A. B. KHARAZISHVILI

ERGODIC MEASURES AND THE DEFINABILITY OF SUBGROUPS VIA NORMAL EXTENSIONS OF SUCH MEASURES

It is shown that any subgroup H of an uncountable σ -compact locally compact topological group Γ is completely determined by a certain family of left H-invariant extensions of the left Haar measure μ on Γ . An abstract analogue of this fact is also established for a nonzero σ -finite ergodic measure given on an uncountable commutative group.

In this paper we consider an abstract space E equipped with a transformation group Γ and also endowed with some σ -finite measure μ which is invariant with respect to Γ . Various subgroups of Γ will be described in terms of corresponding invariant extensions of μ .

In the sequel, we use the following fairly standard notation.

 ω = the least infinite cardinality (equivalently, the cardinality of the set **N** of all natural numbers).

 \mathbf{Z} = the set of all integers.

 \mathbf{R} = the set of all real numbers.

 $X \triangle Y$ = the symmetric difference of two sets X and Y.

dom(f) = the domain of a given function f.

Let *E* be a base (ground) set. A measure μ defined on a σ -algebra of subsets of *E* is called diffused (or continuous) if, for each $x \in E$, we have $\{x\} \in \text{dom}(\mu)$ and $\mu(\{x\}) = 0$. $\mathcal{I}(\mu) = \text{the } \sigma\text{-ideal generated by all } \mu\text{-measure zero subsets of } E$.

 μ^* and μ_* denote, respectively, the outer and inner measures associated with a given measure $\mu.$

A set $X \subset E$ is called μ -thick in E if $\mu_*(E \setminus X) = 0$. Clearly, for a probability measure μ on E, the μ -thickness of $X \subset E$ is equivalent to $\mu^*(X) = 1$.

All measures considered below are assumed to be complete (without essential loss of generality).

Recall that a cardinal number **a** is two-valued measurable if there exists a two-valued diffused probability measure whose domain coincides with the family of all subsets of **a**. As is well known (see, for instance, [15], [16]), two-valued measurable cardinals are very large and their existence cannot be derived from the axioms of contemporary set theory. In other words, the assumption that there are no two-valued measurable cardinals does not contradict the axioms of set theory. Detailed information on these cardinals and other type of large cardinals can be found in [6], [8], [14], [15].

Let E be a ground set endowed with some group Γ of its transformations.

A measure μ on E is called Γ -invariant if dom (μ) is a Γ -invariant σ -algebra of subsets of E and $\mu(g(A)) = \mu(A)$ for all transformations $g \in \Gamma$ and all sets $A \in \text{dom}(\mu)$.

A measure μ on E is called Γ -quasi-invariant if dom (μ) is a Γ -invariant σ -algebra of subsets of E and, for any $g \in \Gamma$, we have

$$\mu(g(X)) = 0 \Leftrightarrow \mu(X) = 0 \ (X \in \operatorname{dom}(\mu)).$$

²⁰¹⁰ Mathematics Subject Classification. 28A20, 28D05, 22B99.

 $Key\ words\ and\ phrases.$ Locally compact topological group, Haar measure, invariant extension of measure, ergodicity, commutative group.

A set $B \subset E$ is called almost Γ -invariant (with respect to μ) if

$$(\forall g \in \Gamma)(\mu(B \triangle g(B)) = 0).$$

In our further considerations, we will use the following auxiliary proposition on almost invariant subsets of E.

Lemma 1. Let μ be a σ -finite Γ -invariant (respectively, Γ -quasi-invariant) measure on E and let B be a μ -thick almost Γ -invariant subset of E. Then there exists a Γ invariant (respectively, Γ -quasi-invariant) measure μ' on E which extends μ and whose support is B, i.e., $\mu'(E \setminus B) = 0$.

For the proof of this lemma, see e.g. [9], [12] or [18].

