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A. B. KHARAZISHVILI

ERGODIC MEASURES AND THE DEFINABILITY OF SUBGROUPS

VIA NORMAL EXTENSIONS OF SUCH MEASURES

It is shown that any subgroup H of an uncountable σ-compact locally compact topo-
logical group Γ is completely determined by a certain family of left H-invariant
extensions of the left Haar measure μ on Γ. An abstract analogue of this fact is also
established for a nonzero σ-finite ergodic measure given on an uncountable commu-
tative group.

In this paper we consider an abstract space E equipped with a transformation group
Γ and also endowed with some σ-finite measure μ which is invariant with respect to Γ.
Various subgroups of Γ will be described in terms of corresponding invariant extensions
of μ.

In the sequel, we use the following fairly standard notation.
ω = the least infinite cardinality (equivalently, the cardinality of the set N of all

natural numbers).
Z = the set of all integers.
R = the set of all real numbers.
X�Y = the symmetric difference of two sets X and Y .
dom(f) = the domain of a given function f .
Let E be a base (ground) set. A measure μ defined on a σ-algebra of subsets of E is

called diffused (or continuous) if, for each x ∈ E, we have {x} ∈ dom(μ) and μ({x}) = 0.
I(μ) = the σ-ideal generated by all μ-measure zero subsets of E.
μ∗ and μ∗ denote, respectively, the outer and inner measures associated with a given

measure μ.
A set X ⊂ E is called μ-thick in E if μ∗(E \X) = 0. Clearly, for a probability measure

μ on E, the μ-thickness of X ⊂ E is equivalent to μ∗(X) = 1.
All measures considered below are assumed to be complete (without essential loss of

generality).
Recall that a cardinal number a is two-valued measurable if there exists a two-valued

diffused probability measure whose domain coincides with the family of all subsets of a.
As is well known (see, for instance, [15], [16]), two-valued measurable cardinals are very
large and their existence cannot be derived from the axioms of contemporary set theory.
In other words, the assumption that there are no two-valued measurable cardinals does
not contradict the axioms of set theory. Detailed information on these cardinals and
other type of large cardinals can be found in [6], [8], [14], [15].

Let E be a ground set endowed with some group Γ of its transformations.
A measure μ on E is called Γ-invariant if dom(μ) is a Γ-invariant σ-algebra of subsets

of E and μ(g(A)) = μ(A) for all transformations g ∈ Γ and all sets A ∈ dom(μ).
A measure μ on E is called Γ-quasi-invariant if dom(μ) is a Γ-invariant σ-algebra of

subsets of E and, for any g ∈ Γ, we have

μ(g(X)) = 0 ⇔ μ(X) = 0 (X ∈ dom(μ)).
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A set B ⊂ E is called almost Γ-invariant (with respect to μ) if

(∀g ∈ Γ)(μ(B�g(B)) = 0).

In our further considerations, we will use the following auxiliary proposition on almost
invariant subsets of E.

Lemma 1. Let μ be a σ-finite Γ-invariant (respectively, Γ-quasi-invariant) measure
on E and let B be a μ-thick almost Γ-invariant subset of E. Then there exists a Γ-
invariant (respectively, Γ-quasi-invariant) measure μ′ on E which extends μ and whose
support is B, i.e., μ′(E \B) = 0.

For the proof of this lemma, see e.g. [9], [12] or [18].

Let (E,Γ) be a space with a transformation group, let μ = μΓ be a Γ-invariant (Γ-
quasi-invariant) measure on E, and let G be a subgroup of Γ.

We say that μ is G-ergodic (or G-metrically transitive) if, for any set A ∈ dom(μ)
with μ(A) > 0, there exists a countable family {gi : i ∈ I} ⊂ G such that

μ(E \ ∪{gi(A) : i ∈ I}) = 0.

Ergodic measures can frequently be met in various topics of mathematical analysis
and probability theory (see e.g. [1], [4], [5], [16], [17]). The ergodicity also plays an
essential role for the uniqueness of invariant measures on their domains. More precisely,
suppose that G ⊂ Γ is an uncountable group acting freely in E and μ is a σ-finite G-
invariantG-ergodic complete measure on E. Then, for every σ-finite G-invariant measure
ν with dom(ν) = dom(μ), there exists a non-negative coefficient t = t(ν) ∈ R such that
ν = t(ν) · μ. The proof of this fact can be found in [9].

