
Proceedings of A. Razmadze
Mathematical Institute
Vol. 157 (2011), 11–21

SOME REMARKS CONCERNING MONOTONE AND
CONTINUOUS RESTRICTIONS OF REAL-VALUED

FUNCTIONS

A. KHARAZISHVILI

Abstract. We consider those restrictions of real-valued functions,
which have certain nice properties, e.g., continuity or monotonicity.
We prove the non-existence of restrictions of such a kind in con-
crete situations and show close connections of this topic with some
classical examples of sets and functions in real analysis (Luzin sets,
Sierpiński sets, continuous nowhere approximately differentiable func-
tions, Sierpiński-Zygmund functions, etc.).

îâäæñéâ. ïðŽðæŽöæ àŽêýæèñèæŽ êŽéáãæèéêæöãêâèëĲæŽêæ òñêóùæ-
âĲæï æïâåæ öâãæûîëâĲâĲæ, îëéèâĲïŽù Žóãå çŽîàæ ŽêŽèæäñîæ åãæïâ-
ĲâĲæ. éŽà., éëêëðëêñîëĲŽ Žê ñûõãâðëĲŽ. ŽéŽãâ áîëï, äëàæâîå çë-
êçîâðñè öâéåýãâãŽöæ áŽéçæùâĲñèæŽ Žé ðæìæï öâãæûîëâĲâĲæï ŽîŽî-
ïâĲëĲŽ. âï ïŽçæåýâĲæ ñçŽãöæîáâĲŽ êŽéáãæèæ ŽêŽèæäæï æïâå çèŽïæ-
çñî ïæéîŽãèââĲïŽ áŽ òñêóùæâĲï, îëàëîæùŽŽ èñäæêæï ïæéîŽãèâ,
ïâîìæêïçæï ïæéîŽãèâ, ñûõãâðæ ŽîïŽá ŽìîëóïæéŽðñèŽá áæòâîâê-
ùæîâĲŽáæ òñêóùæŽ, ïâîìæêïçæ-äæàéñêáæï òñêóùæŽ áŽ ïýãŽ.

In various works devoted to behavior of real-valued functions, the re-
strictions to certain subsets of their domains are often considered, taking
into account the circumstance that such restrictions may have much better
descriptive properties than those of original functions (see, for instance, [2],
[3], [8], [14]). Here we are going to present several results connected with re-
strictions of real-valued functions, which possess rather good structure from
the view-point of real analysis. Among these properties the continuity or
monotonicity of an appropriate restriction will be of primer interest for us.
On the other hand, some exotic (pathological) functions will also be pointed
out, for which no continuous or monotone restriction to a non-small subset
can exist.

Our notation is fairly standard but, for the reader’s convenience, we recall
the meaning of certain abbreviations which will be used in the sequel:
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P(X) = the power set of a set X;
card(X) = the cardinality of a set X;
ω = the first infinite ordinal (cardinal);
R = the real line;
c = the cardinality of the continuum;
λ = the classical Lebesgue measure on R;
λ∗ = the outer measure associated with λ;
λ∗ = the inner measure associated with λ;
dom(f) = the domain of a function f ;
f |X = the restriction of a function f to a set X;
cl(X) = the closure of a subset X of a topological space;
C(f) = the set of all continuity points of a function f defined on a

topological space;
D(f) = the set of all discontinuity points of a function f defined on a

topological space.
Let X and Y be any two sets. We say that f is a partial function acting

from X into Y if f is a function whose graph is contained in X×Y . In this
case, the ordinary notation f : X → Y is used.

It is well known that the set D(f) of all discontinuity points of a monotone
function f : R → R is always (at most) countable and, conversely, if X is
an arbitrary countable subset of R, then there exists a monotone function
g : R → R such that D(g) = X. The latter fact enables to construct many
examples of monotone functions g : R → R with everywhere dense set D(g)
(cf. [4], [12]).