Let (E, Γ) be a space with a transformation group, let $\mu = \mu_{\Gamma}$ be a Γ -invariant (Γ quasi-invariant) measure on E, and let G be a subgroup of Γ .

We say that μ is G-ergodic (or G-metrically transitive) if, for any set $A \in \text{dom}(\mu)$ with $\mu(A) > 0$, there exists a countable family $\{g_i : i \in I\} \subset G$ such that

$$\mu(E \setminus \bigcup \{g_i(A) : i \in I\}) = 0.$$

Ergodic measures can frequently be met in various topics of mathematical analysis and probability theory (see e.g. [1], [4], [5], [16], [17]). The ergodicity also plays an essential role for the uniqueness of invariant measures on their domains. More precisely, suppose that $G \subset \Gamma$ is an uncountable group acting freely in E and μ is a σ -finite Ginvariant G-ergodic complete measure on E. Then, for every σ -finite G-invariant measure ν with dom(ν) = dom(μ), there exists a non-negative coefficient $t = t(\nu) \in \mathbf{R}$ such that $\nu = t(\nu) \cdot \mu$. The proof of this fact can be found in [9].

If we are given a space (E, Γ) with a nonzero σ -finite Γ -invariant measure $\mu = \mu_{\Gamma}$ and if H is any subgroup of Γ , then the same μ may be regarded as an H-invariant measure. So we can speak of H-invariant extensions of μ . Let us denote by $M(H, \mu)$ the class of all those H-invariant measures on E which extend μ . It is clear that, for any two subgroups H_1 and H_2 of Γ , the following implication holds:

$$H_1 \subset H_2 \Rightarrow M(H_2, \mu) \subset M(H_1, \mu).$$

In this paper we will be concerned with the question of whether the converse implication is also true. First, we wish to discuss the situation when a non-discrete σ -compact locally compact topological group Γ is given.

Let (Γ, \cdot) be a non-discrete σ -compact locally compact group. Then, as is widely known, Γ can be equipped with a nonzero σ -finite left Γ -invariant Borel measure $\mu = \mu_{\Gamma}$, which is called the left Haar measure on Γ . This measure is Γ -ergodic and is unique with exactness to a constant non-negative coefficient (see, for instance, [1], [4], [5]).

Remark 1. It directly follows from the Baire theorem on category that the nondiscreteness of a σ -compact locally compact group Γ is equivalent to its uncountability.

Remark 2. Let (Γ, \cdot) be a σ -compact locally compact group and let G be an everywhere dense subgroup of Γ . Then the left Haar measure $\mu = \mu_{\Gamma}$ is G-ergodic. Conversely, if the same μ is G-ergodic for some subgroup G of Γ , then G is everywhere dense in Γ (cf. [10]).

Remark 3. Let *E* be an infinite-dimensional (equivalently, non-locally compact) topological vector space. In general, there exists no nonzero σ -finite Borel measure on *E* quasi-invariant with respect to the group of all translations of *E* (see e.g. [1], [2] and, especially, [19] where the case of an infinite-dimensional separable Hilbert space is considered in detail).

A. B. KHARAZISHVILI

Dealing with the left Haar measure $\mu = \mu_{\Gamma}$ on an uncountable σ -compact locally compact group Γ , one may pose the question about the existence of proper left Γ -invariant extensions of μ (of course, here we mean only those extensions of μ which themselves are measures). As was demonstrated by several authors, there are many such extensions (see, for instance, [3], [5], [7], [9], [13], [18]). Moreover, if Γ is an uncountable Polish locally compact group, then there exist even nonseparable left Γ -invariant extensions of μ (see [3], [5], [7], [13]).

On the other hand, as was already mentioned, if H is an arbitrary subgroup of Γ , then μ being left Γ -invariant, is automatically left H-invariant. So it makes sense to speak of left H-invariant extensions of μ . Among all such extensions, we are especially interested in those ones which are closely connected with μ .

