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SOME ASPECTS OF THE MEASURE EXTENSION

PROBLEM

A. KHARAZISHVILI

Abstract. The general measure extension problem is discussed in
the present report. Among various aspects of this problem the follow-
ing three are especially underlined: purely set-theoretical, algebraic
and topological. Also, several constructions of extensions of the clas-
sical Lebesgue measure on the real line are considered and compared
to each other.

îâäæñéâ. à�êýæèñèæ� äëéæï à�àîúâèâ�æï äëà�áæ �éëù�ê�. à�éë-

õëòæèæ� �é �éëù�êæï öâéáâàæ ï�éæ �ïìâóðæ: ûéæêá� ïæéî�ãèñî-

åâëîæñèæ, �èàâ�îñèæ á� ðëìëèëàæñîæ. à�îá� �éæï�, �àâ�ñèæ�

èâ�âàæï çè�ïæçñîæ äëéæï î�éáâêæéâ ï�çñåîæãæ à�àîúâèâ�� á� âï

à�àîúâèâ�ñèæ äëéâ�æ öâá�îâ�ñèæ� âîåé�êâåå�ê é�åæ åãæïâ�â�æï

éæýâáãæå.

Let E be a set, S be a σ-algebra of subsets of E containing all one-
element subsets (singletons) of E and let µ be a nonzero σ-finite continuous
(i.e. vanishing at all singletons) measure on S. The general measure exten-
sion problem requires to extend µ onto a wider σ-algebra of subsets of E.
This problem was originally formulated within classical real analysis and,
as well known, was partially solved by Lebesgue and Carathéodory. After-
wards, this problem found important applications in many other domains
of mathematics: axiomatic set theory, general topology, functional analysis,
probability and stochastic processes, etc.

A purely set-theoretical aspect of the above-mentioned problem was first
considered by Banach and Kuratowski, Ulam, Sierpinski, and Marczewski.
In particular, according to Ulam’s famous theorem (see, for instance, [1], [2]
and [5]), it is consistent with the axioms of set theory that the domain of any
extension µ′ of µ cannot coincide with the power set of E. Consequently,
there always exists a set X ⊂ E such that X 6∈ dom(µ′). An easy argument
shows that µ′ can be extended to a measure µ′′ so that X becomes µ′′-
measurable and, in general, there are various possibilities to construct such
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an extension µ′′. Thus, by starting with the assumption that there are no
large cardinals, one can infer that there are no maximal extensions of the
original measure µ.

In this context, let us also recall a similar result, which states that if
{Xi : i ∈ I} is an arbitrary partition of E, then there exists a measure ν on
E extending µ and satisfying the relation

{Xi : i ∈ I} ⊂ dom(ν).

For the proof of this result, see [3] or [4]. In particular, having any finite
family of subsets of E, we can always extend µ to a measure which measures
all these subsets. On the other hand, it is well known that an analogous
assertion fails to be true for arbitrary countable families of subsets of E.
Moreover, the existence of a Luzin set on the real line R (see, e.g., [2],
[5]) implies that there is a countably generated σ-algebra of subsets of R

containing all singletons of R and not admitting a nonzero σ-finite contin-
uous measure. Recall that the existence of a Luzin set needs additional
set-theoretical axioms. It should be underlined, in this context, that the ex-
istence of other small subsets of R having cardinality ω1 can be established
within the theory ZFC (see, e.g., [5] or [10]).

Another aspect of the measure extension problem has an algebraic (in
fact, group-theoretical) flavour. Namely, suppose that an uncountable group
(G, ·) is given and suppose that it is equipped with a nonzero σ-finite left
G-invariant (more generally, left G-quasiinvariant) measure µ. As shown by
Erdös and Mauldin [6] and Kharazishvili [7], the domain of such a µ cannot
be identical with the family of all subsets of G. Notice that this result
does not need additional set-theoretical assumptions. So it is natural to ask
whether there exists a left G-invariant (left G-quasiinvariant) measure µ′ on
G properly extending µ. For some sufficiently wide classes of uncountable
groups this question has a positive answer in terms of certain subgroups
of the original group. For instance, if (G, ·) is an arbitrary uncountable
solvable group, then there always exists a µ-nonmeasurable subgroup H of
G such that µ can be extended to a left G-invariant (left G-quasiinvariant)
measure µ′ for which we have H ∈ dom(µ′) and µ′(H) = 0. A more detailed
information about this relatively recent result can be found in [12].

