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A NONSEPARABLE EXTENSION OF THE
LEBESGUE MEASURE WITHOUT NEW

NULLSETS

Abstract

Under the Continuum Hypothesis, it is shown that there exists a
nonseparable extension of the Lebesgue measure on the real line whose
nullsets coincide with the nullsets in the Lebesgue sense.

Let E be a set, S be a σ-algebra of subsets of E containing all one-element
subsets (singletons) of E, and let µ be a nonzero σ-finite continuous (i.e.,
vanishing at all singletons) measure on S. The general measure extension
problem is to extend µ to a maximally large class of subsets of E. According
to Ulam’s theorem (see, for instance, [8] or [5], Chapter 5), it is consistent
with the axioms of set theory that the domain of any extension µ′ of µ cannot
coincide with the power set of E (for instance, this is so if card(E) is smaller
than the first inaccessible cardinal number). Consequently, there always exists
a set X ⊂ E such that X 6∈ dom(µ′). An easy argument shows that µ′ can
be extended to a measure µ′′ so that X becomes µ′′-measurable (see, e.g.,
Example 2 below). Thus, assuming that there are no large cardinals, one can
infer that there are no maximal extensions of the original measure µ.

In this context, a similar result should be mentioned, which states that if
{Xi : i ∈ I} is an arbitrary partition of E, then there exists a measure ν on
E extending µ and satisfying the relation

{Xi : i ∈ I} ⊂ dom(ν).

For the proof of this result, see [2] or Cor. 2 in [1], p. 3. It should be noticed
that measures in [1] and [2] are assumed to be probability ones, but the same
argument works for arbitrary σ-finite measures. Actually, we do not need the
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above-mentioned result in our further consideration, but it also shows that,
having any finite family of subsets of E, one can always extend µ to a measure
which measures all these subsets (it suffices to consider the finite partition of
E generated by the given family).

An analogous assertion fails to be true for arbitrary countable families of
subsets of E. Moreover, the existence of a Luzin set L on the real line R having
the cardinality of the continuum (see, e.g., [5], Chapter 20) implies that there
is a countably generated σ-algebra of subsets of R containing all singletons and
not admitting any nonzero σ-finite continuous measure. Indeed, it can easily
be shown that every σ-finite continuous Borel measure given on a separable
metric space is concentrated on some first category subset of that space. Since
all first category subsets of L are at most countable, it follows that L does
not admit a nonzero σ-finite continuous measure on the countably generated
Borel σ-algebra of L. Now, using a one-to-one correspondence between L and
R, we obtain the required σ-algebra of subsets of R. In a certain sense, a
Luzin set L is a small subset of R because it has outer measure zero with
respect to any Borel σ-finite continuous measure on R. Recall that the exis-
tence of Luzin sets needs some additional set-theoretical axioms. For instance,
the Continuum Hypothesis readily implies that there are Luzin subsets of R
(see [5], Chapter 20). Similarly to this, Martin’s Axiom implies that there are
so-called generalized Luzin subsets of R. In this connection, it should be un-
derlined that the existence of analogous small subsets of R having cardinality
ω1 can be established within the theory ZFC (see, e.g., [6] or [9]).

All measures considered below are assumed to be nonzero, σ-finite, and
continuous. If the need arises, we can additionally suppose, without loss of
generality, that a measure under consideration is also complete (replacing it
by its completion).

For any complete measure µ, we denote by I(µ) the σ-ideal of all µ-measure
zero sets (in short, µ-nullsets).

The symbol µ∗ (respectively, µ∗) denotes the outer (respectively, inner)
measure associated with µ.

The symbol λ stands for the Lebesgue measure on R (recall that λ is a
complete measure).

The symbols ω and c denote, respectively, the least infinite cardinal and
the cardinality of the continuum.