We shall say that a left *H*-invariant extension ν of μ is a normal extension of μ if, for any set $X \in \text{dom}(\nu)$, there exists a set $Y \in \text{dom}(\mu)$ such that $\nu(X \triangle Y) = 0$.

In other words, left invariant normal extensions of μ do not change the metrical structure of μ .

Let us introduce the notation:

 $M_0(H,\mu)$ = the family of all left *H*-invariant normal extensions of μ .

Notice that if H is an everywhere dense subgroup of Γ , then all measures from $M_0(H,\mu)$ are H-ergodic (cf. Remark 2).

Our first goal is to show that, for any two subgroups H and H' of Γ , the inclusion $M_0(H',\mu) \subset M_0(H,\mu)$ implies the inclusion $H \subset H'$.

As a byproduct, we obtain that the equality $M_0(H', \mu) = M_0(H, \mu)$ implies the equality H = H'. Thus, we conclude that even minimal invariant extensions of μ allow to distinguish between the subgroups of Γ .

In order to demonstrate this fact, we need several auxiliary propositions.

Lemma 2. If (Γ, \cdot) is an uncountable σ -compact locally compact group, then $\operatorname{card}(\Gamma) = 2^{w(\Gamma)}$, where $w(\Gamma)$ denotes the topological weight of Γ .

The above lemma is one of the most important results in the classical theory of topological groups (see [3]). It readily implies the equality

$$\operatorname{card}(\Gamma) = \operatorname{card}(\mathcal{B}(\Gamma)),$$

where $\mathcal{B}(\Gamma)$ denotes, as usual, the Borel σ -algebra of Γ . In its turn, this equality allows to carry out some Bernstein type transfinite construction for Γ .

Lemma 3. Let (Γ, \cdot) be an uncountable σ -compact locally compact group, μ be the left Haar measure on Γ , and let G be a subgroup of Γ represented in the form

$$G = \cup \{G_{\xi} : \xi < \alpha\},\$$

where α is the least ordinal number of cardinality card(Γ). Suppose also that the following relations are satisfied:

(1) {G_ξ : ξ < α} is an increasing α-sequence of subgroups of Γ;
(2) card(G_ξ) ≤ card(ξ) + ω for each ordinal ξ < α. Then there exists an α-sequence of points {x_ξ : ξ < α} ⊂ Γ such that:
(a) the set {x_ξ : ξ < α} is μ-thick in Γ;
(b) (G_ξ · x_ξ) ∩ (G_ζ · x_ζ) = Ø for any two distinct ordinals ξ < α and ζ < α. Therefore, the set X = ∪{G_ξ · x_ξ : ξ < α} is μ-thick in Γ and

$$(\forall g \in G)(\operatorname{card}((g \cdot X) \triangle X) < \operatorname{card}(\Gamma))$$

As mentioned above, the proof of Lemma 3 is based on the standard argument that is usually utilized in various Bernstein type constructions. So we omit this proof here (cf. [5], [7], [9], [11], [12], [18]).

Lemma 4. Let (Γ, \cdot) be an uncountable σ -compact locally compact group, G be a subgroup of Γ , and let X be as in Lemma 3. Then there exists a left G-invariant normal extension μ' of μ such that $\mu'(\Gamma \setminus X) = 0$.

The proof of Lemma 4 is analogous to the proof of Lemma 1.

Lemmas 2-4 enable us to establish the following result.

Theorem 1. Let (Γ, \cdot) be an uncountable σ -compact locally compact group and let H and H' be any two subgroups of Γ such that $M_0(H', \mu) \subset M_0(H, \mu)$. Then we have $H \subset H'$.

