A. Kharazishvili

ALMOST MEASURABLE REAL-VALUED FUNCTIONS AND EXTENSIONS OF THE LEBESGUE MEASURE

(Reported on 10.12.2008)

We consider the concept of almost measurable real-valued functions, which is similar to the concept of almost continuous functions introduced by Stallings in [9] (see also [7]).

Let \mathbf{R} denote the real line and let λ_n stand for the *n*-dimensional Lebesgue measure on the Euclidean space \mathbf{R}^n .

We say that a function $f : \mathbf{R} \to \mathbf{R}$ is almost measurable if, for every λ_2 -measurable set $V \subset \mathbf{R}^2$ containing the graph of f, there exists a λ_1 -measurable function $g : \mathbf{R} \to \mathbf{R}$ whose graph is also contained in V.

The following facts are easy consequences of this definition.

(a) Any Lebesgue measurable function $f : \mathbf{R} \to \mathbf{R}$ is almost measurable. (b) If $f : \mathbf{R} \to \mathbf{R}$ is almost measurable and its graph is λ_2 -measurable,

then f is Lebesgue measurable.

In connection with (b), it should be mentioned that if the graph Gr(f) of a function $f : \mathbf{R} \to \mathbf{R}$ is λ_2 -measurable, then it is of λ_2 -measure zero (because in \mathbf{R}^2 there are uncountably many pairwise disjoint translates of Gr(f)).

Using the classical Luzin-Jankov-von Neumann theorem on measurable selectors (see, e.g., [4]), we obtain the following characterization of almost measurable functions.

Theorem 1. Let $f : \mathbf{R} \to \mathbf{R}$ be a function and let D denote some λ_2 -measurable hull of the graph of f. The following two assertions are equivalent:

(1) f is almost measurable;

(2) there exists a disjoint covering $\{X_1, X_2\}$ of **R** by two λ_1 -measurable sets such that the restriction $f|X_1$ is Lebesgue measurable and, for each point $x \in X_2$, the inequality $\lambda_1^*(\{y \in \mathbf{R} : (x, y) \in D\}) > 0$ holds true.

²⁰⁰⁰ Mathematics Subject Classification: 28A05, 28D05.

Key words and phrases. Almost measurable function, thick graph, extension of measure.

¹³⁵

It is well known that there exists a function $f : \mathbf{R} \to \mathbf{R}$ whose graph is a thick subset of the plane \mathbf{R}^2 , i.e. we have $(\lambda_2)_*(\mathbf{R}^2 \setminus Gr(f)) = 0$. Clearly, such an f is not Lebesgue measurable. One of the earliest examples of a function of this type was constructed by W. Sierpiński with the aid of the method of transfinite recursion (see, for instance, [1], [8]). All such (at first sight, pathological) functions turn out to be almost measurable in the sense of our definition. Indeed, Theorem 1 immediately implies

Theorem 2. Suppose that $f : \mathbf{R} \to \mathbf{R}$ is a function whose graph is thick with respect to the measure λ_2 . Then f is almost measurable.

Any almost measurable function becomes measurable with respect to an appropriate extension of the Lebesgue measure λ_1 . To show this, we need a measure extension construction which can be successfully applied to a wide class of σ -finite measures (cf. [5], [2]).

Lemma. Let X be a λ_1 -measurable subset of \mathbf{R} , let $f : X \to \mathbf{R}$ be a function and let D denote some λ_2 -measurable hull of Gr(f). Suppose that, for each point $x \in X$, the relation

$$0 < \lambda_1^*(\{y \in \mathbf{R} : (x, y) \in D\}) < +\infty$$

holds true. Then there exists a measure λ'_1 on X such that:

(1) λ'_1 extends the restriction of λ_1 to the σ -algebra of all Lebesgue measurable subsets of X;

(2) f is measurable with respect to λ'_1 .

Using this lemma and Theorem 1, we obtain the following statement.

Theorem 3. Let $f : \mathbf{R} \to \mathbf{R}$ be an arbitrary almost measurable function. Then there exists a measure λ'_1 on \mathbf{R} such that:

(1) λ'_1 extends λ_1 ;

(2) f is measurable with respect to λ'_1 .

Remark 1. In connection with Theorem 3, it should be noticed that there exist many functions $g : \mathbf{R} \to \mathbf{R}$ which are measurable with respect to certain extensions of λ_1 but are not almost measurable.