Example 1. A well-known method of extending a given complete measure
µ is based on adding to I(µ) some new sets, which are nonmeasurable with
respect to µ and whose inner µ-measure is equal to zero (cf. [7]). Proceeding
in this way, we come to a σ-ideal I ′ which properly contains I(µ) and all of
whose elements are of inner µ-measure zero. Then we consider the σ-algebra
S ′ generated by dom(µ) and I ′. Any element U of this σ-algebra admits a
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representation U = (X ∪ Y ) \ Z where X ∈ dom(µ), Y ∈ I ′ and Z ∈ I ′. We
define a functional µ′ on S ′ by the formula

µ′(U) = µ′((X ∪ Y ) \ Z) = µ(X).

A straightforward verification shows that functional µ′ is well defined and that
µ′ is also a measure on S ′ extending the initial measure µ.
Example 2. The method of extending measures described in Example 1 has
a weak side. Indeed, from the viewpoint of the theory of Boolean algebras,
the complete measure µ and its extension µ′ are the same. Nevertheless,
slightly changing the above method, we can achieve some difference between a
measure and its extension if both of them are considered on the corresponding
quotient Boolean algebras. For this purpose, let us take any set T ⊂ E
nonmeasurable with respect to a complete measure µ. Obviously, we must
have µ∗(T ) < µ∗(T ). If T0 denotes a µ-measurable kernel of T and T1 stands
for a µ-measurable hull of T , then µ(T1 \ T0) > 0, and the set T \ T0 being a
subset of T1 \ T0 satisfies the equalities

µ∗(T \ T0) = µ∗((T1 \ T0) \ (T \ T0)) = 0.

So we may assume (replacing, if necessary, T by T \T0 and E by T1 \T0) that

µ∗(T ) = µ∗(E \ T ) = 0.

Let S ′ denote the σ-algebra of all those subsets U of E, which admit a repre-
sentation

U = (X ∩ T ) ∪ (Y ∩ (E \ T )),

where X ∈ dom(µ) and Y ∈ dom(µ). Define a functional µ′ on S ′ by the
formula

µ′(U) = (1/2)(µ(X) + µ(Y )).

As earlier, µ′ is well defined and turns out to be a measure on S ′ extending µ.
Also, since T is µ′-measurable, µ′ strictly extends µ. Moreover, we see that
the quotient Boolean algebra associated with µ is properly contained in the
quotient Boolean algebra associated with µ′. At the same time, we have the
equality I(µ′) = I(µ); i.e., µ′ does not produce new nullsets.

Both of these constructions do not essentially change the metrical structure
of µ. One can observe that the metric space associated with a measure µ and
the metric space associated with its extension µ′ obtained by using any of the
two described constructions have the same topological weight. Therefore, if
the original measure µ is separable (i.e., its metric space is separable), then
the extended measure µ′ is separable, too. Kakutani and Oxtoby [3] gave a
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construction of a nonseparable extension of the Lebesgue measure λ on the
real line R. Another construction of this kind was presented by Kodaira and
Kakutani [4]. Both of those extensions of λ are invariant under the group of
all isometries of R.

It should be observed that the extension of λ obtained by Kakutani and
Oxtoby has character 2c and necessarily yields new nullsets; i.e., there appear
nullsets which are not of Lebesgue measure zero. This is so because the method
of Kakutani and Oxtoby uses an uncountable independent family of subsets
of R such that the intersection of any countable subfamily of this family is
a Lebesgue nonmeasurable set which becomes a nullset with respect to the
extended measure (for more details, see [3]).

The extension of λ obtained by Kodaira and Kakutani in [4] has char-
acter c. By applying their method, one can also obtain new nullsets (see,
for instance, Theorem 2 below). In this connection, the following question
seems to be interesting: does there exist a nonseparable extension of λ whose
nullsets are precisely the λ-nullsets? The question is of interest in view of the
following circumstance: in many topics of real analysis, measure theory, and
probability, the inner structure of a measure under consideration does not play
any role, and only the induced concept “almost everywhere” is essential. The
standard example of this type is a well-known theorem of Lebesgue stating
that a bounded function f : [a, b] → R is integrable in the Riemann sense if
and only if f is continuous almost everywhere on [a, b]. The just mentioned
Lebesgue theorem does not need the notion of the Lebesgue measure. For its
proof, it completely suffices to apply the notion of a nullset in the Lebesgue
sense. Numerous other examples of this kind can be pointed out.