Proof. Suppose to the contrary that there exists an element $h \in H \setminus H'$. Denote by G the group generated by $\{h\} \cup H'$. We are going to apply Lemma 3 to G. For this purpose, take

$$\{G_{\xi}: \xi < \alpha\}, \ \{x_{\xi}: \xi < \alpha\}, \ X = \cup \{G_{\xi} \cdot x_{\xi}: \xi < \alpha\}$$

as in Lemma 3 and denote

$$H'_{\xi} = G_{\xi} \cap H' \ (\xi < \alpha).$$

Obviously, the α -sequence of groups $\{H'_{\xi} : \xi < \alpha\}$ is increasing by inclusion and

$$H' = \bigcup \{ H'_{\mathcal{E}} : \xi < \alpha \}.$$

Further, since $h \in G$, there exists an ordinal ξ_0 such that $h \in G_{\xi}$ for all ordinals $\xi \in [\xi_0, \alpha[$. Consider the set

$$Y = \bigcup \{ H'_{\xi} \cdot x_{\xi} : \xi < \alpha \}.$$

According to Lemma 3, the set Y is $\mu\text{-thick}$ in Γ and

$$(\forall g \in H')(\operatorname{card}((g \cdot Y) \triangle Y) < \operatorname{card}(\Gamma)).$$

In view of Lemma 4, there exists a left H'-invariant normal extension μ' of μ such that

$$\mu'(\Gamma \setminus Y) = 0.$$

Now, by taking into account the relations

$$\begin{aligned} h \cdot G_{\xi} \cdot x_{\xi} &= G_{\xi} \cdot x_{\xi} \ (\xi_0 < \xi < \alpha), \\ (h \cdot H'_{\xi} \cdot x_{\xi}) \cap (H'_{\xi} \cdot x_{\xi}) &= \emptyset \ (\xi < \alpha), \\ (G_{\xi} \cdot x_{\xi}) \cap (G_{\zeta} \cdot x_{\zeta}) &= \emptyset \ (\xi < \alpha, \ \zeta < \alpha, \ \xi \neq \zeta). \end{aligned}$$

it is not difficult to verify that

$$\operatorname{card}((h \cdot Y) \cap Y) < \operatorname{card}(\Gamma),$$

whence it follows that μ' cannot be left *H*-invariant (moreover, the same argument yields that μ' cannot be even left *H*-quasi-invariant). We thus obtain that μ' belongs to the class $M_0(H',\mu)$ but does not belong to the class $M_0(H,\mu)$, which contradicts the inclusion $M_0(H',\mu) \subset M_0(H,\mu)$. The obtained contradiction completes the proof.

The following statement is a straightforward consequence of Theorem 1.

Theorem 2. Let (Γ, \cdot) be an uncountable σ -compact locally compact group and let Hand H' be two subgroups of G such that $M_0(H', \mu) = M_0(H, \mu)$. Then we have H = H'.

In other words, Theorem 2 says that every subgroup H of Γ is completely determined by the corresponding class $M(H,\mu)$ of all left H-invariant normal extensions of μ .

Notice now that the considerations leading to the proof of Theorem 1 are substantially based on some topological properties of the Haar measure. Our second goal in this paper is to obtain a certain abstract analogue of Theorem 1 for the case of an uncountable commutative group (Γ , +) equipped with a nonzero σ -finite Γ -invariant Γ -ergodic measure $\mu = \mu_{\Gamma}$. We will establish this analogue under some natural set-theoretical assumptions on Γ .

In the sequel, we will assume that $\operatorname{card}(\Gamma)$ is not cofinal with ω , i.e., $\operatorname{card}(\Gamma)$ cannot be represented as a countable sum of cardinal numbers all of which are strictly less than $\operatorname{card}(\Gamma)$. So we may suppose that

$$\{A \subset \Gamma : \operatorname{card}(A) < \operatorname{card}(\Gamma)\} \subset \mathcal{I}(\mu).$$

