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As a rule, any course of set theory (or mathematical logic) oriented to beginners
contains certain information on Euler-Venn diagrams. These diagrams help students to
see visually various kinds of sets, inclusion relations between them and the standard set-
theoretical operations such as the union, intersection, difference and symmetric difference
of two given sets. At first sight, the material about Euler-Venn diagrams looks as very
easy and not problematic. But, as turns out, such diagrams have interesting connections
with purely combinatorial (sometimes, rather difficult) problems, with discrete geometry,
with the theory of knots and many other topics. In this note, we would like to touch
upon several questions of this sort.

In the sequel, a version of the precise definition of an Euler-Venn diagram for a given
finite family of subsets of a universal set is presented. Certain geometrical properties of
such diagrams are discussed and close connections with purely combinatorial problems
and the theory of convex sets (e.g., Helly’s type theorems and related topics) are indicated.
In particular, some geometrical realizations of uncountable independent families of sets
are considered.

Let U (respectively, V ) be a nonempty universal set, {X1, X2, . . . , Xn} (respectively,
{Y1, Y2, . . . , Yn}) be a finite family of subsets of U (respectively, of V ).

We shall say that these two families are combinatorially isomorphic (or combinatorially
equivalent) if, for each subset I of {1, 2, . . . , n} and for any function f : I → {0, 1}, we
have

∩{X
f(i)
i : i ∈ I} 6= ∅ ⇔ ∩{Y

f(i)
i : i ∈ I} 6= ∅,

where X
f(i)
i (respectively, Y

f(i)
i ) coincides with Xi (respectively, with Yi) if f(i) = 0

and coincides with U \ Xi (respectively, with V \ Yi) if f(i) = 1.
It is not hard to see that the families {X1, X2, . . . , Xn} and {Y1, Y2, . . . , Yn} are

combinatorially isomorphic if and only if

∩{X
f(i)
i : i ∈ {1, 2, . . . , n}} 6= ∅ ⇔ ∩{Y

f(i)
i : i ∈ {1, 2, . . . , n}} 6= ∅

for any function f : {1, 2, . . . , n} → {0, 1} (where X
f(i)
i and Y

f(i)
i are defined as above).

Remark 1. Obviously, the same notion of the combinatorial isomorphism can be
introduced for any two (not necessarily finite) families {Xj : j ∈ J} and {Yj : j ∈ J} of
subsets of the universal sets U and V . In this more general case, it is required that

∩{X
f(i)
i : i ∈ I} 6= ∅ ⇔ ∩{Y

f(i)
i : i ∈ I} 6= ∅

for each finite subset I of J and for every function f : I → {0, 1}.
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Let D be a geometric figure in the Euclidean plane R2 and let D1, D2, . . . , Dn be
geometric figures all of which are contained in D.

We shall say that {D1, D2, . . . , Dn} is an Euler-Venn diagram of the family {X1, X2,
. . . , Xn} (with respect to the pair (U, D)) if {D1, D2, . . . , Dn} is combinatorially isomor-
phic to {X1, X2, . . . , Xn}. In this case, we shall also say that the family {D1, D2, . . . , Dn}
is a geometrical realization of {X1, X2, . . . , Xn} by figures D1, D2, . . . , Dn.

For extensive information about Euler-Venn diagrams, see e.g. [3], [7], [8], [10], [11],
where some of their applications are also presented. Of course, there are many other works
devoted to such diagrams and their combinatorial or purely geometrical properties. As a
rule, the authors of those works do not formulate the precise description of Euler-Venn
diagrams and, in fact, they are considered intuitively, without any formal definition.
Notice that our definition differs from the one given in [3].

In connection with the introduced notion, the following natural question arises: what
kind of figures can be taken in geometrical realizations of various finite families of subsets
of a universal set U?

First, let us give two simple examples which show that, in general, one cannot guar-
antee the existence of an Euler-Venn diagram whose figures satisfy rather natural geo-
metrical conditions.