Our goal is to demonstrate (under the Continuum Hypothesis) that there
exists a nonseparable extension of λ which yields no new nullsets. It should be
noticed that our argument may be regarded as a certain combination of the
method of Kodaira and Kakutani [4] with the method of Luzin by means of
which he proved the existence of his set on the real line (see, e.g., [5], Chapter
20).

We begin with some preliminary considerations.
Let (E1,S1, µ1) and (E2,S2, µ2) be two measure spaces, such that µ1 is

σ-finite and µ2 is a probability measure. Let f : E1 → E2 be a mapping, and
let G(f) denote the graph of f . Suppose that G(f) is (µ1 × µ2)-thick in the
product set E1 × E2; i.e., suppose that

(µ1 × µ2)∗((E1 × E2) \G(f)) = 0.

For any set Z ∈ dom(µ1 × µ2), let us define

Z ′ = {x ∈ E1 : (x, f(x)) ∈ Z}.
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Further, introduce a class of sets

S ′1 = {Z ′ : Z ∈ dom(µ1 × µ2)},

and define a functional

µ′1(Z
′) = (µ1 × µ2)(Z) (Z ∈ dom(µ1 × µ2)).

Then S ′1 is a σ-algebra of subsets of E1, and the functional µ′1 is a measure on
S ′1 extending µ1 (cf. [4], p. 576). In addition, the mapping f turns out to be
measurable with respect to the σ-algebras S ′1 and S2; i.e., for any set Y ∈ S2,
we have f−1(Y ) ∈ S ′1.

The remarks just made are rather simple, but they will be useful for our
further constructions.

Lemma 1. If a measure µ1 is nonzero and a measure µ2 is nonseparable, then
the measure µ′1 is nonseparable, too.

Proof. Take any set X ∈ dom(µ1) with 0 < µ1(X) < +∞. The nonsepara-
bility of µ2 implies that, for some ε > 0, there exists an uncountable family
{Yi : i ∈ I} of µ2-measurable sets such that

µ2(Yi4Yj) > ε (i ∈ I, j ∈ I, i 6= j).

Obviously, we have

µ′1((X × Yi)′4(X × Yj)′) = (µ1 × µ2)(X × (Yi4Yj)) =

µ1(X) · µ2(Yi4Yj) > µ1(X) · ε (i ∈ I, j ∈ I, i 6= j),

whence it follows that µ′1 is nonseparable.

Let J be a set with card(J) = c. For any index j ∈ J , denote by νj the
restriction of the Lebesgue measure λ to the Borel σ-algebra of [0, 1]. Thus, νj

is a Borel probability measure on [0, 1]. Let ν stand for the product measure∏
j∈J νj .
The following two auxiliary propositions are easy and well known, but, for

the sake of completeness, we give their short proofs here.

Lemma 2. The cardinality of dom(ν) is equal to c, and the topological weight
of the metric space associated with ν is also equal to c. In particular, ν is a
nonseparable measure.
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Proof. Any set Z ∈ dom(ν) can be represented in the form B × [0, 1]J\J0 ,
where J0 is a countable subset of J (certainly, depending on Z) and B is a
Borel subset of [0, 1]J0 . Taking into account the equality cω = c, this readily
implies that card(dom(ν)) = c.

Further, for each j ∈ J , let us denote

Zj = [0, 1/2]j × [0, 1]J\{j}.

Then we have

ν(Zj4Zk) = 1/2 (j ∈ J, k ∈ J, j 6= k),

whence it follows that the topological weight of the metric space associated
with ν is equal to c (in other words, ν has character c). This ends the proof
of Lemma 2.

Lemma 3. Let α be an infinite cardinal number satisfying the relation αω = α,
and let (E1,S1) and (E2,S2) be two measurable spaces such that card(S1) ≤ α
and card(S2) ≤ α. Then the cardinality of the product σ-algebra S1 ⊗S2 does
not exceed α, either.

Proof. The product σ-algebra S1 ⊗ S2 is generated by the family of sets Z
having the form Z = X × Y , where X ∈ S1 and Y ∈ S2. The cardinality
of this family does not exceed α · α = α. Taking into account the equality
αω = α, we come to the required result.

