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ON WEAKLY METRICALLY TRANSITIVE
MEASURES AND NONMEASURABLE SETS

Abstract

It is shown that some analog of Minkowski’s method in geomet-
ric number theory enables to establish the existence of sets which are
absolutely nonmeasurable with respect to weakly metrically transitive
invariant measures.

In 1896, Minkowski published his famous work [7] in which he presented
a geometric approach to classical problems of number theory and extensively
developed beautiful geometric methods in this theory. The main role in his
methods was played by convex subsets of Euclidean spaces. Among many
other important results, Minkowski proved in [7] the following fundamental
theorem: if C is a bounded convex body in the Euclidean space Rn, symmetric
with respect to the origin of Rn and having volume greater than or equal to
2n, then C contains at least two nonzero points of the lattice Zn, where Z
denotes the set of all integers. This statement was then generalized in various
directions (see, e.g., [3] and references therein).

The argument used by Minkowski in the proof of his theorem is purely
group-theoretic and measure-theoretic. In fact, by applying a similar argu-
ment, the existence of a subset of Rn nonmeasurable in the Lebesgue sense
can be established. In this context, it is interesting to note that the rigor-
ous concept of the Lebesgue measure was introduced some years later after
Minkowski’s theorem was stated, namely, in the beginning of the twentieth
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century. Moreover, recall that the existence of subsets of Rn, which are non-
measurable in the Lebesgue sense, was first proved by Vitali [11] only in 1905.

An analogous situation can be observed in connection with the famous
Poincaré theorem on recurrent points for a finite measure space (E,µ) equipped
with its transformation g : E → E which preserves the given measure µ. The
above-mentioned theorem was proved by Poincaré before the basic concepts
of measure theory (e.g., the countable additivity of measures) were introduced
in real analysis (cf. [8], Chapter 17).

The main goal of this paper is to demonstrate the role of Minkowski’s
method in establishing the existence of nonmeasurable subsets of Euclidean
spaces and, more generally, in establishing the existence of nonmeasurable
sets in an abstract space equipped with a transformation group and some
measure, which is invariant under that group. In the sequel, we will introduce
the concept of a weakly metrically transitive invariant measure and will show
how such a measure produces absolutely nonmeasurable sets.

We begin with several auxiliary notions concerning spaces endowed with
transformation groups.

Let E be a nonempty set, G be a group of transformations of E, and
let µ be a complete measure defined on some σ-algebra of subsets of E and
invariant under all transformations from G (we shall say, in short, that µ is a
G-invariant measure). Let X be a subset of E.

We shall say that X is G-thick with respect to µ if there exists a countable
subgroup H of G such that

µ(E \ ∪{h(X) : h ∈ H}) = 0.

We shall say that X is G-thin with respect to µ if

µ(g(X) ∩ h(X)) = 0 (g ∈ G, h ∈ G, g 6= h).

In particular, if a group G acts freely in a space E, then every singleton is
G-thin in E.

Example 1. Suppose that µ is a σ-finite G-invariant measure on E metrically
transitive with respect to G; i.e., for any µ-measurable set Z, the relation

(∀g ∈ G)(µ(g(Z)4Z) = 0)

implies µ(Z) = 0 or µ(E \Z) = 0. Then it can easily be checked that every µ-
measurable set X with µ(X) > 0 is G-thick in E. In this context, let us recall
that the left Haar measure on a σ-compact locally compact topological group
(H, ·) is metrically transitive with respect to the group of all left translations
of H.
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Example 2. Suppose that a group G of transformations of a given space E is
countable and suppose, in addition, that G acts almost freely in E with respect
to a given G-invariant measure µ; i.e., for any two distinct transformations
g ∈ G and h ∈ G, we have

µ({x ∈ E : g(x) = h(x)}) = 0.

Consider the partition of E into all G-orbits of points of E. Let X be an
arbitrary selector of this partition (in short, G-selector). Then it is not difficult
to verify that X is simultaneously G-thick and G-thin in E.

The following statement is essentially due to Minkowski (cf. [7]).

Theorem 1. Let µ be a σ-finite G-invariant measure on E. Let X be a G-
thick subset of E, and let Y be a G-thin subset of E. If both of these sets are
measurable with respect to µ, then µ(Y ) ≤ µ(X).

Proof. If the group G is uncountable, then there is nothing to prove because
the µ-measurable G-thin subset Y of E is necessarily of µ-measure zero (in
view of the σ-finiteness and G-invariance of µ and the almost disjointedness
of the family {g(Y ) : g ∈ G}).

It remains to consider the case when G is countable. In this case, we
obviously have µ(E \ ∪{g(X) : g ∈ G}) = 0, and, consequently,

µ(Y ) = µ(Y ∩ (∪{g(X) : g ∈ G})) ≤
∑
g∈G

µ(g(X) ∩ Y )

=
∑
g∈G

µ(X ∩ g(Y )) ≤ µ(X),

which yields the required result.