Also, it directly follows from the said above that any monotone function
f : R → R is continuous at all points of a co-countable subset of R, so f
turns out to be continuous on a large subset of R. An analogous fact holds
true for any partial monotone function f : R → R. In this more general
case, the set D(f) is again at most countable, so f is continuous at all points
of a co-countable subset of dom(f).

In view of the above observation, it makes sense to consider a dual prob-
lem. Namely, having a continuous function f : R → R, one can ask whether
f is monotone on a certain large subset of R. In general, the answer to
this question is trivially negative. Indeed, if f : R → R is continuous but
nowhere differentiable, then f cannot be monotone on a subset of R which is
dense in some non-degenerate subinterval of R (indeed, it suffices to apply
the classical Lebesgue theorem on the differentiability almost everywhere
of any monotone function). So the posed question should be replaced by
substantially weakened one, and we may try to study the following variant
of this question: does there exist a non-small subset of R on which f is
monotone?

It is well known that, having functions with nice descriptive structure,
one can always obtain their monotone restrictions to certain non-empty
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perfect subsets of R. For the sake of completeness, we give a proof of this
result.

Theorem 1. Let f : R → R be a Lebesgue measurable function (or let
f : R → R have the Baire property). Then there exists a nonempty perfect
set P ⊂ R such that the restriction f |P is monotone on P .

Proof. The argument presented below is fairly standard and is usually ap-
plied in many similar situations (cf., for instance, [1]). First of all, there
exists a nonempty perfect subset T of R such that the restriction f |T is
continuous (this is true for all Lebesgue measurable functions f and for all
those functions f , which possess the Baire property). Of course, we may as-
sume that diam(T ) < 1, where the symbol diam(T ) stands for the diameter
of T . Let us denote g = f |T and suppose that, for every nonempty perfect
set Q ⊂ T , the restriction g|Q is not decreasing. Then, by using ordinary
induction, we can construct a dyadic system

(Ti1i2...ik
)i1∈{0,1},i2∈{0,1},...,ik∈{0,1} (k < ω)

of nonempty perfect subsets of T satisfying the following conditions:
(a) T∅ = T ;
(b) Ti1i2...ikik+1 ⊂ Ti1i2...ik

;
(c) Ti1i2...ik0 ∩ Ti1i2...ik1 = ∅;
(d) diam(Ti1i2...ik

) < 1/2k;
(e) if k < ω and (i1, i2, . . . , ik) ≺ (j1, j2, . . . , jk), then x < y and g(x) <

g(y) for all points x ∈ Ti1i2...ik
and y ∈ Tj1j2...jk

, where ¹ denotes the
standard lexicographical ordering in the set of all k-sequences whose terms
belong to {0, 1}.

As soon as the above dyadic system of sets is determined, we may put

P =
⋂

k<ω

(∪{Ti1i2...ik
: (i1, i2, . . . ik) ∈ {0, 1}k}).

It follows from the construction of P that g|P = f |P is an increasing func-
tion on P . This finishes the proof of Theorem 1. ¤

The natural question arises whether the preceding theorem admits fur-
ther generalizations. In particular, one can ask whether it is possible to
choose the above-mentioned nonempty perfect set P so that λ(P ) > 0 would
be fulfilled.

We will show that the answer to the posed question is negative. For
our purpose, we need the existence of a continuous function f : R → R,
which is nowhere approximately differentiable. This fact was first estab-
lished by Jarnik (see [6]). It is much deeper than the existence of a contin-
uous nowhere differentiable function.

Lemma 1. There exist continuous bounded functions acting from R into
R, which are nowhere approximately differentiable.
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Remark 1. Actually, Jarnik proved that almost all (in the sense of the
Baire category) functions from the Banach space C[0, 1] are nowhere ap-
proximately differentiable. Clearly, this result significantly strengthens the
corresponding result of Banach and Mazurkiewicz for the usual differentia-
bility (see, e.g., [10], [12]). Further investigations showed that analogous
statements hold true for many kinds of so-called generalized derivatives.