The next lemma plays a key role in our further consideration.

Lemma 4. Assume the Continuum Hypothesis. There exists a mapping

f : R → [0, 1]J

satisfying the following relations:
(1) the graph of f is thick with respect to the product measure λ× ν;
(2) for any (λ× ν)-measure zero set Z, the set Z ′ = {x : (x, f(x)) ∈ Z} is

of λ-measure zero.

Proof. The required mapping f will be constructed by transfinite recursion.
In what follows, the symbol λ0 stands for the restriction of the Lebesgue

measure to the Borel σ-algebra of R.
Let α denote the least ordinal number of cardinality c. According to our

assumption, α = ω1; i.e., card(ξ) ≤ ω for each ordinal ξ < α.
Let � denote a well-ordering of R which is isomorphic to α.
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Applying Lemmas 2 and 3, we deduce the equality

card(dom(λ0 × ν)) = c.

Let {Zξ : ξ < α} be the family of all those (λ0 × ν)-measurable sets whose
measure is strictly positive. We may suppose, without loss of generality, that
the range of this family coincides with the range of {Zξ : ξ < α, ξ is odd}.

Let {Tξ : ξ < α} be an enumeration of all those (λ0 × ν)-measurable sets
whose measure is equal to zero.

We are going to define an α-sequence {(xξ, yξ) : ξ < α} of points of the
product space R × [0, 1]J . Suppose that, for an ordinal ξ < α, the partial
ξ-sequence {(xζ , yζ) : ζ < ξ} has already been constructed. Consider two
cases.

(a). The ordinal ξ is even. In this case, denote by x the �-least element
of the set R \ {xζ : ζ < ξ} and, for each ordinal ζ < ξ, define

Tζ(x) = {y : (x, y) ∈ Tζ}.

Also, define a set Ξ by the formula

Ξ = {ζ : ζ < ξ & ν(Tζ(x)) = 0}.

Obviously, we have ν(∪{Tζ(x) : ζ ∈ Ξ}) = 0. Consequently,

[0, 1]J \ ∪{Tζ(x) : ζ ∈ Ξ} 6= ∅.

Choose a point y ∈ [0, 1]J \ ∪{Tζ(x) : ζ ∈ Ξ}, and put (xξ, yξ) = (x, y).
(b). The ordinal ξ is odd. For each ordinal ζ < ξ, define

T 0
ζ = {x ∈ R : ν(Tζ(x)) > 0}.

Since (λ0 × ν)(Tζ) = 0, we have λ(T 0
ζ ) = 0. Consider the set Zξ. Taking into

account that (λ0 × ν)(Zξ) > 0 and applying the Fubini theorem, we can find
a point x ∈ R \ ∪{T 0

ζ : ζ < ξ} satisfying the relation ν(Zξ(x)) > 0. Choose a
point y ∈ Zξ(x) \ ∪{Tζ(x) : ζ < ξ}, and put (x, y) = (xξ, yξ).

Thus, in both cases (a) and (b), we have defined (xξ, yξ). Proceeding in
this manner, we are able to construct the α-sequence {(xξ, yξ) : ξ < α} of
points of R× [0, 1]J . Now, let us put

f(xξ) = yξ (ξ < α).

We assert that the function f is the required one. Indeed, the equality

R = {xξ : ξ < α}
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holds true (because the well-ordering � is isomorphic to α). Therefore, the
domain of f coincides with R. The thickness of G(f) is a straightforward
consequence of the relations

(xξ, yξ) ∈ Zξ (ξ < α, ξ is odd).

Finally, let us show that the inclusion

{x : (x, f(x)) ∈ Tξ} ⊂ T 0
ξ ∪ {xζ : ζ ≤ ξ}

is valid for each ordinal ξ < α. Take any (x, f(x)) ∈ Tξ. According to our
construction, (x, f(x)) = (xη, yη) for some η < α. Consequently,

(xη, yη) ∈ Tξ, yη ∈ Tξ(xη).

If η ≤ ξ, then there is nothing to prove. Suppose now that ξ < η and consider
two cases.