If we are given a space (E,Γ) with a nonzero σ-finite Γ-invariant measure μ = μΓ and
if H is any subgroup of Γ, then the same μ may be regarded as an H-invariant measure.
So we can speak of H-invariant extensions of μ. Let us denote byM(H,μ) the class of all
those H-invariant measures on E which extend μ. It is clear that, for any two subgroups
H1 and H2 of Γ, the following implication holds:

H1 ⊂ H2 ⇒M(H2, μ) ⊂M(H1, μ).

In this paper we will be concerned with the question of whether the converse implication
is also true. First, we wish to discuss the situation when a non-discrete σ-compact locally
compact topological group Γ is given.

Let (Γ, ·) be a non-discrete σ-compact locally compact group. Then, as is widely
known, Γ can be equipped with a nonzero σ-finite left Γ-invariant Borel measure μ = μΓ,
which is called the left Haar measure on Γ. This measure is Γ-ergodic and is unique with
exactness to a constant non-negative coefficient (see, for instance, [1], [4], [5]).

Remark 1. It directly follows from the Baire theorem on category that the non-
discreteness of a σ-compact locally compact group Γ is equivalent to its uncountability.

Remark 2. Let (Γ, ·) be a σ-compact locally compact group and let G be an every-
where dense subgroup of Γ. Then the left Haar measure μ = μΓ is G-ergodic. Conversely,
if the same μ is G-ergodic for some subgroup G of Γ, then G is everywhere dense in Γ
(cf. [10]).

Remark 3. Let E be an infinite-dimensional (equivalently, non-locally compact)
topological vector space. In general, there exists no nonzero σ-finite Borel measure on
E quasi-invariant with respect to the group of all translations of E (see e.g. [1], [2]
and, especially, [19] where the case of an infinite-dimensional separable Hilbert space is
considered in detail).
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Dealing with the left Haar measure μ = μΓ on an uncountable σ-compact locally
compact group Γ, one may pose the question about the existence of proper left Γ-invariant
extensions of μ (of course, here we mean only those extensions of μ which themselves
are measures). As was demonstrated by several authors, there are many such extensions
(see, for instance, [3], [5], [7], [9], [13], [18]). Moreover, if Γ is an uncountable Polish
locally compact group, then there exist even nonseparable left Γ-invariant extensions of
μ (see [3], [5], [7], [13]).

On the other hand, as was already mentioned, if H is an arbitrary subgroup of Γ, then
μ being left Γ-invariant, is automatically left H-invariant. So it makes sense to speak of
left H-invariant extensions of μ. Among all such extensions, we are especially interested
in those ones which are closely connected with μ.

We shall say that a left H-invariant extension ν of μ is a normal extension of μ if, for
any set X ∈ dom(ν), there exists a set Y ∈ dom(μ) such that ν(X�Y ) = 0.

In other words, left invariant normal extensions of μ do not change the metrical
structure of μ.

Let us introduce the notation:
M0(H,μ) = the family of all left H-invariant normal extensions of μ.
Notice that if H is an everywhere dense subgroup of Γ, then all measures from

M0(H,μ) are H-ergodic (cf. Remark 2).
Our first goal is to show that, for any two subgroups H and H ′ of Γ, the inclusion

M0(H
′, μ) ⊂M0(H,μ) implies the inclusion H ⊂ H ′.

As a byproduct, we obtain that the equality M0(H
′, μ) =M0(H,μ) implies the equal-

ity H = H ′. Thus, we conclude that even minimal invariant extensions of μ allow to
distinguish between the subgroups of Γ.

In order to demonstrate this fact, we need several auxiliary propositions.

Lemma 2. If (Γ, ·) is an uncountable σ-compact locally compact group, then card(Γ) =
2w(Γ), where w(Γ) denotes the topological weight of Γ.

