+1
0 (DT ) in the equality (1.6) and taking into

account (4.4) and (2.3), for any ε > 0 we obtain

||u||21 =

∫
DT

uf(u)dxdt−
∫
DT

Fudxdt ≤

≤MεmesDT + ε

∫
DT

u2dxdt+

∫
DT

( 1

4ε
F 2 + εu2

)
dxdt =

=
1

4ε
||F ||2L2(DT ) +MεmesDT + 2ε||u||2L2(DT ) ≤

≤ 1

4ε
||F ||2L2(DT ) +MεmesDT + 2ε||u||20. (4.5)

From (4.5) by virtue of (2.4) we have

c21||u||20 ≤ ||u||21 ≤
1

4ε
||F ||2L2(DT ) +MεmesDT + 2ε||u||20,

whence for ε = 1
4c

2
1 we obtain

||u||20 ≤ 2c−4
1 ||F ||2L2(DT ) + 2c−2

1 MεmesDT .

From the last inequality follows (4.3) for c3 = 2c−4
1 and c4 = 2c−2

1 MεmesDT ,
where ε = 1

4c
2
1. Lemma 4.1 is proved.

According to the Remark 2.3 the problem (1.1), (1.2), (1.3) is equivalent
to the functional equation (2.15), where the operator A, acting in the Hilbert

space W 2,2k+1
0 (DT ), is continuous and compact. At the same time accord-

ing to the a priori estimate (4.3) of the Lemma 4.1 in which the constants
c3 = 2c−4

1 and c4 = 2c−2
1 MεmesDT , ε = 1

4c
2
1, for any parameter τ ∈ [0, 1]

and for every solution u ∈ W 2,2k+1
0 (DT ) of the equation u = τAu with the

above-mentioned parameter the a priori estimate (4.3) is valid with the same
constants c3 > 0 and c4 ≥ 0, independent of u, F and τ . Therefore, by the
Schaefer’s fixed point theorem [19] the equation (2.15) and hence the problem
(1.1), (1.2), (1.3) has at least one weak generalized solution u from the space

W 2,2k+1
0 (DT ). Thus the following theorem is valid.

Theorem 4.1. Let Lipschitz domain Ω be convex, the conditions (4.1),
(4.2) and (1.12) be fulfilled. Then for any F ∈ L2 (DT ) the problem (1.1),

(1.2), (1.3) has at least one weak generalized solution u ∈W 2,2k+1
0 (DT ).

5. The uniqueness of a solution of the problem (1.1),
(1.2), (1.3)

Theorem 5.1. Let Lipschitz domain Ω be convex, f = f(u) be a monotone
function and satisfy the conditions (4.1), (1.12). Then for any F ∈ L2(DT )
the problem (1.1), (1.2), (1.3) cannot have more than one weak generalized

solution in the space W 2,2k+1
0 (DT ).
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Proof. Let F ∈ L2 (DT ), and moreover, let u1 and u2 be two weak gen-

eralized solutions of the problem (1.1), (1.2), (1.3) from the space W 1,2k
0 (DT ),

i.e., according to (1.6) the equalities∫
DT

[∂2k+1ui
∂t2k+1

· ∂
2k+1ϕ

∂t2k+1
+ ∆ui ·∆ϕ

]
dxdt =

=

∫
DT

f(ui)ϕdxdt−
∫
DT

Fϕdxdt ∀ϕ ∈W 2,2k+1
0 (DT ), (5.1)

are valid, i = 1, 2.
From (5.1), for the difference v = u2 − u1 we have∫

DT

[∂2k+1v

∂t2k+1
· ∂

2k+1ϕ

∂t2k+1
+ ∆v ·∆ϕ

]
dxdt =

∫
DT

(
f(u2)− f(u1)

)
ϕdxdt ∀ϕ ∈W 2,2k+1

0 (DT ). (5.2)

Putting ϕ = v ∈ W 2,2k+1
0 (DT ) in the equality (5.2), due to (2.3) we

obtain

||v||1 =

∫
DT

(
f(u2)− f(u1)

)
(u2 − u1)dxdt. (5.3)

Since f is the monotone function, we have(
f(s2)− f(s1)

)
(s2 − s1) ≥ 0 ∀s1, s2 ∈ R. (5.4)

From (2.4), (5.3) and (5.4) it follows that

c1||v||0 ≤ ||v||1 ≤ 0,

whence we find that v = 0, i.e., u2 = u1, and hence the proof of the Theorem
5.1 is complete.

From Theorems 4.1 and 5.1, in its turn, it follows
Theorem 5.2. Let Lipschitz domain Ω be convex, f be a monotone

function and satisfy the conditions (4.1), (4.2) and (1.12). Then for any F ∈
L2 (DT ) the problem (1.1), (1.2), (1.3) has a unique weak generalized solution

in the space W 2,2k+1
0 (DT ).
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