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In this report we will use the following fairly standard notation:
R = the real line;
c = the cardinality of the continuum;
λ1 = the linear Lebesgue measure on R.
Let a and b be any two positive real numbers. It is easy to indicate a

subset Z of the Euclidean plane R2, such that all horizontal sections of Z
are line segments of length a and all vertical sections of Z are line segments
of length b. In fact, Z can be taken as a strip in R2 whose boundary lines
are expressible in the form of the equations

y = (b/a)x + c1, y = (b/a)x + c2,

where |c1 − c2| = b. This example is absolutely elementary and visual. The
natural question arises whether it is possible to construct a bounded set
with analogous properties of its linear (horizontal and vertical) sections.

More precisely, suppose that 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1. Then one may
ask whether there exists a set W ⊂ [0, 1]2 such that:

(1) all horizontal sections ([0, 1] × {y}) ∩ W , where y ∈ [0, 1], are of
linear Lebesgue measure a;

(2) all vertical sections ({x}× [0, 1])∩W , where x ∈ [0, 1], are of linear
Lebesgue measure b.

In the sequel, we shall say that W ⊂ [0, 1]2 is an (a, b)-homogeneous set
in the unit square [0, 1]2 if both relations (1) and (2) are satisfied for W .

Notice that if a = b, then a set W with the above-mentioned property
can be constructed effectively, i.e., without the aid of the Axiom of Choice.
The main idea of such a construction is as follows. We first represent the
given number a ∈ [0, 1] in the form

a = 1/2n1 + 1/2n2 + · · ·+ 1/2nk + · · · ,
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where (n1, n2, . . . , nk, . . . ) is a strictly increasing sequence of positive in-
tegers, and then we define by recursion a sequence (W1,W2, . . . , Wk, . . . )
of subsets of [0, 1]2, which increases by the inclusion relation and, for each
natural number k > 0, the horizontal and vertical sections of Wk by the line
segments

[0, 1]× {y}, [0, 1]× {x} (x ∈ [0, 1], y ∈ [0, 1])

are of linear Lebesgue measure 1/2n1 +1/2n2 + · · ·+1/2nk . Finally, we put

W = ∪{Wk : 0 < k < ω}.
If a 6= b, then no effective construction of the required set W is pos-

sible, because according to the classical Fubini theorem, such a W must
be nonmeasurable with respect to the two-dimensional Lebesgue measure
λ2 on the plane R2. Moreover, as follows from one result of Friedman
[3], a set W with the desired properties cannot be constructed even within
the Zermelo-Fraenkel set theory. However, by starting with the classical
Sierpiński decomposition of the unit square [0, 1]2 (see [6], [7]), it becomes
possible to establish the following statement.

Theorem 1. Suppose that all subsets of R whose cardinalities are less
than c have λ1-measure zero. Then there exists an (a, b)-homogeneous subset
of the square [0, 1]2.

For any (a, b)-homogeneous set W ⊂ [0, 1]2, denote by χW the charac-
teristic function of W . It is easy to see that there exist iterated integrals

1∫

0

( 1∫

0

χW (x, y)dx

)
dy = a,

1∫

0

( 1∫

0

χW (x, y)dy

)
dx = b.

Clearly, these iterated integrals are equal to each other if and only if a = b.
Some situations, where the equality of the iterated integrals is fulfilled for

those subsets Z of [0, 1]2 which are not a priori assumed to be
λ2-measurable, are discussed in the old paper by Pkhakadze [5] (cf. also
[1]–[4]).

It should be noticed that, for any a ∈ [0, 1], there exists an (a, a)-
homogeneous set W ⊂ [0, 1]2 nonmeasurable with respect to λ2. Obviously,
the iterated integrals of χW do exist and are equal to each other.

Now, it is natural to extend the above considerations to the case of the
three-dimensional Euclidean space R3. Here two possibilities must be taken
into account. On the one hand, we may consider again the linear sections
of a given set W ⊂ R3 and, on the other hand, we may also consider its
sections by those planes which are parallel to the three coordinate planes
xOy, yOz, and zOx.

First of all, let us remark that if any three positive numbers a, b, and c
are given, then there exists a set P ⊂ R3 such that:
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(∗) all sections of P by the planes parallel to xOy are triangles of area a;
(∗∗) all sections of P by the planes parallel to yOz are triangles of area b;

(∗ ∗ ∗) all sections of P by the planes parallel to zOx are triangles of area c.
Moreover, an elementary argument shows that, similarly to the case of

R2, some unbounded prism can be taken as P .
If we want to obtain an analogous result for bounded sets in R3, then we

again need to use some delicate set-theoretical techniques inspired by the
Sierpiński decomposition of [0, 1]2.

Suppose that

0 ≤ a ≤ 1, 0 ≤ b ≤ 1, 0 ≤ c ≤ 1.