The third aspect of the measure extension problem is purely topological.
Indeed, most measures considered in mathematical analysis and general
topology are regular in an appropriate sense. For example, if a σ-finite
measure µ is given on a topological space E and, for each set X ∈ dom(µ),
the equality

µ(X) = sup{µ(K) : K ∈ dom(µ), K ⊂ X, K is compact}

holds true, then µ is said to be a Radon measure. Radon measures on locally
compact spaces play an important role in various questions of analysis and
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probability theory. A more general class constitute the so-called perfect
measures (in the sense of Gnedenko and Kolmogorov). There are some
deep results concerning extensions of measures which preserve the regularity
property. In particular, it is well known that any finite Radon measure
defined on a σ-subalgebra of the Borel σ-algebra of a Hausdorff topological
space can be extended to a Radon measure defined on the whole Borel σ-
algebra. Here the method of extending a given measure is essentially based
on the A. D. Alexandrov theorem stating that any finite and finitely additive
Radon measure is countably additive.

Let us briefly recall several typical methods of extending measures and
touch upon certain nonseparable extensions of the classical Lebesgue mea-
sure on the real line R.

All measures considered below are assumed to be continuous (i.e., van-
ishing at singletons). For any σ-finite measure space (E,S, µ), we denote by
I(µ) the σ-ideal generated by the family of all µ-measure zero sets (in short,
µ-null-sets). The standard method of extending a given measure µ is based
on adding to I(µ) some new sets, which are nonmeasurable with respect to
µ and whose inner µ-measure is equal to zero. Proceeding in this way, we
come to a σ-ideal I ′ which properly contains I(µ) and whose elements are
of inner µ-measure zero. This property of I ′ enables us to extend µ onto
the σ-algebra generated by S ∪ I′. This extension is unique if card(E) is
not a real-valued measurable cardinal in the sense of Ulam.

The above-mentioned method of extending measures was first considered
by Marczewski (see, for instance, [11]). However, it has a weak side. Indeed,
from the viewpoint of the theory of Boolean algebras, µ and its extension µ′

are the same, because the corresponding quotient Boolean algebras coincide.
Some modification of the method can distinguish these Boolean algebras,
but does not essentially change the metrical structure of µ. Indeed, the
metric spaces associated with a measure and its extension, respectively,
have the same topological weight. Therefore, if the original measure µ is
separable (i.e., its metric space is separable), then the extended measure is
separable, too.

We say that µ′ is an essential extension of µ if the Hilbert space L2(µ
′) is

not isomorphic to the Hilbert space L2(µ). In particular, any nonseparable
extension of a separable measure µ is an essential extension of µ.

Kakutani and Oxtoby [8] presented a construction of a nonseparable ex-
tension of the Lebesgue measure λ on the real line R. Another construction
of this kind was given by Kodaira and Kakutani [9]. It is remarkable that
both obtained extensions turn out to be invariant under the group of all
isometries of R. In addition, it should be noticed that the extension of λ

constructed by Kakutani and Oxtoby necessarily yields new null-sets, i.e.,
there always appear null-sets which are not of Lebesgue measure zero. By
applying the method of Kodaira and Kakutani, one can also obtain new
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null-sets (see, for instance, Theorem 2 below). In this connection, the fol-
lowing question is of interest: does there exist a nonseparable extension
of λ whose all null-sets are exactly λ-null-sets? Under the Continuum Hy-
pothesis, the answer to this question is positive (see Theorem 1 below). The
construction of such an extension may be regarded as a certain combination
of the method of Kodaira and Kakutani [9] with the method of Sierpiński
by means of which he proved the existence of his set on the real line (see,
e.g., [2] and [5]).

Let (E1,S1, µ1) and (E2,S2, µ2) be two measure spaces, such that µ1 is
σ-finite and µ2 is a probability measure. Let f : E1 → E2 be a mapping
and let G(f) denote the graph of f . Suppose that G(f) is (µ1 × µ2)-thick
in the product space E1 × E2, i.e. suppose that

(µ1 × µ2)∗((E1 × E2) \ G(f)) = 0.

For any set Z ∈ dom(µ1 × µ2), let us define

Z ′ = {x ∈ E1 : (x, f(x)) ∈ Z}.

