
Proc. A. Razmadze Math. Inst. 159(2012), 147–151

A. Kharazishvili

SOME PROPERTIES OF at-SETS AND ot-SETS IN A
HILBERT SPACE

In this note we will be dealing with those sets in a Hilbert space H (over
the field of reals), all three-point subsets of which have a certain geometric
property. Several combinatorial and set-theoretical features of such sets will
be indicated and discussed.

Below, the symbol N denotes the set of all natural numbers. The cardi-
nality of N is denoted by ω (which is usually identified with N).

R stands for the real line. More generally, for any natural number m,
the symbol Rm denotes the m-dimensional Euclidean space (consequently,
R = R1). In our further consideration we always assume that m ≥ 2.

c is the cardinality of the continuum, i.e., c = card(R) = 2ω.
If a is a cardinal number, then the symbol a+ stands for the least cardinal

number strictly greater than a.
Let X be a subset of a Hilbert (or, more generally, pre-Hilbert) space H

over R. We shall say that X is an at-set (respectively, rt-set, ot-set) if every
three-element subset of X forms an acute-angled (respectively, right-angled,
obtuse-angled) triangle.

Example 1. Let X be a subset of Rm such that any three points from
X form either acute-angled or right-angled triangle. Then card(X) ≤ 2m

(see [1], [2], [3]). Moreover, if X is an at-set in Rm, then card(X) < 2m.

Example 2. If X is an at-set in R3, then card(X) ≤ 5 and there exists
an at-set Y ⊂ R3 such that card(Y ) = 5. For sufficiently large natural
numbers m, it is possible to indicate an at-set Z ⊂ Rm whose cardinality is
of exponential growth with respect to m, i.e. card(Z) ≥ αm where α > 1 is
some real number not depending on m. In [1] and [4] this fact is proved by
using probabilistic methods. However, a purely combinatorial proof of the
same fact can also be given. Namely, denote by Vm the set of all vertices
of the m-dimensional unit cube in Rm and let r(m) be the number of all
right angles in the triangles whose vertices belong to Vm. Then we have the
equality

r(m) = 2m((3m + 1)/2− 2m),

2010 Mathematics Subject Classification. 52A15, 52B05, 52B10, 52B35, 52B45.
Key words and phrases. Hilbert space, at-set, ot-set, rt-set, Ramsey’s theorem.

147



148

with the aid of which the required result can be obtained by using Stirling’s
classical formula for the asymptotic behavior of m!.

Example 3. Let X = {ei : i ∈ I} be an orthogonal system of unit
vectors in H. Then any three distinct points of X form an equilateral
triangle, so X automatically turns out to be an at-set. If we take in H the
set Y = X ∪ {0}, then it is clear that any three distinct points of Y form
either acute-angled triangle or right-angled triangle.

The above example is almost trivial. The next example seems to be much
more interesting.

Example 4. Let H denote an infinite-dimensional separable Hilbert
space. It can be shown that there exists a set X ⊂ H such that:

(a) the cardinality of X is equal to c;
(b) any three distinct points of X form an acute-angled triangle.
The existence of X follows directly from the well-known result of infinite

combinatorics stating that there is an almost disjoint family of infinite sub-
sets of N, whose cardinality is equal to c. Indeed, without loss of generality,
we may identify H with the standard Hilbert space

l2 = {t ∈ RN :
∑

{(t(n))2 : n ∈ N} < +∞}.
Let {Nj : j ∈ J} be a family of infinite subsets of N such that:

(1) card(J) = c;
(2) card(Nj ∩Nj′) is finite for any two distinct indices j ∈ J and j′ ∈ J .
Now, for each j ∈ J , define the element xj ∈ l2 by the formula

xj(n) = (1/2n)χj(n) (n ∈ N),

where χj denotes the characteristic function of the set Nj ⊂ N.
Putting X = {xj : j ∈ J}, it is easy to check that any three distinct

points of X form an acute-angled triangle (cf. [8] where a more complicated
argument for establishing the existence of X with the above-mentioned
properties (a) and (b) is presented).

Example 5. Let H be again an infinite-dimensional separable Hilbert
space over R. We may identify H with the canonical Hilbert space L2[0, 1].
Consider the mapping g : [0, 1] → L2[0, 1] defined by the formula

g(t) = χ[0,t] (t ∈ [0, 1]),

where χ[0,t] denotes the characteristic function of [0, t]. This g is injective
and continuous. It can readily be seen that X = g([0, 1]) is an rt-set in
L2[0, 1]. This X is usually called the Wiener curve (it is homeomorphic to
[0, 1]; see also Remark 1 below).

Example 6. Take the segment [0, 1/2] and consider the mapping f :
[0, 1/2] → l2 defined by the formula

f(t) = (t, t2, t3, . . . , tn, . . . ) (t ∈ [0, 1/2]).
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This f is injective and continuous. It can easily be verified that X =
f([0, 1/2]) is an ot-subset of l2.