Lemma 2. There exists a continuous function f : R → R such that, for
every closed set P ⊂ R with λ(P ) > 0, the restriction f |P is not monotone
on P .

Proof. Let f : R → R be a continuous, bounded and nowhere approxi-
mately differentiable function (see Lemma 1 above). We are going to show
that f is the required one. Take any closed set P ⊂ R whose Lebesgue
measure is strictly positive. We assert that f |P cannot be monotone. Sup-
pose otherwise, i.e., f |P is either increasing or decreasing. Without loss of
generality, we may assume that f |P is increasing. Denote by

f∗ : R → R

some increasing function extending f |P (the existence of f∗ is obvious).
According to the classical theorem of Lebesgue, f∗ is differentiable almost
everywhere. Consequently, there exists x ∈ P such that x is a density point
of P and f∗ is differentiable at x. By virtue of the relation f∗|P = f |P ,
this circumstance immediately implies the fact that the original function f
is approximately differentiable at x. But the latter contradicts the definition
of f . The obtained contradiction finishes the proof. ¤

Now, we are ready to establish the following statement which essentially
strengthens Lemma 2.

Theorem 2. There exists a continuous function f : R → R such that,
for every set X ⊂ R with λ∗(X) > 0, the restriction f |X is not monotone
on X.

Proof. Take the same continuous, bounded and nowhere approximately dif-
ferentiable function f : R → R. Let X be any subset of R with λ∗(X) > 0.
We must show that the restriction f |X cannot be monotone. Suppose oth-
erwise, i.e., f |X is monotone. Denote by Y the closure of X. The set Y
is Lebesgue measurable and, by virtue of the assumption λ∗(X) > 0, we
immediately get λ(Y ) > 0. Since f is continuous, we conclude that f |Y is
monotone, too, but this contradicts Lemma 2. Theorem 2 has thus been
proved.

In view of Theorems 1 and 2, it makes sense to introduce the following
definitions.

Let f : R → R be a partial function and let L be a family of subsets of
R.
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We say that f is relatively monotone (relatively continuous) with respect
to L if there exists at least one set X ∈ L ∩ P(dom(f)), for which the
restriction f |X is monotone (continuous).

We say that f is absolutely non-monotone (absolutely discontinuous)
with respect to L if f is not relatively monotone (relatively continuous)
with respect to L, i.e., there exists no set X ∈ L ∩ P(dom(f)), for which
f |X is monotone (continuous).

In this terminology, Theorem 1 says that every Lebesgue measurable
(having the Baire property) function f : R → R is relatively monotone
with respect to the family of all nonempty perfect subsets of R.

On the other hand, Theorem 2 states that there exists a continuous
function f : R → R which is absolutely non-monotone with respect to the
family of all subsets of R having strictly positive outer Lebesgue measure.

¤
Let us give several other examples illustrating the introduced notions.

Example 1. Any function g : R → R turns out to be relatively monotone
with respect to the class of all countably infinite subsets of R. This fact can
easily be deduced from an infinite version of the well-known combinatorial
theorem due to Ramsey and also admits a direct simple proof. Actually,
if (E,¹) and (F,¹) are any two linearly ordered sets, E is infinite and
φ : E → F is a mapping, then there exists an infinite set X ⊂ E for which
the restriction φ|X is monotone. However, even in the case E = F = R, one
cannot assert that among such sets X there is an everywhere dense subset
of R.

Example 2. In view of the Lebesgue theorem on differentiability almost
everywhere of monotone functions acting from R into itself, any continuous
nowhere differentiable function is absolutely non-monotone with respect to
the family of all nonempty open intervals in R. Moreover, it is well known
that there exist everywhere differentiable functions g : R → R which are
absolutely non-monotone with respect to the same family (see, e.g., [5], [7],
[16]).

Example 3. Any function f : R → R turns out to be relatively continu-
ous with respect to the family of all countable everywhere dense subsets of
R. This classical result is due to Blumberg. It inspired many other restric-
tion theorems in real analysis (cf. [2], [3], [8]). In some sense, the above-
mentioned result cannot be strengthened because, under the Continuum
Hypothesis, any Sierpiński-Zygmund function (see [10], [15]) is absolutely
discontinuous (hence absolutely non-monotone) with respect to the class of
all uncountable subsets of R.