Example 1. Take any four subsets X1, X2, X3, X4 of U such that

X1 ∩ X2 ∩ X3 6= ∅, X1 ∩ X3 ∩ X4 6= ∅, X1 ∩ X2 ∩ X4 6= ∅, X2 ∩ X3 ∩ X4 6= ∅,

X1 ∩ X2 ∩ X3 ∩ X4 = ∅.

A simple geometrical argument leads to the conclusion that there exists no Euler-Venn
diagram of the family {X1, X2, X3, X4}, consisting of convex subsets D1, D2, D3, D4 of
the plane. This fact easily follows from the well-known Helly theorem on intersections of
convex sets (see, for instance, [4]) but can also be proved directly, without reference to
the above-mentioned theorem.

Example 2. Take any three subsets X1, X2, X3 of U such that

X
f(1)
1 ∩ X

f(2)
2 ∩ X

f(3)
3 6= ∅

for every function f : {1, 2, 3} → {0, 1}. Let D1, D2, D3 be three closed circles (i.e. discs)
in the plane with the same radius r. One can assert that:

(a) if the centers of D1, D2, D3 are collinear, then these circles never yield an Euler-
Venn diagram of {X1, X2, X3};

(b) if the centers of D1, D2, D3 are the vertices of a triangle all whose angles are
strictly less than π/2, then for some r > 0, these circles yield an Euler-Venn diagram of
{X1, X2, X3}.

In connection with Example 2, let us mention that if three given points of the plane are
collinear, then no three circles with centers in these points form an Euler-Venn diagram
of {X1, X2, X3}. On the other hand, if three given points of the plane are not collinear,
then there exist three circles in the same plane, which form an Euler-Venn diagram
of {X1, X2, X3} and whose centers coincide, respectively, with these points. By using
a separation theorem for any two disjoint subsets of the set of all vertices of a multi-
dimensional simplex, the last fact can be easily extended to the Euclidean space Rk (cf.
[1], [9]).

Every set representable in the form [a, b[×[c, d[, where {a, b, c, d} ⊂ R, is called a
(half-open) rectangle in the plane R2.

A set X ⊂ R2 is rectangular if X can be represented as the union of a finite family
of rectangles (note that this family can always be chosen to be disjoint).
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It is well known that if D is a nonempty rectangular set, then the family of all
rectangular subsets of D is an algebra of sets.

The following statement is valid (which can be proved by induction on n).

Theorem 1. Let D be a nonempty rectangular set on the plane R2. For any

finite family {X1, X2, . . . , Xn} of subsets of U , there exists an Euler-Venn diagram

{D1, D2, . . . , Dn} of {X1, X2, . . . , Xn} such that all Di (1 ≤ i ≤ n) are rectangular

subsets of D.

Remark 2. Actually, the argument applied in the proof of Theorem 1 does not depend
on the dimension of the plane. The same argument works for Euclidean space of any
nonzero dimension. In particular, in the case of the real line R, we can assert that an
arbitrary finite family {X1, X2, . . . , Xn} of subsets of U admits a geometrical realization
{D1, D2, . . . , Dn} such that each set Di is representable as the union of a finite family
of half-open subintervals of D, where D = [a, b[ is a fixed nonempty half-open interval
in R.

Recall that a family {X1, X2, . . . , Xn} of subsets of U is independent (in the purely
set-theoretical sense) if

X
f(1)
1 ∩ X

f(2)
2 ∩ · · · ∩ X

f(n)
n 6= ∅

for all functions f : {1, 2, . . . , n} → {0, 1}. In such a case X1, X2, . . . , Xn are also called
mutually independent subsets of U .

The nonempty sets of the form X
f(1)
1 ∩ X

f(2)
2 ∩ · · · ∩ X

f(n)
n are sometimes called

atomic components (or constituents) of {X1, X2, . . . , Xn} (cf. [6]). Clearly, the number
of all atomic components does not exceed 2n and is equal to 2n only in the case of an
independent family {X1, X2, . . . , Xn}.