Let H and H' be two subgroups of $(\Gamma, +)$ such that μ is H-ergodic and H'-ergodic simultaneously. Suppose that there exists at least one element $h \in H \setminus H'$. We may represent the given group Γ in the form of a transfinite sequence

$$\Gamma = \{g_{\xi} : \xi < \alpha\},\$$

where α is the least ordinal number with $\operatorname{card}(\alpha) = \operatorname{card}(\Gamma)$. We may also assume (without loss of generality) that $g_0 = h$. Further, let us denote:

$$\begin{split} &\Gamma_{\xi}^{*} = \text{the group generated by } \{g_{\zeta}: \zeta \leq \xi\}; \\ &\Gamma_{\xi} = \text{the group generated by } \{g_{\zeta}: \zeta < \xi\}; \\ &H_{\xi} = \Gamma_{\xi} \cap H \text{ for any } \xi < \alpha; \\ &H_{\xi}' = \Gamma_{\xi} \cap H' \text{ for any } \xi < \alpha; \\ &T_{\xi} = \Gamma_{\xi}^{*} \setminus \Gamma_{\xi} \text{ for any } \xi < \alpha. \\ &\text{Then we obviously have the following relations:} \\ &(a) \ \Gamma = \{0\} \cup (\cup \{T_{\xi}: \xi < \alpha\}); \\ &(b) \text{ for each } \xi < \alpha, \text{ the set } T_{\xi} \text{ is } \Gamma_{\xi}\text{-invariant}; \\ &(c) \text{ for every set } \Xi \subset [0, \alpha[, \text{ the set } \cup \{T_{\xi}: \xi \in \Xi\} \text{ is almost } \Gamma\text{-invariant with respect to } \mu; \\ &(d) \ H = \cup \{H_{\xi}: \xi < \alpha\}; \end{split}$$

(e) $H' = \bigcup \{ H'_{\xi} : \xi < \alpha \}.$

For every $\xi < \alpha$, denote by F_{ξ} the group generated by $\{h\} \cup H'_{\xi}$.

Obviously, if $1 \leq \xi < \alpha$, then $H'_{\xi} \subset F_{\xi} \subset \Gamma_{\xi}$.

Also, it can easily be seen the validity of the next auxiliary proposition.

Lemma 5. For any nonzero ordinal number $\xi < \alpha$, the factor-group F_{ξ}/H'_{ξ} is at most countable.

Proof. Indeed, fix a nonzero ordinal $\xi < \alpha$. In view of the commutativity of Γ , we may write

$$F_{\xi} = \{mh + h' : m \in \mathbf{Z}, h' \in H'_{\xi}\} = \mathbf{Z}h + H'_{\xi},$$

whence the assertion of the lemma trivially follows.

Lemma 6. If card(Γ) is not a two-valued measurable cardinal number, then there exists a subset Ξ_0 of $[0, \alpha]$ such that the set

$$X(\Xi_0) = \bigcup \{ T_{\xi} : \xi \in \Xi_0 \}$$

is not μ -measurable. Moreover, $X(\Xi_0)$ turns out to be a μ -thick set in Γ and its complement $\Gamma \setminus X(\Xi_0)$ is μ -thick, too.

Proof. The argument is similar to that of [18]. Suppose to the contrary that all the sets $X(\Xi) = \bigcup \{T_{\xi} : \xi \in \Xi\}$, where $\Xi \subset [0, \alpha]$, are μ -measurable. Denote by ν a probability measure which is equivalent to μ and introduce the functional ν' as follows:

$$\nu'(\Xi) = \nu(\bigcup\{T_{\xi} : \xi \in \Xi\}) \ (\Xi \subset [0, \alpha])$$

Keeping in mind that μ is Γ -ergodic, it can readily be shown that ν' is a two-valued diffused probability measure on the σ -algebra of all subsets of $[0, \alpha[$, which is impossible in view of the equality $\operatorname{card}(\Gamma) = \operatorname{card}(\alpha)$ and the assumption on $\operatorname{card}(\Gamma)$. Consequently, there exists $\Xi_0 \subset [0, \alpha[$ for which $X(\Xi_0)$ is not μ -measurable. But the same $X(\Xi_0)$ is almost Γ -invariant with respect to μ . Utilizing once again the Γ -ergodicity of μ , we obtain that

$$\mu_*(X(\Xi_0)) = \mu_*(\Gamma \setminus X(\Xi_0)) = 0,$$

which completes the proof.