In our further considerations we will be dealing with Sierpiński-Zygmund
functions, so it is reasonable to recall their definition here.
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A function f : R → R is a Sierpiński-Zygmund function if, for every set
X ⊂ R with card(X) = c, the restriction f |X is not continuous, i.e., the
relation D(f |X) 6= ∅ holds true.

It immediately follows from this definition that any Sierpiński-Zygmund
function is absolutely discontinuous (hence absolutely non-monotone) with
respect to the family of all those subsets of R whose cardinalities are equal
to c.

In the classical construction of Sierpiński and Zygmund [15] their func-
tion f is defined by the method of transfinite recursion in such a manner
that the graph of f almost avoids the graphs of all real-valued continu-
ous functions whose domains are uncountable Gδ-subsets of R. Actually,
Sierpiński-Zygmund’s construction admits a significant generalization to the
case when a certain family of topologies on R is given instead of the standard
Euclidean topology of R. More precisely, we have the following statement.

Theorem 3. Let E be a set of cardinality c and let {Ti : i ∈ I} be a
family of topologies on E such that:

(1) card(I) ≤ c;
(2) for each i ∈ I, the cardinality of the Borel σ-algebra B(E, Ti) does

not exceed c.
Then there exists a function f : E → R such that, for any topology

Ti (i ∈ I), the corresponding mapping

f : (E, Ti) → R

is a Sierpiński-Zygmund type function for the topological space (E, Ti).

Proof. The argument is similar to that of Sierpiński and Zygmund (cf. [10],
[15]). First of all, notice that:

(*) for each i ∈ I and for any partial continuous function g : (E, Ti) → R,
there exists a partial continuous function g∗ : (E, Ti) → R extending g and
defined on a Borel subset of (E, Ti).

Let α denote the least ordinal number of cardinality c. Using conditions
(1) and (2), we may define an α-sequence {gξ : ξ < α} of partial functions
satisfying the following relation:

for any i ∈ I and for any partial continuous mapping g : (E, Ti) → R
whose domain is of cardinality c and belongs to B(E, Ti), there exists an
ordinal ξ < α such that g = gξ.

Now, let {xξ : ξ < α} be an injective enumeration of all points of E.
In order to define the required f , we proceed by the method of transfinite
recursion. Suppose that, for ξ < α, the values {f(xζ) : ζ < ξ} have already
been determined. Consider the point xξ, choose a point

y ∈ R \ {gη(xξ) : η < ξ, xξ ∈ dom(gη)}
and put f(xξ) = y. Proceeding in this manner, we are able to define the
function f : E → R. By using (*), it is not difficult to check that this f
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is a Sierpiński-Zygmund function with respect to every topology Ti, where
i ∈ I. ¤

Remark 2. As shown by Roslanowski and Shelah [13], there are models
of set theory in which the following phenomenon occurs: for any function f
acting from R into R, there exists a set X ⊂ R such that λ∗(X) > 0 and
the restriction f |X is continuous. A similar result was proved by Shelah
[14] in terms of Baire category (instead of Lebesgue measure).

In the sequel, we will need the notion of a Luzin subset of R and the
notion of a Sierpiński subset of R.

Recall that L ⊂ R is a Luzin set if L is uncountable and, for every first
category set X ⊂ R, the relation card(X ∩ L) ≤ ω holds true.

Recall also that S ⊂ R is a Sierpiński set if S is uncountable and, for
every λ-measure zero set X ⊂ R, the relation card(X ∩ S) ≤ ω holds true.

It is well known that the Continuum Hypothesis implies the existence of
Luzin and Sierpiński subsets of R (see, for instance, [10], [11], [12]).

In connection with Example 3, the following statement seems to be of
interest.