Let µ be a σ-finite G-invariant measure on E. We shall say that µ is
weakly metrically transitive with respect to G if, for any ε > 0, there exist a
µ-measurable set X with µ(X) < ε and a countable subgroup H of G such
that

µ(E \ ∪{h(X) : h ∈ H}) = 0.

It is not hard to verify that any σ-finite nonatomic G-invariant metrically
transitive measure µ on E is weakly metrically transitive. The converse asser-
tion is not true in general. Indeed, it directly follows from the above definition
that every G-invariant extension of a G-invariant weakly metrically transitive
measure is also weakly metrically transitive. An analogous statement fails to
be true for G-invariant metrically transitive measures.
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Example 3. Let us take E = R, G = the group of all translations of R,
and µ = the Lebesgue measure on R. Obviously, we may identify G with the
additive group R. It is well known that µ is metrically transitive with respect
to the group Q ⊂ R of all rationals. By applying the standard transfinite
methods (see, e.g., [8], [4]), it can be proved that there exist two subsets A
and B of R satisfying the following conditions:
(1) A ∩B = ∅, A ∪B = R and card(A) = card(B) = card(R);
(2) µ∗(A) = µ∗(B) = +∞;
(3) both sets A and B are almost R-invariant; i.e., for all h ∈ R, we have

card((h+A)4A) < card(R) and card((h+B)4B) < card(R).
By using these two sets, the original measure µ can be extended to an R-
invariant measure µ′ which is not metrically transitive with respect to the
group R (hence, with respect to the group Q ⊂ R). For this purpose, it suffices
to define on the σ-algebra generated by {A,B} ∪ dom(µ) the functional µ′ by
the formula

µ′((A ∩X) ∪ (B ∩ Y )) = (1/2)(µ(X) + µ(Y )),

where X and Y are arbitrary elements from dom(µ). This definition of µ′ is
correct, and µ′ is not metrically transitive in view of the almost invariance of
the µ′-measurable sets A and B, which both are of strictly positive µ′-measure.

Example 4. Suppose that a σ-finite G-invariant metrically transitive measure
µ on E has at least one atom. Then it is not difficult to describe the structure of
µ. Namely, in this case, the space E admits a representation E = ∪{Ai : i ∈ I}
where
(1) the set I is at most countable, and the family {Ai : i ∈ I} is disjoint;
(2) each set Ai (i ∈ I) is an atom of µ;
(3) for any i ∈ I and j ∈ J , there exists a transformation g ∈ G such that

µ(g(Ai)4Aj) = 0;
(4) for any transformation h ∈ G, the family {h(Ai) : i ∈ I} almost coincides

with the family {Ai : i ∈ I}; i.e., each member of the first family almost
coincides with some member of the second family, and conversely.

In other words, we obtain a certain G-invariant lattice of atoms of our measure
µ, similar to the standard lattice {g + [0, 1]n : g ∈ Zn} of the Euclidean space
Rn.

Let (E,G) be a space with a transformation group, and let M be some class
of G-invariant measures on E (in general, we do not assume that measures
from M are defined on the same σ-algebra).

We shall say that a set X ⊂ E is absolutely nonmeasurable with respect
to M if there exists no measure from M for which X is measurable.
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Let µ be a G-invariant measure on E. We shall say that a set X ⊂ E is
absolutely nonmeasurable with respect to µ if X is absolutely nonmeasurable
with respect to the class of all G-invariant measures on E extending µ.

The next example underlines a close relationship between convex sets and
absolutely nonmeasurable sets.

Example 5. Let E be an infinite-dimensional separable Banach space, G be
the group of all translations of E, and let B be a bounded convex body in
E. It can be proved that B is absolutely nonmeasurable with respect to all
nonzero σ-finite G-invariant (more generally, G-quasi-invariant) measures on
E (see [5]). This fact implies, in particular, that E admits no nonzero σ-finite
G-quasi-invariant Borel measure. By using an algebraic isomorphism between
the additive groups E and R, it can also be shown that there exists a subset of
R which is absolutely nonmeasurable with respect to the class of all nonzero
σ-finite R-invariant (more generally, R-quasi-invariant) measures on R.

Example 6. Let E = R, G = the group of all translations of R, and µ = the
Lebesgue measure on R. Any selector of R/Q is called a Vitali subset of R.
It is well known that all Vitali sets in R are absolutely nonmeasurable with
respect to µ (see, e.g., [11], [8], [4]).

Theorem 2. Let G be a countable group of transformations of E, and let µ
be a nonzero σ-finite G-invariant weakly metrically transitive measure on E.
Suppose also that G acts almost freely in E with respect to µ. Then every
G-selector is absolutely nonmeasurable with respect to µ.

