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A. KHARAZISHVILI

SOME PROPERTIES OF at-SETS AND o0t-SETS IN A
HILBERT SPACE

In this note we will be dealing with those sets in a Hilbert space H (over
the field of reals), all three-point subsets of which have a certain geometric
property. Several combinatorial and set-theoretical features of such sets will
be indicated and discussed.

Below, the symbol N denotes the set of all natural numbers. The cardi-
nality of N is denoted by w (which is usually identified with N).

R stands for the real line. More generally, for any natural number m,
the symbol R™ denotes the m-dimensional Euclidean space (consequently,
R = Rl). In our further consideration we always assume that m > 2.

c is the cardinality of the continuum, i.e., ¢ = card(R) = 2.

If a is a cardinal number, then the symbol at stands for the least cardinal
number strictly greater than a.

Let X be a subset of a Hilbert (or, more generally, pre-Hilbert) space H
over R. We shall say that X is an at-set (respectively, rt-set, ot-set) if every
three-element subset of X forms an acute-angled (respectively, right-angled,
obtuse-angled) triangle.

Example 1. Let X be a subset of R™ such that any three points from
X form either acute-angled or right-angled triangle. Then card(X) < 2™
(see [1], [2], [3]). Moreover, if X is an at-set in R™, then card(X) < 2™.

Example 2. If X is an at-set in R3, then card(X) < 5 and there exists
an at-set Y C R3 such that card(Y) = 5. For sufficiently large natural
numbers m, it is possible to indicate an at-set Z C R™ whose cardinality is
of exponential growth with respect to m, i.e. card(Z) > o™ where a > 1 is
some real number not depending on m. In [1] and [4] this fact is proved by
using probabilistic methods. However, a purely combinatorial proof of the
same fact can also be given. Namely, denote by V,,, the set of all vertices
of the m-dimensional unit cube in R™ and let r(m) be the number of all
right angles in the triangles whose vertices belong to V,,,. Then we have the
equality

r(m)=2"((3™4+1)/2 —2™),
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with the aid of which the required result can be obtained by using Stirling’s
classical formula for the asymptotic behavior of m/!.

Example 3. Let X = {¢; : ¢ € I} be an orthogonal system of unit
vectors in H. Then any three distinct points of X form an equilateral
triangle, so X automatically turns out to be an at-set. If we take in H the
set Y = X U {0}, then it is clear that any three distinct points of ¥ form
either acute-angled triangle or right-angled triangle.

The above example is almost trivial. The next example seems to be much
more interesting.

Example 4. Let H denote an infinite-dimensional separable Hilbert
space. It can be shown that there exists a set X C H such that:

(a) the cardinality of X is equal to c;

(b) any three distinct points of X form an acute-angled triangle.

The existence of X follows directly from the well-known result of infinite
combinatorics stating that there is an almost disjoint family of infinite sub-
sets of N, whose cardinality is equal to c. Indeed, without loss of generality,
we may identify H with the standard Hilbert space

L ={teRN:> {(t(n))*:n €N} < +oc}.

Let {N; : j € J} be a family of infinite subsets of N such that:
(1) card(J) = c;
(2) card(N; N Nj) is finite for any two distinct indices j € J and j' € J.
Now, for each j € J, define the element x; € I by the formula

zj(n) = (1/2")x;(n) (n€N),

where x; denotes the characteristic function of the set N; C N.

Putting X = {z; : j € J}, it is easy to check that any three distinct
points of X form an acute-angled triangle (cf. [8] where a more complicated
argument for establishing the existence of X with the above-mentioned
properties (a) and (b) is presented).

Example 5. Let H be again an infinite-dimensional separable Hilbert
space over R. We may identify H with the canonical Hilbert space Ly[0, 1].
Consider the mapping g : [0, 1] — L2[0, 1] defined by the formula

9(t) = xp,y (t€[0,1]),

where X[o 4+ denotes the characteristic function of [0,#]. This g is injective
and continuous. It can readily be seen that X = ¢([0,1]) is an rt-set in
L[0,1]. This X is usually called the Wiener curve (it is homeomorphic to
[0,1]; see also Remark 1 below).

Example 6. Take the segment [0,1/2] and consider the mapping f :
[0,1/2] — 15 defined by the formula

f) = (263t ) (t€[0,1/2]).
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This f is injective and continuous. It can easily be verified that X =
£([0,1/2]) is an ot-subset of l,.

We say that an at-set (respectively, r-set, ot-set) X C H is maximal if
there is no at-set (respectively, rt-set, ot-set) in H properly containing X.