Let $\Xi_0 \subset [0, \alpha]$ be as in Lemma 6 and let $X(\Xi_0)$ be the corresponding μ -nonmeasurable set. We may assume, without loss of generality, that $0 \notin \Xi_0$. For each $\xi \in \Xi_0$, consider the set T_{ξ} . From the definition of T_{ξ} it directly follows that this set is F_{ξ} -invariant, so can be written as

$$T_{\xi} = \bigcup \{ T_{\xi,j} : j \in J(\xi) \},$$

where all $T_{\xi,j}$ are some pairwise disjoint F_{ξ} -orbits. Furthermore, each F_{ξ} -orbit is a countable union of pairwise disjoint H'_{ξ} -orbits. We thus may write

$$T_{\xi,j} = \bigcup \{ T_{\xi,j,k} : k < \omega \},$$

where all $T_{\xi,j,k}$ $(k < \omega)$ are pairwise disjoint H'_{ξ} -orbits. Now, since the set

$$X(\Xi_0) = \bigcup \{ T_{\xi} : \xi \in \Xi_0 \} = \bigcup \{ T_{\xi, j, k} : k < \omega, j \in J(\xi), \xi \in \Xi_0 \}$$

is nonmeasurable with respect to μ , there exists a natural number k_0 such that the set

$$Y(\Xi_0, k_0) = \cup \{T_{\xi, j, k_0} : j \in J(\xi), \ \xi \in \Xi_0\}$$

is also nonmeasurable with respect to μ . In addition, $Y(\Xi_0, k_0)$ is almost H'-invariant. Since μ is H'-ergodic, we conclude that $Y(\Xi_0, k_0)$ and its complement $\Gamma \setminus Y(\Xi_0, k_0)$ are μ -thick subsets of Γ .

Summarizing all the said above and keeping in mind Lemma 1, we obtain the next proposition.

Lemma 7. There exists an H'-invariant normal extension μ' of μ such that

$$\mu'(\Gamma \setminus Y(\Xi_0, k_0)) = 0.$$

Since μ is H'-ergodic, the measure μ' is H'-ergodic too.

We now are able to prove the following statement (preserving the notation used above).

Theorem 3. Let H and H' be two subgroups of Γ such that μ is H-ergodic and H'ergodic simultaneously. Then the inclusion $M_0(H', \mu) \subset M_0(H, \mu)$ implies the inclusion $H \subset H'$.

Consequently, the equality $M_0(H',\mu) = M_0(H,\mu)$ implies the equality H = H'.

Proof. Indeed, suppose otherwise, i.e., the inclusion $M_0(H', \mu) \subset M_0(H, \mu)$ holds true but H is not contained in H'. Then we may choose some element $h \in H \setminus H'$. For this element h, the construction made earlier yields the H'-invariant normal extension μ' of μ concentrated on the μ' -measurable set $Y(\Xi_0, k_0)$ (see Lemma 7). So μ' belongs to the class $M_0(H', \mu)$. We know the structure of $Y(\Xi_0, k_0)$, namely, this set admits a representation

$$Y(\Xi_0, k_0) = \cup \{T_{\xi, j, k_0} : j \in J(\xi), \ \xi \in \Xi_0\},\$$

where all T_{ξ,j,k_0} are some H'_{ξ} -orbits. Notice now that

$$T_{\xi} \cap T_{\zeta} = \emptyset \ (\xi < \alpha, \ \zeta < \alpha, \ \xi \neq \zeta).$$
$$(h + T_{\xi,j,k_0}) \cap T_{\xi,j,k_0} = \emptyset \ (j \in J(\xi)),$$

$$(h + T_{\xi,j,k_0}) \cap T_{\xi,i,k_0} = \emptyset \ (j \in J(\xi), i \in J(\xi), i \neq j).$$

We thus conclude that

$$(h+Y(\Xi_0,k_0))\cap Y(\Xi_0,k_0)=\emptyset,$$

A. B. KHARAZISHVILI

whence it follows that μ' is not *H*-invariant, so μ' does not belong to the class $M_0(H, \mu)$. The obtained contradiction finishes the proof.

