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Let λ denote, as usual, the standard Lebesgue measure on the real line R.
There are many works devoted to various constructions of λ-nonmeasurable
subsets of R (see, for instance, [1], [2], [3], [5], [6], [7], and [10])). Of course,
the list of references can be significantly continued and expanded. Here we
would like to make some remarks in connection with the recent paper by I.
Reclaw [7], in which the following statement was established.

Theorem 1. Assume Martin’s Axiom and let B be a Borel subset of the
Euclidean plane R2 such that:

(1) for each y ∈ R2, the section B(y) = {x : (x, y) ∈ B} is of λ-measure
zero;

(2) λ(pr1(B)) = λ(∪{B(y) : y ∈ R}) > 0.
Then there exists a set Y ⊂ R for which ∪{B(y) : y ∈ Y } is not measur-

able with respect to λ.

In particular, under Martin’s Axiom this result yields a positive solution
to one problem formulated by J. Cichon (for more details, see [7]). The
proof of Theorem 1 is based on the Luzin-Jankov-von Neumann theorem
concerning the existence of measurable selectors (see, e.g., [4]) and on the
next simple (probably, well-known) fact.

Lemma 1. Assume Martin’s Axiom. Let λ2 denote the standard two-
dimensional Lebesgue measure on the plane R2 and let Z be a λ2-measure
zero subset of R2. Then there exist two sets X1 ⊂ R and X2 ⊂ R such
that:

(1) both X1 and X2 are λ-thick in R, i.e., we have

λ∗(R \X1) = λ∗(R \X2) = 0;

(2) (X1 ×X2) ∩ Z = ∅.
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Notice that the required sets X1 and X2 can readily be constructed by
using the method of transfinite recursion and utilizing the Fubini theorem at
each step of the recursion. Actually, Lemma 1 does not need the full power
of Martin’s Axiom and it suffices to suppose that the covering number of the
σ-ideal of all λ-measure zero sets is equal to c, where c denotes, as usual,
the cardinality of the continuum. In other words, it suffices to assume that
c coincides with the smallest cardinality of a covering of R by λ-measure
zero sets.

It should be emphasized that an abstract analogue of Lemma 1 holds
under the Continuum Hypothesis. In order to formulate this analogue, let
us recall that a pseudo-base for a given measure µ is any family U ⊂ dom(µ)
satisfying the following conditions:

(i) every set from U is of strictly positive µ-measure;
(ii) for any set X ∈ dom(µ) with µ(X) > 0, there exists a set Y ∈ U such

that Y ⊂ X.

Lemma 2. Assume CH. Let µ be a σ-finite measure given on a set
E and having a pseudo-base whose cardinality does not exceed c. Further,
let Z be a subset of E × E such that µ-almost all horizontal sections and
µ-almost all vertical sections of Z are of µ-measure zero. Then there exist
two µ-thick subsets X1 and X2 of E such that (X1 ×X2) ∩ Z = ∅.

Notice that a measure µ of Lemma 2 may be nonseparable (or, equiva-
lently, the Hilbert space L2(µ) of all µ-square-integrable real-valued func-
tions may be nonseparable). Notice also that, in general, a set Z of the
same lemma is not measurable with respect to the completion of the prod-
uct measure µ ⊗ µ. Moreover, a classical example due to Sierpiński shows
that Z even may be (µ⊗ µ)-thick in the product space E × E.

Theorem 1 admits an extension to the case of an analytic (i.e., Suslin)
subset A of R2. Namely, the following statement is valid.

Theorem 2. Suppose that the covering number of the σ-ideal of all λ-
measure zero sets is equal to c. Let A be an analytic subset of the Euclidean
plane R2 such that:

(1) for each y ∈ R2, the section A(y) = {x : (x, y) ∈ A} is of λ-measure
zero;

(2) λ(pr1(A)) = λ(∪{A(y) : y ∈ R}) > 0.
Then there exists a set Y ⊂ R for which ∪{A(y) : y ∈ Y } is not measur-

able with respect to λ.

Proof. The argument is quite similar to that of [7]. Only a few technical
details occur. According to the Luzin-Jankov-von Neumann theorem, there
exists a λ-measurable function f : pr1(A) → R whose graph is contained in
A. Further, there is a Borel subset T of pr1(A) such that:

(a) λ(pr1(A) \ T ) = 0;
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(b) the restriction f |T is a Borel function.
Let us consider the product set T ×R and let us define a mapping

Φ : T ×R → R×R

by the formula

Φ(x, y) = (y, f(x)) (x ∈ T, y ∈ R).