As a straightforward consequence of the Kuratowski-Zorn lemma, we get
that any at-set (respectively, rt-set, ot-set) in a Hilbert space H over R is
contained in some maximal at-set (respectively, maximal rt-set, maximal
ot-set).

As far as we know, the following problem remain unsolved.

Problem 1. Give a characterization of all maximal at-subsets (respec-
tively, maximal ot-subsets) of H.

Remark 1. In [6] a certain characterization of all r¢-sets in H is given in
terms of linear orderings.

It is not difficult to show that no finite ot-subset of H can be maximal.
On the other hand, the following statement was proved in [7].

Theorem 1. If m > 2, then there exists a countable locally finite mazxi-
mal ot-set in the space R™.

Example 7. In the Euclidean plane R? consider the half-circumference
of the unit circle, from which one of its endpoints is removed, i.e., consider
the set

X = {(cos(¢),sin(¢)) : 0 < ¢ < 27}
It can be demonstrated that X is a maximal ot-subset of R2.

Theorem 1 and Example 7 show us that there exist maximal ot-sets
whose cardinalities are w and c respectively. Keeping in mind this fact,
it is natural to formulate the next unsolved problem concerning ot-sets in
Euclidean space.

Problem 2. Let m > 2 be a natural number and let s be a cardinal
number from the open interval Jw, c[. Does there exist a maximal ot-set in
R"™ whose cardinality is equal to 7

Obviously, under the Continuum Hypothesis the above problem becomes
trivial.

Let € > 0 be a real number and let A be a triangle in H whose side-
lengths are aj, as, and as. We shall say that A is an equilateral triangle
with exactness to ¢ if the inequalities

l—e<a;faj <l+e
hold true whenever i € {1,2,3} and j € {1,2,3}.

Theorem 2. Let X be a subset of H. Then the disjunction of the
following two statements is satisfied:
(1) X is separable;
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(2) for any e > 0, there exists an infinite set Y C X such that all three-
point subsets of Y form equilateral triangles with exactness to €.

The proof of Theorem 2 is based on the infinite (countable) version of
the well-known combinatorial theorem of Ramsey (see [11]).
As a consequence of Theorem 2, we obtain the next statement.

Theorem 3. Let X be a set in H such that every three-point subset of
X forms either right-angled or obtuse-angled triangle. Then X is separable.
Therefore, card(X) < c.

It directly follows from Theorem 3 that any ot-subset (rt-subset) X of H
is separable, so satisfies the inequality card(X) < c.

The following question naturally arises: is it true, for a finite set Z C R™
containing sufficiently many points no three of which are collinear, that there
exists an ot-set Y C Z containing the prescribed number of points?

It turns out that the answer to this question is positive. Indeed, taking
into account Example 1 and the finite version of Ramsey’s theorem [11], it
is not difficult to prove that, for each k € N, there exists a natural number
p = p(k, m) having the following property:

(*) any set Z C R™ with card(Z) > p, no three points of which are
collinear, contains some ot-set Y with card(Y') = k.

The infinite (countable) version of Ramsey’s theorem yields a natural
analogue of the above result, which can be formulated as follows:

(**) if X is an arbitrary infinite subset of R™ no three points of which
are collinear, then there exists an infinite ot-set Y C X.

Remark 2. (**) does not admit a generalization to the case of uncountable
sets in R™. More precisely, if X C R™ is an uncountable set no three
points of which are collinear, then we cannot assert (in general) that X
contains an uncountable ot-subset. The corresponding counterexample can
be constructed by assuming the Continuum Hypothesis, with the aid of
an appropriate Luzin or Sierpiniski subset of R™ (extensive information on
Luzin and Sierpinski sets may be found in [9] and [10]).

Theorem 4. Under the Continuum Hypothesis, there exists an uncount-
able set X in a separable Hilbert space H, such that:

(a) all points of X are in general position;

(b) every at-subset (rt-subset, ot-subset) of X is at most countable.

Notice that in Theorem 4 the role of X is played by a certain Luzin
set in H. Actually, X has a much stronger property than property (b).
Namely, every uncountable subset of X contains three-point sets which form
a triangle almost similar to any given triangle.

It is useful to compare Theorem 4 with Examples 4, 5 and 6.
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Remark 3. It follows from the well-known Erdos-Rado combinatorial

theorem [5] that if a > ¢ is a cardinal number and X is a subset of a pre-
Hilbert space H satisfying the inequality card(X) > (22)%, then there exists
a set Y C X such that card(Y) > at and all three-element subsets of Y
form equilateral triangles. Obviously, this Y is an at-set in H.
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