The above lemma is one of the most important results in the classical theory of topo-
logical groups (see [3]). It readily implies the equality

card(Γ) = card(B(Γ)),
where B(Γ) denotes, as usual, the Borel σ-algebra of Γ. In its turn, this equality allows
to carry out some Bernstein type transfinite construction for Γ.

Lemma 3. Let (Γ, ·) be an uncountable σ-compact locally compact group, μ be the left
Haar measure on Γ, and let G be a subgroup of Γ represented in the form

G = ∪{Gξ : ξ < α},
where α is the least ordinal number of cardinality card(Γ). Suppose also that the following
relations are satisfied:

(1) {Gξ : ξ < α} is an increasing α-sequence of subgroups of Γ;
(2) card(Gξ) ≤ card(ξ) + ω for each ordinal ξ < α.
Then there exists an α-sequence of points {xξ : ξ < α} ⊂ Γ such that:
(a) the set {xξ : ξ < α} is μ-thick in Γ;
(b) (Gξ · xξ) ∩ (Gζ · xζ) = ∅ for any two distinct ordinals ξ < α and ζ < α.
Therefore, the set X = ∪{Gξ · xξ : ξ < α} is μ-thick in Γ and

(∀g ∈ G)(card((g ·X)�X) < card(Γ)).

As mentioned above, the proof of Lemma 3 is based on the standard argument that is
usually utilized in various Bernstein type constructions. So we omit this proof here (cf.
[5], [7], [9], [11], [12], [18]).
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Lemma 4. Let (Γ, ·) be an uncountable σ-compact locally compact group, G be a
subgroup of Γ, and let X be as in Lemma 3. Then there exists a left G-invariant normal
extension μ′ of μ such that μ′(Γ \X) = 0.

The proof of Lemma 4 is analogous to the proof of Lemma 1.

Lemmas 2-4 enable us to establish the following result.

Theorem 1. Let (Γ, ·) be an uncountable σ-compact locally compact group and let
H and H ′ be any two subgroups of Γ such that M0(H

′, μ) ⊂ M0(H,μ). Then we have
H ⊂ H ′.

Proof. Suppose to the contrary that there exists an element h ∈ H \H ′. Denote by
G the group generated by {h} ∪ H ′. We are going to apply Lemma 3 to G. For this
purpose, take

{Gξ : ξ < α}, {xξ : ξ < α}, X = ∪{Gξ · xξ : ξ < α}
as in Lemma 3 and denote

H ′
ξ = Gξ ∩H ′ (ξ < α).

Obviously, the α-sequence of groups {H ′
ξ : ξ < α} is increasing by inclusion and

H ′ = ∪{H ′
ξ : ξ < α}.

Further, since h ∈ G, there exists an ordinal ξ0 such that h ∈ Gξ for all ordinals ξ ∈ [ξ0, α[.
Consider the set

Y = ∪{H ′
ξ · xξ : ξ < α}.

According to Lemma 3, the set Y is μ-thick in Γ and

(∀g ∈ H ′)(card((g · Y )�Y ) < card(Γ)).

In view of Lemma 4, there exists a left H ′-invariant normal extension μ′ of μ such that

μ′(Γ \ Y ) = 0.

Now, by taking into account the relations

h ·Gξ · xξ = Gξ · xξ (ξ0 < ξ < α),

(h ·H ′
ξ · xξ) ∩ (H ′

ξ · xξ) = ∅ (ξ < α),

(Gξ · xξ) ∩ (Gζ · xζ) = ∅ (ξ < α, ζ < α, ξ 
= ζ),

it is not difficult to verify that

card((h · Y ) ∩ Y ) < card(Γ),

whence it follows that μ′ cannot be left H-invariant (moreover, the same argument yields
that μ′ cannot be even leftH-quasi-invariant). We thus obtain that μ′ belongs to the class
M0(H

′, μ) but does not belong to the class M0(H,μ), which contradicts the inclusion
M0(H

′, μ) ⊂M0(H,μ). The obtained contradiction completes the proof.

The following statement is a straightforward consequence of Theorem 1.

Theorem 2. Let (Γ, ·) be an uncountable σ-compact locally compact group and let H
and H ′ be two subgroups of G such that M0(H

′, μ) =M0(H,μ). Then we have H = H ′.