Also, let us put Z = Φ−1(A). Since Φ is a Borel mapping and A is an
analytic set, Z is analytic, too. Consequently, Z is λ2-measurable (and,
more generally, Z is universally measurable). For any x ∈ T , we have

Z(x) = {y : (x, y) ∈ Z} = {y : (y, f(x)) ∈ A} = A(f(x)).

This relation shows that all x-sections of Z are of λ-measure zero, from
which it follows (in view of the λ2-measurability of Z) that λ2(Z) = 0.
Now, applying Lemma 1, we can find two sets X1 ⊂ R and X2 ⊂ R such
that

λ∗(R \X1) = λ∗(R \X2) = 0, (X1 ×X2) ∩ Z = ∅.
We are going to verify that the set Y = f(X1 ∩ T ) is the required one, i.e.,
the union ∪{A(y) : y ∈ Y } is nonmeasurable with respect to λ. First, let
us check the inclusion

X1 ∩ T ⊂ ∪{A(y) : y ∈ Y }.
Indeed, take an arbitrary x1 ∈ X1 ∩ T and denote y = f(x1). Then y ∈ Y
and (x1, y) = (x1, f(x1)) ∈ A. Therefore, x1 ∈ A(y), which yields the
desired result. On the other hand, let us verify that

(X2 ∩ T ) ∩ (∪{A(y) : y ∈ Y }) = ∅.
Indeed, take an arbitrary x2 ∈ X2 ∩ T and suppose to the contrary that
x2 ∈ ∪{A(y) : y ∈ Y }. This means that there exists x1 ∈ X1 ∩ T for which

x2 ∈ A(f(x1)), (x2, f(x1)) ∈ A, (x1, x2) ∈ Z,

which contradicts the equality (X1 ×X2) ∩ Z = ∅.
Thus, the set ∪{A(y) : y ∈ Y } is almost contained in T , contains X1 ∩ T

and does not intersect X2 ∩ T . By virtue of the equalities

λ∗(X1 ∩ T ) = λ∗(X2 ∩ T ) = λ(T ),

we conclude that ∪{A(y) : y ∈ Y } is not λ-measurable. ¤

From Theorem 2 one can readily infer the next proposition (cf. [2], [7]).

Theorem 3. Suppose again that the covering number of the σ-ideal of
all λ-measure zero sets is equal to c. Let P1 and P2 be any two analytic sets
in R, let P1 be of λ-measure zero, and let the algebraic sum

P1 + P2 = {p1 + p2 : p1 ∈ P1, p2 ∈ P2}
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have strictly positive λ-measure. Then there exists a subset Q2 of P2 such
that the algebraic sum P1 + Q2 is not λ-measurable.

Proof. It suffices to consider the analytic set

A = {(x, y) : x− y ∈ P1, y ∈ P2}
in the plane R2 and to apply Theorem 1 to this A. ¤

Theorem 4. Suppose that Martin’s Axiom and the negation of the Con-
tinuum Hypothesis hold. Let A be a Σ1

2-subset of R2 satisfying the relations:
(1) for each y ∈ R2, the section A(y) = {x : (x, y) ∈ A} is of λ-measure

zero;
(2) λ(pr1(A)) = λ(∪{A(y) : y ∈ R}) > 0.
Then there exists a set Y ⊂ R for which ∪{A(y) : y ∈ Y } is not measur-

able with respect to λ.

The proof is carried out similarly to the above argument. We only need
to take into account the following two well-known facts:

(*) every Σ1
2-subset of the plane admits a Σ1

2-uniformization (a conse-
quence of Kondo’s classical theorem);

(**) under MA & ¬CH, every Σ1
2-subset of the real line (of the Euclidean

plane) is Lebesgue measurable and, moreover, is universally measurable.
On the other hand, in Gödel’s Constructible Universe there are Σ1

2-
subsets of the plane, for which the assertion of Theorem 3 fails to be true.
In particular, Sierpński’s classical decomposition of R2 carried out in the
Constructible Universe leads to subsets of such a kind (cf. [8] and [9]). In
this context, the following three examples should be mentioned.

Example 1. Suppose that all those subsets of R which have cardinality
strictly less than c are of λ-measure zero. Let ¹ be an arbitrary well-
ordering of R isomorphic to the smallest ordinal of cardinality c. Denote

S = {(x, y) : x ¹ y}.
By virtue of the Fubini theorem, S is not λ2-measurable. Further, for any
y ∈ R, the section S(y) = {x : x ¹ y} is of λ-measure zero. At the same
time, it can readily be verified that, for each set Y ⊂ R, the corresponding
union ∪{S(y) : y ∈ Y } is either of λ-measure zero or coincides with the
whole real line R.