Proof. Take an arbitrary G-selector X in E. We must check that, for any
G-invariant measure µ′ on E extending the original measure µ, the set X
is µ′-nonmeasurable. Suppose otherwise; i.e., X ∈ dom(µ′). Then, in view
of the countability of G and the equality E = ∪{g(X) : g ∈ G}, we have
µ′(X) > 0. Let us denote µ′(X) = ε. According to our assumption, there
exist a µ-measurable set Y with µ(Y ) < ε and a countable family H ⊂ G such
that µ(E \∪{h(Y ) : h ∈ H}) = 0. In other words, Y turns out to be a G-thick
subset of E with respect to µ. Since µ′ extends µ, the set Y is G-thick with
respect to µ′ as well. At the same time, the selector X is a G-thin subset of E
with respect to µ and, hence, with respect to µ′ (see Example 2). By virtue
of Theorem 1, the relation

ε = µ′(X) ≤ µ′(Y ) = µ(Y ) < ε

must be valid, which yields a contradiction. This contradiction completes the
proof of Theorem 2.
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Remark 1. Clearly, Theorem 2 may be regarded as a generalization of Vi-
tali’s theorem [11] stating the existence of subsets of R nonmeasurable in the
Lebesgue sense. Indeed, putting in Theorem 2 E = R, G = Q, and µ = the
Lebesgue measure on R, we directly get Vitali’s classical result. Therefore,
Theorem 2 may be treated as an abstract version of the above-mentioned Vi-
tali’s theorem. Some other versions of Vitali’s theorem are presented (see, e.g.,
[2], [9] and [10]).

In order to show that the notion of the weak metrical transitivity is tightly
connected with the existence of absolutely nonmeasurable sets, we need two
auxiliary statements.

Lemma 1. Let E be a Polish topological space, and let W (x, y) (x ∈ E, y ∈ E)
be an equivalence relation on E satisfying the following conditions:
(1) each equivalence class with respect to W (x, y) is a closed subset of E;
(2) for any closed set F ⊂ E, the set W (F ) = {y ∈ E : (∃x)(x ∈ F & (x, y) ∈

W )} is Borel in E.
If E/W denotes the quotient-set associated with W , then there exists a Borel
selector of E/W .

For the proof of the above-mentioned lemma, see e.g. [1].

Lemma 2. Let (G, ·) be a σ-compact complete metrizable topological group,
and let H be a closed subgroup of G. Then the family of all right (left) trans-
lates of H admits a Borel selector.

Proof. Note first that the given metrizable group G is separable as a union
of countably many compact (hence, separable) subspaces. Moreover, applying
the classical Baire theorem, we readily infer that G is locally compact. Denote
by the symbol G/H the family of all right translates of H. Since H is a closed
subgroup of G, the elements of G/H are also closed in G. In view of Lemma
1, it remains to verify that, for any closed set F ⊂ G, the set

∪{Hx : x ∈ G, F ∩Hx 6= ∅} = H · F

is Borel in G. Indeed, the sets H and F are closed subsets of a σ-compact
space, which implies that they are also σ-compact. This immediately yields
that H · F is σ-compact, too, and hence is Borel in G.

Remark 2. As mentioned above, any σ-compact complete metrizable topo-
logical group (G, ·) is a locally compact Polish group (equivalently, is a locally
compact group with a countable base). Also, it is well known that if a Polish
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group (G, ·) admits a nonzero σ-finite Borel measure µ invariant under all left
(right) translations of G, then G is σ-compact and locally compact, and µ
coincides with the left (right) Haar measure on G.

Now, we are ready to establish the following statement.

Theorem 3. Let (G, ·) be an uncountable locally compact Polish group, let µ
denote the left Haar measure on G, and let H be a countable subgroup of G.
We consider H as a group of transformations of G. Namely, each h ∈ H is
identified with the mapping h : G→ G defined by the formula

h(x) = h · x (x ∈ G).

The following three assertions are equivalent:
(a) µ is weakly metrically transitive with respect to H;
(b) every H-selector in G is absolutely nonmeasurable with respect to µ;
(c) H is non-discrete in G.

Proof. The implication (a) ⇒ (b) is a straightforward consequence of The-
orem 2.

Let us prove the implication (b) ⇒ (c). Suppose that a subgroup H of the
given group G is discrete. Then it can easily be verified that H is countable
and closed in G.

Applying Lemma 2, we infer that there exists a Borel H-selector in G. This
selector is µ-measurable, and, therefore, it cannot be absolutely nonmeasurable
with respect to µ. We thus conclude that the implication ¬ (c) ⇒ ¬ (b) is
valid. Consequently, we also have (b) ⇒ (c).