Further, introduce a class of sets

S′

1 = {Z ′ : Z ∈ dom(µ1 × µ2)}

and define a functional

µ′

1(Z
′) = (µ1 × µ2)(Z) (Z ∈ dom(µ1 × µ2)).

Then S′

1 is a σ-algebra of subsets of E1 and the funcional µ′

1 is a measure
on S′

1 extending µ1 (cf. [9], [10]). In addition, the mapping f turns out to
be measurable with respect to the σ-algebras S′

1 and S2, i.e., for any set
Y ∈ S2, we have f−1(Y ) ∈ S′

1.
We need the following three simple lemmas.

Lemma 1. If µ1 is nonzero and µ2 is nonseparable, then the measure

µ′

1 is nonseparable, too.

Let c denote the cardinality of the continuum and let J be a set with
card(J) = c. For any index j ∈ J , denote by νj the restriction of the
Lebesgue measure λ to the Borel σ-algebra of [0, 1]. Thus, νj is a Borel
probability measure on [0, 1]. Let ν stand for the product measure

∏
j∈J νj .

Lemma 2. The cardinality of dom(ν) is equal to c and the topological

weight of the metric space associated with ν is also equal to c. In particular,

ν is a nonseparable measure.

Lemma 3. Let α be an infinite cardinal number satisfying the equal-

ity αω = α, let (E1,S1) and (E2,S2) be two measurable spaces such that

card(S1) ≤ α and card(S2) ≤ α. Then the cardinality of the product σ-

algebra S1 ⊗ S2 does not exceed α, either.

The next auxiliary proposition is crucial.
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Lemma 4. Assume the Continuum Hypothesis. There exists a mapping

f : R → [0, 1]J

satisfying the following relations:

(1) the graph of f is thick with respect to the product measure λ × ν;

(2) for any (λ × ν)-measure zero zet Z, the set Z ′ = {x : (x, f(x)) ∈ Z}
is of λ-measure zero.

Applying the above-mentioned lemmas, we obtain the following theorem.

Theorem 1. Under the Continuum Hypothesis, there exists a nonsep-

arable measure on R which extends λ and whose null-sets coincide with

λ-null-sets.

On the other hand, the following statement is valid.

Theorem 2. Suppose that (E,S, µ) is a probability space such that

card(S) ≤ c. Then there exists a mapping h : R → E satisfying the follow-

ing conditions:

(1) the graph of h is thick in the product space R × E, so h determines

a certain extension λ′ of the Lebesgue measure λ;

(2) there is a set in I(λ′) which is of full outer λ-measure; in particular,

we have I(λ′) 6= I(λ).

The proof of Theorem 2 is based on the existence of a Bernstein subset
of R. Information on Bernstein sets and their properties can be found, e.g.,
in [2] and [5].

At this moment it is unknown whether a nonseparable extension of λ in
Theorem 1 can be chosen to be invariant under all isometries of R. Also,
the following problem remains unsolved.

Problem. Let (G, ·) be an uncountable group and let µ be a nonzero σ-
finite separable left G-invariant (left G-quasiinvariant) measure on G. Does
there exist a nonseparable left G-invariant (left G-quasiinvariant) extension
of µ?

In connection with the above-mentioned problem, we can formulate the
following result.

Theorem 3. Assume the Continuum Hypothesis. Let (G, ·) be a group

with card(G) = c and let µ be a nonzero σ-finite left G-invariant metrically

transitive measure on G. Then there exists a nonseparable left G-invariant

extension µ′ of µ. More precisely, the Hilbert dimension of the space L2(µ
′)

is equal to 2c.

Actually, Theorem 3 can be generalized to the case when we are given a
set E with card(E) = c, a group G of transformations of E with card(G) ≤ c

and a nonzero σ-finite G-invariant metrically transitive measure µ on E.
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Note that Theorem 3 essentially strengthens the corresponding result for
the left (right) Haar measure on an infinite compact metrizable topological
group (see [13], Chapter 4). The proof of this theorem is based on some
properties of Ulam’s transfinite matrix (see, e.g., [2]) and does not need any
concept from the theory of topological groups. Since the left (right) Haar
measure on a σ-compact locally compact topological group is metrically
transitive, the assertion of Theorem 3 immediately implies the result from
[13].
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