We shall say that a set W ⊂ [0, 1]3 is (a, b, c)-homogeneous with respect to
its two-dimensional sections if the following conditions are satisfied:

(i) all sections of W by the planes {x} ×R×R, where x ∈ [0, 1], have
λ2-measure a;

(ii) all sections of W by the planes R× {y} ×R, where y ∈ [0, 1], have
λ2-measure b;

(iii) all sections of W by the planes R×R× {z}, where z ∈ [0, 1], have
λ2-measure c.

In terms of this definition, we can formulate and prove the statement
analogous to Theorem 1.

Theorem 2. Suppose that all subsets of R whose cardinalities are less
than c have λ1-measure zero. Then there exists an (a, b, c)-homogeneous set
in [0, 1]3 with respect to its two-dimensional sections.

Obviously, if the disjunction

a 6= b ∨ b 6= c ∨ c 6= a

holds true, then the required set W is not measurable with respect to the
three-dimensional Lebesgue measure λ3 on R3.

Let a, b, and c be any three positive real numbers. It is easy to see that
there exists a subset S of R3 such that all linear sections of S by the lines
parallel to the axis Oz are segments of length a, all linear sections of S by
the lines parallel to the axis Ox are segments of length b, and all linear
sections of S by the lines parallel to the axis Oy are segments of length c.

In fact, the role of S can be played by the set of all points lying between
certain two parallel planes in R3.

Taking this circumstance into account, we may introduce another no-
tion of homogeneity of subsets of [0, 1]3. Namely, we shall say that a set
W ⊂ [0, 1]3 is (a, b, c)-homogeneous with respect to its linear sections if the
following three conditions are satisfied:

(i’) all sections of W by the lines {x} × {y} ×R, where x ∈ [0, 1] and
y ∈ [0, 1], have λ1-measure a;
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(ii’) all sections of W by the lines R × {y} × {z}, where y ∈ [0, 1] and
z ∈ [0, 1], have λ1-measure b;

(iii’) all sections of W by the lines {x} ×R × {z}, where x ∈ [0, 1] and
z ∈ [0, 1], have λ1-measure c.

By applying the method similar to Sierpiński’s construction [6], it is
possible to prove the next statement.

Theorem 3. Under the assumption that every subset of R with cardi-
nality less than c is of λ1-measure zero, there exists a set W ⊂ [0, 1]3 which
is (a, b, c)-homogeneous with respect to its linear sections.

Consequently, all sections of W by the planes parallel to one of the coor-
dinate planes are, respectively, (a, b)-homogeneous, (b, c)-homogeneous and
(c, a)-homogeneous.

If 0 ≤ a = b = c ≤ 1, then one may pose the question whether there
exists an effective construction of a λ3-measurable set W ⊂ [0, 1]3 which
is (a, a, a)-homogeneous with respect to its linear sections. It turns out
that the answer to this question is positive and the construction of such a
set W is similar to some recursive constructions of classical fractals (e.g.,
Sierpiński’s carpet).

A key role in the construction of W is played by the following auxiliary
proposition.

Lemma. There exist two families

K1,K2, . . . ,K9, T1, T2, . . . , T9

of cubes in [0, 1]3 such that:
(a) all cubes Ki and Tj have edges of length 1/3, which are parallel to

the corresponding edges of [0, 1]3;
(b) the orthogonal projection of the set ∪{Ki : 1 ≤ i ≤ 9} onto any

facet of [0, 1]3 coincides with that facet;
(c) the orthogonal projection of the set ∪{Tj : 1 ≤ j ≤ 9} onto any facet

of [0, 1]3 coincides with that facet;
(d) int(Ki ∩ Tj) = ∅ for all indices i = 1, 2, . . . , 9 and j = 1, 2, . . . , 9.

Moreover, these two families of cubes can be chosen to be symmetric to
each other with respect to the center of [0, 1]3.

The proof of this lemma is purely geometric.
As soon as the lemma is proved, the construction of the required W can

be done similarly to the two-dimensional case. Namely, we take an arbitrary
number a from [0, 1/2] and represent it in the form

a = 1/3n1 + 1/3n2 + · · ·+ 1/3nk + · · · ,

where n1 < n2 < · · · < nk < · · · . Then we recursively construct an increas-
ing (by the inclusion relation) sequence (W1,W2, . . . , Wk, . . . ) of subsets of
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[0, 1]3 such that all sections of Wk by the segments of the form

{x} × {y} × [0, 1], [0, 1]× {y} × {z}, {x} × [0, 1]× {z} (x, y, z ∈ [0, 1])

are of λ1-measure 1/3n1 + 1/3n2 + · · ·+ 1/3nk . Further, we put

W = ∪{Wk : 0 < k < ω}
and so get the required set W for a.

If 1/2 < a ≤ 1, then we take the number a′ = 1−a and a set W ′ ⊂ [0, 1]3

corresponding to this number. Putting

W = [0, 1]3 \W ′,

we come to the set W corresponding to a.
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