Remark 4. Theorem 3 can be directly generalized to the case where an abstract set E is equipped with an uncountable commutative transformation group Γ acting freely in E, and E is also endowed with a nonzero σ -finite Γ -invariant Γ -ergodic measure μ . The proof of this generalized version of Theorem 3 substantially remains the same as above.

Remark 5. It would be interesting to get some analogue of Theorem 3 for uncountable non-commutative transformation groups acting freely on an abstract set E.

References

- 1. V. Bogachev, Measure Theory, Springer-Verlag, Berlin-Heidelberg, 2007.
- 2. V.V. Buldygin, A.B. Kharazishvili, Geometric Aspects of Probability Theory and Mathematical Statistics, Kluwer Academic Publishers, Dordrecht, 2000.
- 3. W.W. Comfort, *Topological groups*, in: Handbook of Set-Theoretic Topology, edited by K. Kunen and J.E. Vaughan, North-Holland Publ. Co., Amsterdam, 1984.
- 4. P.R. Halmos, Measure Theory, D. Van Nostrand, New York, 1950.
- 5. E. Hewitt, K.A. Ross, Abstract Harmonic Analysis, v. I, Springer-Verlag, Berlin, 1963.
- 6. T. Jech, Set Theory, Academic Press, New York London, 1978.
- S. Kakutani, J.C. Oxtoby, Construction of a nonseparable invariant extension of the Lebesgue measure space, Ann. Math., v. 52, 1950, pp. 580-590.
- 8. A. Kanamori, The Higher Infinite, Springer-Verlag, Heifdelberg, 2003.
- 9. A.B. Kharazishvili, *Invariant Extensions of the Lebesgue Measure*, Tbilisi State University Press, Tbilisi, 1983 (in Russian).
- 10. A.B. Kharazishvili, *To the uniqueness property of the Haar measure*, Reports of Seminar of I. Vekua Institute of Applied Mathematics TSU, v. 18, 1984 (in Russian).
- 11. A.B. Kharazishvili, Nonmeasurable Sets and Functions, Elsevier, Amsterdam, 2004.
- A.B. Kharazishvili, *Topics in Measure Theory and Real Analysis*, Atlantis Press and World Scientific, Amsterdam-Paris, 2009.
- K. Kodaira, S. Kakutani, A nonseparable translation invariant extension of the Lebesgue measure space, Ann. Math., v. 52, 1950, pp. 574-579.
- 14. K. Kunen, Set Theory, North-Holland Publ. Co., Amsterdam, 1980.
- 15. K. Kuratowski, A. Mostowski, Set Theory, North-Holland Publ. Co., Amsterdam, 1967.
- 16. J.C. Oxtoby, Measure and Category, Springer-Verlag, New York, 1971.
- J.C. Oxtoby, S. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Annals of Mathematics, (2), v. 42, 1941, pp. 874-920.
- Sh. Pkhakadze, *The theory of Lebesgue measure*, Trudy Tbilis. Mat. Inst. im. A. Razmadze Akad. Nauk Gruz. SSR, v. 25, 1958, pp. 3-272 (in Russian).
- 19. A.V. Skorokhod, Integration in Hilbert space, Springer-Verlag, Berlin-Heidelberg, 1974.

A. RAZMADZE MATHEMATICAL INSTITUTE, UNIVERSITY STREET, 2, TBILISI 0186, GEORGIA E-mail address: kharaz2@yahoo.com