We say that an at-set (respectively, rt-set, ot-set) X ⊂ H is maximal if
there is no at-set (respectively, rt-set, ot-set) in H properly containing X.

As a straightforward consequence of the Kuratowski-Zorn lemma, we get
that any at-set (respectively, rt-set, ot-set) in a Hilbert space H over R is
contained in some maximal at-set (respectively, maximal rt-set, maximal
ot-set).

As far as we know, the following problem remain unsolved.

Problem 1. Give a characterization of all maximal at-subsets (respec-
tively, maximal ot-subsets) of H.

Remark 1. In [6] a certain characterization of all rt-sets in H is given in
terms of linear orderings.

It is not difficult to show that no finite ot-subset of H can be maximal.
On the other hand, the following statement was proved in [7].

Theorem 1. If m ≥ 2, then there exists a countable locally finite maxi-
mal ot-set in the space Rm.

Example 7. In the Euclidean plane R2 consider the half-circumference
of the unit circle, from which one of its endpoints is removed, i.e., consider
the set

X = {(cos(φ), sin(φ)) : 0 ≤ φ < 2π}.
It can be demonstrated that X is a maximal ot-subset of R2.

Theorem 1 and Example 7 show us that there exist maximal ot-sets
whose cardinalities are ω and c respectively. Keeping in mind this fact,
it is natural to formulate the next unsolved problem concerning ot-sets in
Euclidean space.

Problem 2. Let m ≥ 2 be a natural number and let κ be a cardinal
number from the open interval ]ω, c[. Does there exist a maximal ot-set in
Rm whose cardinality is equal to κ?

Obviously, under the Continuum Hypothesis the above problem becomes
trivial.

Let ε > 0 be a real number and let 4 be a triangle in H whose side-
lengths are a1, a2, and a3. We shall say that 4 is an equilateral triangle
with exactness to ε if the inequalities

1− ε < ai/aj < 1 + ε

hold true whenever i ∈ {1, 2, 3} and j ∈ {1, 2, 3}.
Theorem 2. Let X be a subset of H. Then the disjunction of the

following two statements is satisfied:
(1) X is separable;
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(2) for any ε > 0, there exists an infinite set Y ⊂ X such that all three-
point subsets of Y form equilateral triangles with exactness to ε.

The proof of Theorem 2 is based on the infinite (countable) version of
the well-known combinatorial theorem of Ramsey (see [11]).

As a consequence of Theorem 2, we obtain the next statement.

Theorem 3. Let X be a set in H such that every three-point subset of
X forms either right-angled or obtuse-angled triangle. Then X is separable.
Therefore, card(X) ≤ c.

It directly follows from Theorem 3 that any ot-subset (rt-subset) X of H
is separable, so satisfies the inequality card(X) ≤ c.

The following question naturally arises: is it true, for a finite set Z ⊂ Rm

containing sufficiently many points no three of which are collinear, that there
exists an ot-set Y ⊂ Z containing the prescribed number of points?

It turns out that the answer to this question is positive. Indeed, taking
into account Example 1 and the finite version of Ramsey’s theorem [11], it
is not difficult to prove that, for each k ∈ N, there exists a natural number
p = p(k, m) having the following property:

(*) any set Z ⊂ Rm with card(Z) ≥ p, no three points of which are
collinear, contains some ot-set Y with card(Y ) = k.

The infinite (countable) version of Ramsey’s theorem yields a natural
analogue of the above result, which can be formulated as follows:

(**) if X is an arbitrary infinite subset of Rm no three points of which
are collinear, then there exists an infinite ot-set Y ⊂ X.

Remark 2. (**) does not admit a generalization to the case of uncountable
sets in Rm. More precisely, if X ⊂ Rm is an uncountable set no three
points of which are collinear, then we cannot assert (in general) that X
contains an uncountable ot-subset. The corresponding counterexample can
be constructed by assuming the Continuum Hypothesis, with the aid of
an appropriate Luzin or Sierpiński subset of Rm (extensive information on
Luzin and Sierpiński sets may be found in [9] and [10]).

Theorem 4. Under the Continuum Hypothesis, there exists an uncount-
able set X in a separable Hilbert space H, such that:

(a) all points of X are in general position;
(b) every at-subset (rt-subset, ot-subset) of X is at most countable.

Notice that in Theorem 4 the role of X is played by a certain Luzin
set in H. Actually, X has a much stronger property than property (b).
Namely, every uncountable subset of X contains three-point sets which form
a triangle almost similar to any given triangle.

It is useful to compare Theorem 4 with Examples 4, 5 and 6.
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Remark 3. It follows from the well-known Erdös-Rado combinatorial
theorem [5] that if a ≥ c is a cardinal number and X is a subset of a pre-
Hilbert space H satisfying the inequality card(X) ≥ (2a)+, then there exists
a set Y ⊂ X such that card(Y ) ≥ a+ and all three-element subsets of Y
form equilateral triangles. Obviously, this Y is an at-set in H.
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