Actually, Example 1 copies Sierpiński’s construction [8], in which the
Continuum Hypothesis is used instead of the assumption formulated above.

Example 2. Suppose again that all those subsets of R which have
cardinality strictly less than c are of λ-measure zero. Let C ⊂ R be a set of
cardinality continuum and with λ(C) = 0 (e.g., the role of C can be played
by the classical Cantor set). Let α denote the least ordinal of cardinality
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continuum. Fix two enumerations R = {xξ : ξ < α} and C = {yζ : ζ < α}.
Further, define the set

G = {(xξ, yζ) : ξ < ζ}.
Again, all y-sections of G are of λ-measure zero. Furthermore, since G ⊂
R × C, we deduce that G is of λ2-measure zero. At the same time, as in
Example 1, for each set Y ⊂ R, the corresponding union ∪{G(y) : y ∈ Y }
is either of λ-measure zero or coincides with the whole R.

Example 3. Assuming Martin’s Axiom, there exists a subset D of R
satisfying the following conditions:

(a) card(D) = c and D is of λ-measure zero;
(b) D is almost translation-invariant, i.e., (∀h ∈ R)(card((h + D)4D)

< c);
(c) D is almost symmetric with respect to the origin.
Actually, the construction of such a set D also goes back to Sierpiński.

It is not difficult to check that D + H = R for every set H ⊂ D with
card(H) = c. This circumstance directly implies that all algebraic sums of
the form

D + H (H ⊂ D)
are either of λ-measure zero or coincide with R (see [2]); hence all of them
are λ-measurable.

The presented examples show that some regular descriptive properties
of a plane set are necessary for the validity of appropriate analogues of
Theorem 2.

We shall say that a class K of subsets of R2 is admissible if the following
conditions are satisfied:

(i) any set from K can be uniformized by the graph of a partial function
extendable to a λ-measurable function;

(ii) if P is an arbitrary member of K and Φ : R2 → R2 is an arbitrary
Borel mapping, then the pre-image Φ−1(P ) is λ2-measurable.

For admissible classes of sets we have a suitable analogue of Theorem 2.

Theorem 5. Suppose that the covering number of the σ-ideal of all λ-
measure zero sets is equal to c. Let K be an admissible class of subsets of
R2 and let a set P ∈ K satisfy the relations:

(1) for each y ∈ R2, the section P (y) = {x : (x, y) ∈ P} is of λ-measure
zero;

(2) λ∗(pr1(P )) = λ∗(∪{P (y) : y ∈ R}) > 0.
Then there exists a set Y ⊂ R for which ∪{P (y) : y ∈ Y } is not measur-

able with respect to λ.

The proof is similar to the proof of Theorem 2. Obviously, under certain
set-theoretical assumptions, Theorem 5 can be applied to projective plane
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sets of higher levels. Moreover, by utilizing Lemma 2, natural analogues of
Theorem 2 can be obtained for a wide class of extensions of the Lebesgue
measure λ. Note that among those extensions there are some nonseparable
measures µ having the property that the σ-ideal of all µ-measure zero sets
coincides with the σ-ideal of all λ-measure zero sets (see [6]).

Theorem 6. Assume CH. Let (G, ·) be a σ-compact locally compact
topological group such that the cardinality of the Baire σ-algebra of G does
not exceed c. Denote by µ the completion of the left (right) Haar measure on
G. Then, for any nonempty µ-measure zero set Y , there exist two µ-thick
sets X1 ⊂ G and X2 ⊂ G such that (Y · X1) ∩ X2 = ∅. In particular, the
set Y ·X1 is nonmeasurable with respect to µ.

Proof. The argument is similar to the proof of Theorem 2 but is much
easier, because it does not need the existence of measurable selectors. In
the product group G×G consider the set

Z = {(x1, x2) ∈ G×G : x2 ∈ Y · x1}.
Obviously, all horizontal and all vertical sections of Z are µ-measure zero
subsets of G. Further, it is well known that the family of all those sets which
belong to the Baire σ-algebra of G and have strictly positive µ-measure
forms a pseudo-base for µ. So we may apply Lemma 2 to Z. According to
this lemma, there exist µ-thick subsets X1 and X2 of G such that (X1 ×
X2) ∩ Z = ∅. This equality readily implies that (Y · X1) ∩ X2 = ∅. Since
Y 6= ∅, we conclude that the set Y · X1 is µ-thick and its complement is
µ-thick, too. Consequently, Y ·X1 is nonmeasurable with respect to µ. ¤

It is useful to compare Theorem 6 with the situation described in Exa-
mple 3.
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