In other words, Theorem 2 says that every subgroup H of Γ is completely determined
by the corresponding class M(H,μ) of all left H-invariant normal extensions of μ.

Notice now that the considerations leading to the proof of Theorem 1 are substantially
based on some topological properties of the Haar measure. Our second goal in this paper
is to obtain a certain abstract analogue of Theorem 1 for the case of an uncountable com-
mutative group (Γ,+) equipped with a nonzero σ-finite Γ-invariant Γ-ergodic measure
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μ = μΓ. We will establish this analogue under some natural set-theoretical assumptions
on Γ.

In the sequel, we will assume that card(Γ) is not cofinal with ω, i.e., card(Γ) cannot
be represented as a countable sum of cardinal numbers all of which are strictly less than
card(Γ). So we may suppose that

{A ⊂ Γ : card(A) < card(Γ)} ⊂ I(μ).
Let H and H ′ be two subgroups of (Γ,+) such that μ is H-ergodic and H ′-ergodic

simultaneously. Suppose that there exists at least one element h ∈ H \ H ′. We may
represent the given group Γ in the form of a transfinite sequence

Γ = {gξ : ξ < α},
where α is the least ordinal number with card(α) = card(Γ). We may also assume
(without loss of generality) that g0 = h. Further, let us denote:

Γ∗
ξ = the group generated by {gζ : ζ ≤ ξ};

Γξ = the group generated by {gζ : ζ < ξ};
Hξ = Γξ ∩H for any ξ < α;
H ′

ξ = Γξ ∩H ′ for any ξ < α;

Tξ = Γ∗
ξ \ Γξ for any ξ < α.

Then we obviously have the following relations:
(a) Γ = {0} ∪ (∪{Tξ : ξ < α});
(b) for each ξ < α, the set Tξ is Γξ-invariant;
(c) for every set Ξ ⊂ [0, α[, the set ∪{Tξ : ξ ∈ Ξ} is almost Γ-invariant with respect to

μ;
(d) H = ∪{Hξ : ξ < α};
(e) H ′ = ∪{H ′

ξ : ξ < α}.
For every ξ < α, denote by Fξ the group generated by {h} ∪H ′

ξ.

Obviously, if 1 ≤ ξ < α, then H ′
ξ ⊂ Fξ ⊂ Γξ.

Also, it can easily be seen the validity of the next auxiliary proposition.

Lemma 5. For any nonzero ordinal number ξ < α, the factor-group Fξ/H
′
ξ is at most

countable.

Proof. Indeed, fix a nonzero ordinal ξ < α. In view of the commutativity of Γ, we
may write

Fξ = {mh+ h′ : m ∈ Z, h′ ∈ H ′
ξ} = Zh+H ′

ξ,

whence the assertion of the lemma trivially follows.

Lemma 6. If card(Γ) is not a two-valued measurable cardinal number, then there
exists a subset Ξ0 of [0, α[ such that the set

X(Ξ0) = ∪{Tξ : ξ ∈ Ξ0}
is not μ-measurable. Moreover, X(Ξ0) turns out to be a μ-thick set in Γ and its comple-
ment Γ \X(Ξ0) is μ-thick, too.

Proof. The argument is similar to that of [18]. Suppose to the contrary that all
the sets X(Ξ) = ∪{Tξ : ξ ∈ Ξ}, where Ξ ⊂ [0, α[, are μ-measurable. Denote by ν a
probability measure which is equivalent to μ and introduce the functional ν′ as follows:

ν′(Ξ) = ν(∪{Tξ : ξ ∈ Ξ}) (Ξ ⊂ [0, α[).

Keeping in mind that μ is Γ-ergodic, it can readily be shown that ν′ is a two-valued
diffused probability measure on the σ-algebra of all subsets of [0, α[, which is impossible
in view of the equality card(Γ) = card(α) and the assumption on card(Γ). Consequently,
there exists Ξ0 ⊂ [0, α[ for which X(Ξ0) is not μ-measurable. But the same X(Ξ0) is
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almost Γ-invariant with respect to μ. Utilizing once again the Γ-ergodicity of μ, we
obtain that

μ∗(X(Ξ0)) = μ∗(Γ \X(Ξ0)) = 0,

which completes the proof.