Theorem 4. Let $f : \mathbf{R} \to \mathbf{R}$ and $g : \mathbf{R} \to \mathbf{R}$ be two functions. Suppose that f is almost measurable and g is Lebesgue measurable. Then their sum f + g is almost measurable.

Theorem 5. There exist two functions $f : \mathbf{R} \to \mathbf{R}$ and $g : \mathbf{R} \to \mathbf{R}$ satisfying the following relations:

(1) f and g are additive;

(2) the graphs of f and g are thick with respect to λ_2 ;

(3) ran(f+g) coincides with the set **Q** of all rational numbers.

In particular, both f and g are almost measurable but their sum f + g is not almost measurable.

136

Under additional set-theoretical assumptions, Theorem 5 can be essentially strengthened. Let **c** denote the cardinality of the continuum. Recall that $X \subset \mathbf{R}$ is a generalized Luzin set in **R** if $card(X) = \mathbf{c}$ and $card(X \cap Y) < \mathbf{c}$ for every first category set $Y \subset \mathbf{R}$. The existence of generalized Luzin sets easily follows from Martin's Axiom (usually denoted by **MA**). Under the same axiom, all generalized Luzin sets turn out to be universal measure zero (cf. [4], [6], [8]).

Assuming MA, there exist two functions $f : \mathbf{R} \to \mathbf{R}$ and $g : \mathbf{R} \to \mathbf{R}$ such that:

1) f and g are additive;

2) the sets Gr(f) and Gr(g) are thick with respect to λ_2 ;

3) f + g is injective;

4) ran(f+g) is a generalized Luzin set in **R**.

The construction of f and g (by means of the method of transfinite recursion) is presented in [3]. Theorem 2 and relation 2) imply that both functions f and g are almost measurable. Relations 3) and 4) yield that the function f + g is absolutely nonmeasurable, i.e. f + g is nonmeasurable with respect to any nonzero σ -finite diffused measure on \mathbf{R} (for more details, see [3]).

We thus conclude that, under \mathbf{MA} , the sum of two almost measurable functions can be extremely bad from the measure-theoretical point of view.

Remark 2. The argument used in the proofs of the above-mentioned statements shows also that, for any function $h : \mathbf{R} \to \mathbf{R}$, there exist two functions $f : \mathbf{R} \to \mathbf{R}$ and $g : \mathbf{R} \to \mathbf{R}$ such that h = f + g and both sets Gr(f) and Gr(g) are thick with respect to λ_2 .

Analogously, for any additive function $h : \mathbf{R} \to \mathbf{R}$, there exist two additive functions $f : \mathbf{R} \to \mathbf{R}$ and $g : \mathbf{R} \to \mathbf{R}$ such that h = f + g and both sets Gr(f) and Gr(g) are thick with respect to λ_2 .

Acknowledgement

This work is partially supported by the GNSF Grant: GNSF/ST07/3-169.

References

- B. R. Gelbaum and J. M. H. Olmsted, Counterexamples in analysis. The Mathesis Series Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1964
- A. B. Kharazishvili, Transformation groups and invariant measures. Set-theoretical aspects. World Scientific Publishing Co., Inc., River Edge, NJ, 1998.
- A. B. Kharazishvili, On absolutely nonmeasurable additive functions. *Georgian Math. J.* 11 (2004), No. 2, 301–306.
- A. S. Kechris, Classical descriptive set theory. Graduate Texts in Mathematics, 156. Springer-Verlag, New York, 1995.

- 5. K. Kodaira and S. Kakutani, A non-separable translation invariant extension of the Lebesgue measure space. Ann. of Math. (2) 52, (1950), 574–579.
- A. W. Miller, Special subsets of the real line. Handbook of set-theoretic topology, 201– 233, North-Holland, Amsterdam, 1984.
- T. Natkaniec, Almost continuity. Wyzsza Szkola Pedagogiczna w Bydgoszczy, Bydgoszcz, 1992.
- 8. J. C. Oxtoby, Measure and category. A survey of the analogies between topological and measure spaces. Graduate Texts in Mathematics, Vol. 2. *Springer-Verlag, New York-Berlin*, 1971.
- 9. J. Stallings, Fixed point theorems for connectivity maps. Fund. Math., 47 (1959), 249–263.

Author's addresses:

A. Razmadze Mathematical Institute 1, M. Aleksidze St., Tbilisi 0193 Georgia

I. Chavchavadze State University, I. Chavchavadze Street, 32, Tbilisi 0128, Georgia

138