(i). ν(Tξ(xη)) = 0. If η is even, then our construction yields yη 6∈ Tξ(xη).
If η is odd, then our construction also yields yη 6∈ Tξ(xη). Therefore, this case
is impossible for ξ < η.

(ii). ν(Tξ(xη)) > 0. This relation immediately implies xη ∈ T 0
ξ , which

yields the desired result.
The proof of Lemma 4 is thus completed.

Theorem 1. Under the Continuum Hypothesis, there exists a nonseparable
measure λ′ on the real line R extending λ such that I(λ′) = I(λ).

Proof. In view of Lemma 4, there is a mapping

f : R → [0, 1]J

whose graph is thick in the product space R×[0, 1]J . For any Z ∈ dom(λ0×ν),
we put

Z ′ = {x : (x, f(x)) ∈ Z}, λ′(Z ′) = (λ0 × ν)(Z).

As said earlier, the functional λ′ is well defined and is a measure extending
λ0. Obviously, the completion of λ′ extends the Lebesgue measure on R. We
preserve the same notation for the completion of λ′. By virtue of Lemmas 1
and 2, λ′ is a nonseparable measure. More precisely, we can assert that the
character of λ′ is equal to c. This ends the proof of the theorem.

Remark 1. Theorem 1 was established by assuming the Continuum Hypoth-
esis. One of the referees kindly informed the author that the statement of
this theorem remains valid under Martin’s Axiom and even under a weaker
assumption on cardinal invariants associated with I(ν) and I(λ). The same
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referee also mentioned that the existence of a nonseparable extension of λ
without new nullsets cannot be proved within ZFC theory. In this connec-
tion, it should be underlined that there is (within ZFC) a proper separable
extension of λ whose nullsets are identical with the λ-nullsets (cf. Example
2).
Remark 2. As pointed out at the end of the proof of Theorem 1, the character
of λ′ is equal to c. We do not know whether it is possible to show (at least, in
some models of set theory) the existence of an extension of λ whose character
is strictly greater than c and whose nullsets coincide with the nullsets in the
Lebesgue sense.

Let (E,S, µ) be a probability measure space. The argument presented
before Lemma 1 shows that if a mapping g : R → E is given whose graph
is thick in R × E, then this mapping produces the measure λg which is an
extension of the Lebesgue measure λ.

Theorem 2. Suppose that card(S) ≤ c. Then there exists a mapping h : R →
E satisfying the following conditions:

(1) the graph of h is thick in the product space R× E;
(2) some set of λh-measure zero is thick in R with respect to λ; in partic-

ular, I(λh) 6= I(λ).

Proof. Let B be a Bernstein subset of R. We recall that, according to the
definition of Bernstein sets, both of the sets B and R \B are totally imperfect
in R, which readily implies the equalities

card(B) = card(R \B) = c,

λ∗(B) = λ∗(R \B) = 0.

In particular, B and R \B are not measurable in the Lebesgue sense. Choose
any point y ∈ E and take the constant mapping h0 : B → {y}. By using the
method of transfinite recursion, a mapping

h1 : R \B → E \ {y}

can easily be constructed such that the graph G(h1) is thick in the product
space R × E (cf. the proof of Theorem 1). Let h stand for the common
extension of h0 and h1. Clearly, the graph of h is also thick in R×E. Consider
the set R× {y}. Since the measure λ is σ-finite and µ({y}) = 0, we get

(λ× µ)(R× {y}) = 0.

Consequently, we must have

λh({x : (x, h(x)) ∈ R× {y}}) = 0.
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Therefore, {x : (x, h(x)) ∈ R×{y}} ∈ I(λh). But it is easy to see the validity
of the relation

B = {x : (x, h(x)) ∈ R× {y}},

whence it follows that the set {x : (x, h(x)) ∈ R×{y}} is thick with respect to
λ. Moreover, the above-mentioned set being a Bernstein subset of R is thick
with respect to any σ-finite continuous Borel measure on R.

This completes the proof of Theorem 2.

The author is grateful to the referees for their remarks, suggestions, and
improvements.
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