Finally, suppose that (c) is fulfilled. Let us put P = cl(H). Clearly, P is
an uncountable closed subgroup of G. According to Lemma 2, there exists a
Borel selector L of the family G/P of all right translates of P . Since there
are uncountably many pairwise disjoint left translates of L, we must have
µ(L) = 0. Also, it is clear that P · L = G. Fix ε > 0. Since µ(L) = 0,
there exists an open set U ⊂ G such that L ⊂ U and µ(U) < ε. Obviously,
P · U = G. Taking into account that U is open and H is dense in P , we
deduce that ∪{h(U) : h ∈ H} = H · U = G, which yields the weak metrical
transitivity of µ with respect to H. Thus, (c) ⇒ (a) and the proof of the
theorem is completed.

Remark 3. It is not difficult to show that the implication (c)⇒ (b) holds for
an arbitrary uncountable σ-compact locally compact topological group (G, ·)
endowed with the left Haar measure µ. For the sake of completeness, we will
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present a simple proof of this fact, applying the classical argument of Vitali
[11] to G. Let H be a countable non-discrete subgroup of G (obviously, such
subgroups always exist in G), and let X be an H-selector in G. Suppose to
the contrary that there exists a left H-invariant extension µ′ of µ such that
X ∈ dom(µ′). Since ∪{hX : h ∈ H} = G, we must have µ′(X) > 0. Further,
since G is σ-compact, there is a compact set K ⊂ G satisfying the relation

0 < µ′(X ∩K) ≤ µ′(K) = µ(K) < +∞.

Denote Y = X∩K. Let V be a compact neighbourhood of the neutral element
of G. Since H is non-discrete, the set H ∩ V is infinite. Let us represent the
last set as an injective sequence {hn : n ∈ N}. Obviously, the following two
relations are satisfied:
(1) hnY ∩ hmY = ∅ whenever n 6= m;
(2) ∪{hnY : n ∈ N} ⊂ V ·K.
Relation (1) directly implies that

µ′(∪{hnY : n ∈ N}) =
∑
n∈N

µ′(hnY ) = +∞.

On the other hand, by virtue of the compactness of V ·K, relation (2) implies

µ′(∪{hnY : n ∈ N}) ≤ µ′(V ·K) = µ(V ·K) < +∞.

The obtained contradiction gives us the required result.

In a similar way, Theorem 2 can be applied to the n-dimensional Lebesgue
measure λ on the Euclidean space Rn. Indeed, we may consider λ as an
invariant measure with respect to an arbitrary countable group H of isometric
transformations (i.e., motions) of Rn. Note that some deep properties of λ
treated as an H-invariant measure on Rn are investigated in paper [6]. In the
same paper, various H-invariant extensions of λ are also studied.

For our purpose, we need several well-known facts from the geometry of
Euclidean spaces.

(i) Let x be a point of Rn, and let G be a family of motions of Rn. If the
set G(x) = {g(x) : g ∈ G} is relatively compact in Rn, then the family G is
relatively compact in the topological group of all motions of Rn. In particular,
if G is a closed subset of the group of all motions of Rn, then the set G(x) is
closed in Rn.

(ii) Let F be a closed subset of Rn, and let G be a closed subset of the
group of all motions of Rn. Then the set G(F ) = ∪{g(x) : g ∈ G, x ∈ F} is
σ-compact in Rn. Consequently, G(F ) is Borel in Rn.
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(iii) The group of all motions of Rn acts almost freely in Rn with respect
to λ. Indeed, for any two distinct motions g and h of Rn, the set {x ∈ Rn :
g(x) = h(x)} is contained in some affine hyperplane of Rn. Hence, this set is
of Lebesgue measure zero.

(iv) Let G be an uncountable group of motions of Rn, and let X be a
selector of the family of all G-orbits. Then either X is nonmeasurable with
respect to λ or λ(X) = 0.

Note that (iv) readily follows from (iii). More generally, if an uncountable
group G of transformations of a set E acts almost freely in E with respect
to a σ-finite G-quasi-invariant measure µ on E, then any G-selector is either
µ-nonmeasurable or has µ-measure zero.

Taking these facts into account, we can formulate for λ a direct analog of
Theorem 3.

Theorem 4. Let H be a countable group of motions of the Euclidean space
Rn. The following three assertions are equivalent:
(a) λ is weakly metrically transitive with respect to H;
(b) every H-selector in Rn is absolutely nonmeasurable with respect to λ;
(c) H is non-discrete in the group of all motions of Rn.

The proof of this statement is similar to the proof of Theorem 3 (cf. also
[6], Lemmas 2.8 and 2.9).

We are grateful to the referee whose remarks and suggestions were helpful
for improving the present paper.
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