Theorem 4. Assuming the Continuum Hypothesis, there exists a function
g : R → R which is not a Sierpiński-Zygmund function, but is absolutely
non-monotone with respect to the family of all uncountable subsets of R.

Proof. Take an arbitrary continuous nowhere differentiable function g1 :
R → R and an arbitrary Sierpiński-Zygmund function g2 : R → R. Let
L be a Luzin subset of R. Define the function g : R → R as follows:
g(x) = g1(x) if x ∈ L and g(x) = g2(x) if x ∈ R \ L.

Let us check that g is the required one. First of all, g is not a Sierpiński-
Zygmund function, because g|L = g1|L is continuous. Let now X be an
uncountable subset of R. Only two cases are possible.

1. card(X ∩ L) ≤ ω. In this case, we have card(X ∩ (R \ L)) > ω. Since
g2 is a Sierpiński-Zygmund function, the restriction

g|(X ∩ (R \ L)) = g2|(X ∩ (R \ L))

is not monotone, whence it follows that g|X is not monotone.
2. card(X ∩ L) > ω. Suppose for a while that g|(X ∩ L) = g1|(X ∩ L)

is monotone. Then the continuous function g1 should be monotone on the
closure of X∩L. Further, since g1 is nowhere differentiable, the set cl(X∩L)
is necessarily nowhere dense in R. Taking into account the fact that L is a
Luzin set, this yields

card(L ∩ cl(X ∩ L)) ≤ ω,

which contradicts the inclusion X∩L ⊂ L∩cl(X∩L) and the uncountability
of X ∩ L. The obtained contradiction completes the proof. ¤
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Let f : R → R be a partial function.
We shall say that f is countably continuous if dom(f) can be represented

in the form dom(f) = ∪{Xn : n < ω}, where all restrictions f |Xn (n < ω)
are continuous.

We shall say that f is countably monotone if dom(f) can be represented
in the form dom(f) = ∪{Xn : n < ω}, where all restrictions f |Xn (n < ω)
are monotone.

Example 4. It is easy to check that every countably monotone partial
function f : R → R is also countably continuous. On the other hand, let
g : R → R be any continuous nowhere differentiable function. Then it is
not difficult to verify that g is not countably monotone.

The characteristic function of any subset of R is countably monotone
(hence countably continuous). This circumstance indicates that there exist
many countably monotone functions which are not Lebesgue measurable
and do not possess the Baire property.

Any Sierpiński-Zygmud function is not countably continuous (hence is
not countably monotone).

In order to present two further results concerning absolutely non-monotone
functions, let us recall two important notions.

We say that a set X ⊂ R is categorically thick in R if, for every second
category set Y ⊂ R possessing the Baire property, we have X ∩ Y 6= ∅.

We say that a set X ⊂ R is thick in the sense of Lebesgue measure if, for
every set Y ∈ dom(λ) with λ(Y ) > 0, we have X ∩Y 6= ∅ (this is equivalent
to the equality λ∗(R \X) = 0).

Theorem 1 implies, in particular, that every continuous function f : R →
R is monotone on some set of cardinality continuum. At the same time, the
following statement is valid.

Theorem 5. Under the Continuum Hypothesis, there exists a partial
function f : R → R such that:

(1) dom(f) is thick in R in the sense of Baire category;
(2) f is a restriction of some continuous function acting from R into

itself;
(3) f is absolutely non-monotone with respect to the family of all un-

countable subsets of R (consequently, f is not countably monotone).

Proof. Let L be a Luzin subset of R thick in the sense of Baire category.
The existence of such a subset can be obtained by a slight modification
of the standard Luzin construction (cf. [10], [11], [12]). Let g : R → R
be a continuous nowhere differentiable function. Denote f = g|L. We
assert that f is the required function. Indeed, take any uncountable set
X ⊂ dom(f) = L and suppose that f |X is monotone. Only two cases are
possible.
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(a) The set X is of first category in R. Then, by virtue of the definition
of L, we must have

ω ≥ card(X ∩ L) = card(X) > ω,

which yields a contradiction. We thus conclude that this case is impossible.
(b) The set X is of second category in R. Let Y denote the closure of

X. Since g|X = f |X is monotone, and g is continuous, we get that g|Y
is also monotone. Further, Y is a second category closed set in R, whence
it follows that Y contains a nonempty open subinterval of R on which the
function g must be monotone, too. But this contradicts the definition of g.