Let us observe that if each set Xr (r = 1, 2, . . . , n) is represented in the form Xr =
∪{Xi,r : i = 1, 2, . . . , k(r)} or in the form Xr = ∩{Xi,r : i = 1, 2, . . . , k(r)}, then the
number of all atomic components of {X1, X2, . . . , Xn} does not exceed the number of all
atomic components of {Xi,r : i = 1, 2, . . . , k(r), r = 1, 2, . . . , n}.

In the general case, when an arbitrary family {Xj : j ∈ J} of subsets of U is given, we
say that {Xj : j ∈ J} is independent if every finite subfamily of this family is independent
in the above-mentioned sense.

Independent families of sets play an important role in many questions of mathematics,
especially, in general topology and measure theory (see, e.g., [2], [5], [6], [12]).

Let us return to Euler-Venn diagrams. It is well known that there are no four circles in
the plane, which yield an Euler-Venn diagram of an independent family {X1, X2, X3, X4}
of subsets of U . A more precise result will be established in our further considerations.
First, let us notice that the number of all open connected pairwise disjoint regions (or
domains) which are produced by the union of n circumferences in the plane does not
exceed n(n − 1) + 2 (it suffices to apply induction on n). In particular, if n = 4, then
we have at most 14 (< 16 = 24) such regions. But for obtaining the required result, only
this fact is not sufficient. Indeed, apriori we cannot exclude the possibility that some
atomic components of an Euler-Venn diagram of a given family {X1, X2, X3, X4} differ
from all above-mentioned regions (for instance, an atomic component apriori may have
empty interior). Therefore, a more delicate argument is needed here.

For a given figure D ⊂ R2, let the symbol bd(D) denote, as usual, the boundary of
D. In particular, if D is a circle, then bd(D) stands for the circumference of D.

The two lemmas formulated below are elementary and their proof is not connected
with any difficulty.

Lemma 1. Let D1, D2, . . . , Dn be some circles in the plane, such that a certain

atomic component of the family {D1, D2, . . . , Dn} has empty interior. Then this atomic
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component is of the form {x} and the disjunction of the following two assertions is

satisfied:

(1) there are two tangent circles Di and Dj from the family {D1, D2, . . . , Dn}, for

which the equality Di ∩ Dj = {x} holds;

(2) there are three circles Di, Dj , Dk from this family, such that bd(Di) ∩ bd(Dj ) ∩
bd(Dk) = {x}.

Lemma 2. Let D1, D2, D3, D4 be four circles in the plane.

(1) If two of them are tangent, then the number of atomic components of {D1, D2, D3,
D4} does not exceed 14.

(2) If the sets bd(D1) ∩ bd(D2) ∩ bd(D3) and bd(D1) ∩ bd(D2) ∩ bd(D4) are atomic

components of {D1, D2, D3, D4}, then either D1 ∩ D3 ∩ D4 = ∅ or D2 ∩ D3 ∩ D4 = ∅;
consequently, the number of atomic components of {D1, D2, D3, D4} does not exceed 14.

Using the above-mentioned lemmas, we readily obtain that for any four circles D1, D2,
D3, D4 in the plane, the number of atomic components of the family {D1, D2, D3, D4}
does not exceed 14. In particular, no four circles in the plane are mutually independent.

Remark 3. It is easy to show that in the plane R2 there exist three mutually in-
dependent circles D1, D2, D3 such that bd(D1) ∩ bd(D2) ∩ bd(D3) is a singleton and,
simultaneously, is an atomic component of the family {D1, D2, D3}.

Remark 4. For R we have a result similar to the case of R2. Namely, no three
nondegenerate closed bounded intervals in R are mutually independent. More generally,
if k + 1 points of the Euclidean space Rk are not in general position, then no k + 1 balls
with centers in these points are mutually independent (see again [1] and [9]). This result
immediately yields the nonexistence of four mutually independent circles in the plane.