Let Ξ0 ⊂ [0, α[ be as in Lemma 6 and let X(Ξ0) be the corresponding μ-nonmeasurable
set. We may assume, without loss of generality, that 0 
∈ Ξ0. For each ξ ∈ Ξ0, consider
the set Tξ. From the definition of Tξ it directly follows that this set is Fξ-invariant, so
can be written as

Tξ = ∪{Tξ,j : j ∈ J(ξ)},
where all Tξ,j are some pairwise disjoint Fξ-orbits. Furthermore, each Fξ-orbit is a
countable union of pairwise disjoint H ′

ξ-orbits. We thus may write

Tξ,j = ∪{Tξ,j,k : k < ω},
where all Tξ,j,k (k < ω) are pairwise disjoint H ′

ξ-orbits. Now, since the set

X(Ξ0) = ∪{Tξ : ξ ∈ Ξ0} = ∪{Tξ,j,k : k < ω, j ∈ J(ξ), ξ ∈ Ξ0}
is nonmeasurable with respect to μ, there exists a natural number k0 such that the set

Y (Ξ0, k0) = ∪{Tξ,j,k0 : j ∈ J(ξ), ξ ∈ Ξ0}
is also nonmeasurable with respect to μ. In addition, Y (Ξ0, k0) is almost H ′-invariant.
Since μ is H ′-ergodic, we conclude that Y (Ξ0, k0) and its complement Γ \ Y (Ξ0, k0) are
μ-thick subsets of Γ.

Summarizing all the said above and keeping in mind Lemma 1, we obtain the next
proposition.

Lemma 7. There exists an H ′-invariant normal extension μ′ of μ such that

μ′(Γ \ Y (Ξ0, k0)) = 0.

Since μ is H ′-ergodic, the measure μ′ is H ′-ergodic too.

We now are able to prove the following statement (preserving the notation used above).

Theorem 3. Let H and H ′ be two subgroups of Γ such that μ is H-ergodic and H ′-
ergodic simultaneously. Then the inclusion M0(H

′, μ) ⊂ M0(H,μ) implies the inclusion
H ⊂ H ′.

Consequently, the equality M0(H
′, μ) =M0(H,μ) implies the equality H = H ′.

Proof. Indeed, suppose otherwise, i.e., the inclusion M0(H
′, μ) ⊂ M0(H,μ) holds

true but H is not contained in H ′. Then we may choose some element h ∈ H \H ′. For
this element h, the construction made earlier yields the H ′-invariant normal extension
μ′ of μ concentrated on the μ′-measurable set Y (Ξ0, k0) (see Lemma 7). So μ′ belongs
to the class M0(H

′, μ). We know the structure of Y (Ξ0, k0), namely, this set admits a
representation

Y (Ξ0, k0) = ∪{Tξ,j,k0 : j ∈ J(ξ), ξ ∈ Ξ0},
where all Tξ,j,k0 are some H ′

ξ-orbits. Notice now that

Tξ ∩ Tζ = ∅ (ξ < α, ζ < α, ξ 
= ζ).

(h+ Tξ,j,k0) ∩ Tξ,j,k0 = ∅ (j ∈ J(ξ)),

(h+ Tξ,j,k0) ∩ Tξ,i,k0 = ∅ (j ∈ J(ξ), i ∈ J(ξ), i 
= j).

We thus conclude that

(h+ Y (Ξ0, k0)) ∩ Y (Ξ0, k0) = ∅,



64 A. B. KHARAZISHVILI

whence it follows that μ′ is not H-invariant, so μ′ does not belong to the class M0(H,μ).
The obtained contradiction finishes the proof.

Remark 4. Theorem 3 can be directly generalized to the case where an abstract set
E is equipped with an uncountable commutative transformation group Γ acting freely in
E, and E is also endowed with a nonzero σ-finite Γ-invariant Γ-ergodic measure μ. The
proof of this generalized version of Theorem 3 substantially remains the same as above.

Remark 5. It would be interesting to get some analogue of Theorem 3 for uncountable
non-commutative transformation groups acting freely on an abstract set E.
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