Theorem 5 has thus been proved. ¤

Remark 3. Relation (2) in the formulation of Theorem 5 can be strength-
ened by the following relation:

(2’) f is a restriction of some everywhere differentiable function acting
from R into itself.

Indeed, in the proof of Theorem 5 we might start with an everywhere
differentiable function g : R → R which is absolutely non-monotone with
respect to the family of all nonempty open intervals in R (cf. Example 2).

By utilizing a similar argument, one can obtain the following dual state-
ment.

Theorem 6. Under the Continuum Hypothesis, there exists a partial
function f : R → R such that:

(1) dom(f) is thick in R in the sense of Lebesgue measure;
(2) f is a restriction of some continuous function acting from R into

itself;
(3) f is absolutely non-monotone with respect to the family of all un-

countable subsets of R (consequently, f is not countably monotone).

Proof. The argument is analogous to the proof of Theorem 5. Let S be a
Sierpiński subset of R thick in the sense of Lebesgue measure. The existence
of such a subset can be obtained by a slight modification of the standard
Sierpiński construction (cf. again [10], [11], [12]). Let g : R → R be
a continuous nowhere approximately differentiable function. Let us put
f = g|S. Then f trivially satisfies relations (1), (2) and, similarly to the
proof of Theorem 5, we obtain that f satisfies relation (3) as well.

Finally, let us return to the sets C(f) and D(f) of a partial function
f : R → R. The first of them is always of type Gδ in dom(f) and the
second one is always of type Fσ in dom(f).

Conversely, if a set Z ⊂ R is of type Fσ in R, then Z = D(f) for some
function f : R → R (see [10], [12]).

We have already mentioned that there are extremely discontinuous func-
tions acting from R into R. Among them, Sierpiński-Zygmund functions are
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of special interest and find nontrivial applications for constructing various
counterexamples (cf. Theorem 4). However, having any partial function
f : R → R with card(dom(f)) > ω, one may assert that there is a re-
striction of f such that the set of all continuity points of this restriction is
infinite. To formulate a more precise result in this direction, we need the
following notion.

Let f : R → R be a partial function. We shall say that x ∈ dom(f) is
a strong continuity point for f if x is a condensation point of dom(f) and
f is continuous at x. The set of all strong continuity points for f will be
denoted by C0(f). ¤

Theorem 7. Let f : R → R be a partial function whose domain is
uncountable. Then there exists an uncountable set X ⊂ dom(f) such that
card(C0(f |X)) ≥ ω.

The proof of this statement is quite easy and is omitted here (one should
take into account the fact that the graph of f is an uncountable subset of
the plane R2, hence this graph contains uncountably many condensation
points of itself).

Remark 4. It is not difficult to see that the result analogous to Theorem
7 remains valid in more general situations, e.g., in the case of a partial
function g : E → F , where E and F are two separable metric spaces and
dom(g) is uncountable.

The existence of Sierpiński-Zygmund functions shows that, under the
Continuum Hypothesis, the inequality in Theorem 7 cannot be replaced
by the strict inequality. In this context, the next simple example is also
relevant.

Example 5. Let {qn : n < ω} be an injective enumeration of all rational
numbers. Define a function f : Q → R by putting

f(qn) = n (n < ω).

Let X be an infinite subset of Q. It is easy to verify that if x ∈ C(f |X),
then x is an isolated point of X. In other words, no restriction of f to an
infinite subset X of dom(f) can be continuous at an accumulation point of
X.

Many results concerning restrictions of various functions to non-small
subsets of the real line can be found in [2], [3], [4], [8], [10], [12].

This work was partially supported by the grant GNSF/ST07/3-169.
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