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There are many interesting problems in the general theory of invariant
measures and, in particular, in the theory of translation-invariant extensions
of the classical Lebesgue measure given on a finite-dimensional Euclidean
space (see, for instance, [1], [2], [3], [4], [5], and [10]). One of the problems of
this type will be considered below. It has a certain combinatorial character.

We shall use the following fairly standard notation:
ω = the set of all natural numbers (and, simultaneously, the cardinality

of this set);
ω1 = the least uncountable cardinal number;
R = the real line;
c = the cardinality of the continuum;
Rn = the n-dimensional Euclidean space (so R = R1);
dom(µ) = the domain of a given σ-finite measure µ (i.e., the σ-algebra

of all µ-measurable sets).
λ = the one-dimensional Lebesgue measure on R;
λn = the n-dimensional Lebesgue measure on Rn (so λ1 = λ).
Let E be a base set, µ be a σ-finite measure defined on some σ-algebra of

subsets of E, and let {A1, A2, . . . , Ak} be a finite family of subsets of E. It
is well known that there always exists a measure µ′ on E extending µ and
such that all sets A1, A2, . . . , Ak are µ′-measurable.

In contrast with this situation, if the original measure µ is invariant under
a group G of transformations of E, then we cannot assert, in general, that
there exists an extension µ′ of µ which also is invariant under G and for
which all given sets A1, A2, . . . , Ak are µ′-measurable. Even for k = 1, it
may happen that the single set A1 turns out to be nonmeasurable with
respect to any G-invariant extension of µ.
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For instance, if E coincides with the real line R and µ = λ, then the
classical construction of Vitali [9] yields a set V ⊂ R which is nonmeasurable
with respect to every translation-invariant extension of λ (or, in other words,
V turns out to be absolutely nonmeasurable with respect to the class of all
translation-invariant extensions of λ).

Example 1. In [2] two sets A1 ⊂ R and A2 ⊂ R were constructed,
which satisfy the following conditions:

(1) there exists a translation-invariant extension µ1 of λ such that
µ1(A1) = 0;

(2) there exists a translation-invariant extension µ2 of λ such that
µ2(A2) = 0;

(3) for every nonzero σ-finite translation-invariant measure µ on R, the
set A1 ∪A2 is nonmeasurable with respect to µ.

In particular, (3) implies that there exists no nonzero σ-finite translation-
invariant measure ν on R such that both sets A1 and A2 are ν-measurable.

The natural question arises whether it is possible to generalize the above-
mentioned Example 1 to the case of several subsets of the real line. The
main goal of this report is to establish an analogous result for finitely many
subsets A1, A2, . . . , Ak of R, where k is an arbitrary natural number greater
than 2. Actually, it will be shown below that an old theorem of Sierpiński
[6], concerning a certain logical equivalent of the Continuum Hypothesis,
enables to give a positive answer to this question.

We need one notion from the theory of invariant measures.
Let E be a set and let G be a group of transformations of E. We recall

(see, e.g., [3] and [4]) that a set X ⊂ E is G-negligible in E if the following
two conditions hold:

(a) there exists a nonzero σ-finite G-quasi-invariant measure µ0 on E
such that X ∈ dom(µ0);

(b) for any σ-finite G-quasi-invariant measure µ on E, we have the im-
plication

X ∈ dom(µ) ⇒ µ(X) = 0.

Some properties of G-negligible sets are discussed in [3] and [4]. In par-
ticular, the following auxiliary proposition is formulated therein.

Lemma 1. Let Γ1 and Γ2 be two commutative groups and suppose that
φ : Γ1 → Γ2 is a surjective homomorphism.

If Y is a Γ2-negligible subset of Γ2, then X = φ−1(Y ) is a Γ1-negligible
subset of Γ1.

We also need the next three auxiliary statements.
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Lemma 2. Let G and H be two commutative groups and let card(H)>ω.
Consider the direct sum G + H. Let X be a subset of G + H such that
card((g + H) ∩X) < ω for each element g ∈ G.

Then X is a (G + H)-negligible subset of G + H.

Lemma 3. Let k ≥ 2 be a natural number and let G be a vector space
over the field Q of rational numbers representable in the form of a direct
sum

G = G1 + G2 + · · ·+ Gk,

where all Gi (i = 1, 2, . . . , k) are vector subspaces of G of cardinality ω1.
Then subsets Y1, Y2, . . . , Yk of G can be found such that:
(a) for each index i ∈ {1, 2, . . . , k}, the union Y1∪· · ·∪Yi−1∪Yi+1 · · ·∪Yk

is a G-negligible set in G;
(b) there exists a countable family {gm : m < ω} of elements from G for

which we have

∪{gm(Y1 ∪ Y2 ∪ · · · ∪ Yk) : m < ω} = G.

In particular, there is no nonzero σ-finite G-invariant measure ν on G
such that all sets Y1, Y2, . . . , Yk are ν-measurable.

The proof of Lemma 3 is based on some ideas of Sierpiński which he
used in establishing the equivalence of the Continuum Hypothesis to the
existence of certain decompositions of R2 and R3 (see [6], [7], and [8]).

Lemma 4. For each natural number n ≥ 1 and for each natural number
k ≥ 2, the Euclidean space Rn can be represented in the form of a direct
sum

G1 + G2 + . . . + Gk + H,

where all Gi (i = 1, 2, . . . , k) and H are vector spaces over the field Q of
rational numbers and the following conditions are satisfied:

(a) card(G1) = card(G2) = · · · = card(Gk) = ω1;
(b) card(H) = c;
(c) H is a λn-thick subset of Rn, i.e., for any λn-measurable set Z ⊂ Rn

with λn(Z) > 0, we have Z ∩H 6= ∅.
With the aid of the above-mentioned lemmas we obtain the main state-

ment of this report.

Theorem. Let n > 0 and k ≥ 2 be two natural numbers. Then subsets
A1, A2, . . . , Ak of the Euclidean space Rn can be found such that:

(1) for each index i ∈ {1, 2, . . . , k}, the set

A1 ∪ · · · ∪Ai−1 ∪Ai+1 ∪ · · · ∪Ak

is Rn-negligible in Rn;
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(2) for each index i ∈ {1, 2, . . . , k}, there is a complete translation-
invariant extension µi of λn satisfying the equality

µi(A1 ∪ · · · ∪Ai−1 ∪Ai+1 ∪ · · · ∪Ak) = 0

and, consequently, all sets A1, . . . , Ai−1, Ai+1, . . . , Ak turn out to be mea-
surable with respect to µi;

(3) there exists no nonzero σ-finite translation-invariant measure µ on
Rn for which all sets A1, A2, . . . , Ak are µ-measurable.

Example 2. Let us consider the Euclidean plane R2 = R ×R and let
a set X ⊂ R2 be such that card(X ∩ ({t} ×R)) < ω for all t ∈ R. Then,
according to Lemma 2, X is R2-negligible in R2. At the same time, there
exists a set Z ⊂ R2 which satisfies the relation card(Z ∩ ({t}×R)) ≤ ω for
any t ∈ R, but which is not R2-negligible in R2 (see, for instance, [2] or [4]
where a much stronger result is presented).
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