Lemma 3. Let C1, C2, . . . , Cn, Cn+1 be pairwise distinct circumferences in the plane

and let X = Cn+1 ∩ (C1 ∪ C2 ∪ · · · ∪ Cn). Denote:

X0 = the set of all points x from X such that {x} = Cn+1 ∩ Ci for some i ∈ [1, n]
and x does not belong to C1 ∪ C2 ∪ · · · ∪ Ci−1 ∪ Ci+1 ∪ · · · ∪ Cn;

X1 = the set of all points x from X such that {x} is a proper subset of Cn+1 ∩ Ci

for some i ∈ [1, n] and x does not belong to C1 ∪ C2 ∪ · · · ∪ Ci−1 ∪ Ci+1 ∪ · · · ∪ Cn;

X2 = X \ (X0 ∪ X1);
n0 = card(X0), n1 = card(X1), n2 = card(X2).
Then the inequality 2n0 + n1 + 2n2 ≤ 2n is satisfied.

The proof of Lemma 3 is based on a purely combinatorial argument. From this lemma
one can infer the following statement (by applying induction on n).

Theorem 2. For any circles D1, D2, . . . , Dn in the plane, the number of all atomic

components of {D1, D2, . . . , Dn} does not exceed n(n − 1) + 2. In particular, if n ≥ 4,
then the family {D1, D2, . . . , Dn} is not independent.

By using similar ideas, the next statement can be proved.

Theorem 3. Let D1, D2, . . . , Dn be figures in R2 whose boundaries are (irreducible)
algebraic curves of a degree ≤ m, where m > 0 is a fixed natural number. Then there

exists a natural number n(m) such that, for any n > n(m), the family {D1, D2, . . . , Dn}
is not independent.

For convex polygons in R2, the situation is essentially different. Indeed, it is not
difficult to show that there exists an infinite countable family of mutually independent
convex polygons in R2 (and it immediately follows from this fact that, for any natural
number k ≥ 3, there exists an infinite countable independent family of convex polyhedra
in the Euclidean space Rk). In view of this circumstance, it is natural to ask whether
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there exists an uncountable independent family of convex polygons in R2. It turns out
that the answer to this question is negative even without assumption of the convexity
of polygons, i.e., there is no uncountable independent family of polygons in the plane
R2 and, similarly, there exists no uncountable independent family of polyhedra in the
Euclidean space Rk.

We say that a compact set Q ⊂ R2 with nonempty interior is a quasi-polygon if bd(Q)
admits a representation in the form of the union of countably many line segments.

In terms of quasi-polygons, the following statement is valid.

Theorem 4. There exists an uncountable independent family of convex quasi-polygons

in R2.

The proof of the last statement is essentially non-elementary. Actually, it appeals to
the method of transfinite induction up to the first uncountable ordinal number ω1.
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3. B. Grünbaum, Venn diagrams and independent families of sets. Math. Mag. 48(1975),

12–23.
4. H. Hadwiger and G. Debrunner, Combinatorial geometry in the plane. Translated

by Victor Klee. With a new chapter and other additional material supplied by the
translator Holt, Rinehart and Winston, New York, 1964.

5. E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I: Structure of topolog-
ical groups. Integration theory, group representations. Die Grundlehren der math-
ematischen Wissenschaften, Bd. 115 Academic Press, Inc., Publishers, New York;

Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
6. K. Kuratowski and A. Mostowski, Set Theory, North-Holland Publ. Co., Amsterdam,

1967.
7. A. S. Kuzichev, Venn Diagrams. (Russian) Izd. Nauka, Moscow, 1968.
8. L. Pakula, A note on Venn diagrams. Amer. Math. Monthly, 96(1989), No. 1, 38–39.
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