A. Kharazishvili

SOME PROPERTIES OF *at*-SETS AND *ot*-SETS IN A HILBERT SPACE

In this note we will be dealing with those sets in a Hilbert space H (over the field of reals), all three-point subsets of which have a certain geometric property. Several combinatorial and set-theoretical features of such sets will be indicated and discussed.

Below, the symbol **N** denotes the set of all natural numbers. The cardinality of **N** is denoted by ω (which is usually identified with **N**).

R stands for the real line. More generally, for any natural number m, the symbol \mathbf{R}^m denotes the *m*-dimensional Euclidean space (consequently, $\mathbf{R} = \mathbf{R}^1$). In our further consideration we always assume that $m \geq 2$.

c is the cardinality of the continuum, i.e., $\mathbf{c} = \operatorname{card}(\mathbf{R}) = 2^{\omega}$.

If **a** is a cardinal number, then the symbol \mathbf{a}^+ stands for the least cardinal number strictly greater than **a**.

Let X be a subset of a Hilbert (or, more generally, pre-Hilbert) space H over **R**. We shall say that X is an *at*-set (respectively, *rt*-set, *ot*-set) if every three-element subset of X forms an acute-angled (respectively, right-angled, obtuse-angled) triangle.

Example 1. Let X be a subset of \mathbb{R}^m such that any three points from X form either acute-angled or right-angled triangle. Then $\operatorname{card}(X) \leq 2^m$ (see [1], [2], [3]). Moreover, if X is an *at*-set in \mathbb{R}^m , then $\operatorname{card}(X) < 2^m$.

Example 2. If X is an *at*-set in \mathbb{R}^3 , then $\operatorname{card}(X) \leq 5$ and there exists an *at*-set $Y \subset \mathbb{R}^3$ such that $\operatorname{card}(Y) = 5$. For sufficiently large natural numbers *m*, it is possible to indicate an *at*-set $Z \subset \mathbb{R}^m$ whose cardinality is of exponential growth with respect to *m*, i.e. $\operatorname{card}(Z) \geq \alpha^m$ where $\alpha > 1$ is some real number not depending on *m*. In [1] and [4] this fact is proved by using probabilistic methods. However, a purely combinatorial proof of the same fact can also be given. Namely, denote by V_m the set of all vertices of the *m*-dimensional unit cube in \mathbb{R}^m and let r(m) be the number of all right angles in the triangles whose vertices belong to V_m . Then we have the equality

$$r(m) = 2^m ((3^m + 1)/2 - 2^m),$$

147

²⁰¹⁰ Mathematics Subject Classification. 52A15, 52B05, 52B10, 52B35, 52B45. Key words and phrases. Hilbert space, at-set, ot-set, rt-set, Ramsey's theorem.

with the aid of which the required result can be obtained by using Stirling's classical formula for the asymptotic behavior of m!.

Example 3. Let $X = \{e_i : i \in I\}$ be an orthogonal system of unit vectors in H. Then any three distinct points of X form an equilateral triangle, so X automatically turns out to be an *at*-set. If we take in H the set $Y = X \cup \{0\}$, then it is clear that any three distinct points of Y form either acute-angled triangle or right-angled triangle.

The above example is almost trivial. The next example seems to be much more interesting.

Example 4. Let *H* denote an infinite-dimensional separable Hilbert space. It can be shown that there exists a set $X \subset H$ such that:

(a) the cardinality of X is equal to \mathbf{c} ;

(b) any three distinct points of X form an acute-angled triangle.

The existence of X follows directly from the well-known result of infinite combinatorics stating that there is an almost disjoint family of infinite subsets of \mathbf{N} , whose cardinality is equal to \mathbf{c} . Indeed, without loss of generality, we may identify H with the standard Hilbert space

$$\mathbf{l}_{2} = \{ t \in \mathbf{R}^{\mathbf{N}} : \sum \{ (t(n))^{2} : n \in \mathbf{N} \} < +\infty \}.$$

Let $\{N_j : j \in J\}$ be a family of infinite subsets of **N** such that: (1) card $(J) = \mathbf{c}$;

(2) card $(N_j \cap N_{j'})$ is finite for any two distinct indices $j \in J$ and $j' \in J$. Now, for each $j \in J$, define the element $x_j \in \mathbf{l}_2$ by the formula

$$x_i(n) = (1/2^n)\chi_i(n) \quad (n \in \mathbf{N}),$$

where χ_i denotes the characteristic function of the set $N_i \subset \mathbf{N}$.

Putting $X = \{x_j : j \in J\}$, it is easy to check that any three distinct points of X form an acute-angled triangle (cf. [8] where a more complicated argument for establishing the existence of X with the above-mentioned properties (a) and (b) is presented).

Example 5. Let H be again an infinite-dimensional separable Hilbert space over **R**. We may identify H with the canonical Hilbert space $\mathbf{L}_2[0, 1]$. Consider the mapping $g : [0, 1] \to \mathbf{L}_2[0, 1]$ defined by the formula

$$g(t) = \chi_{[0,t]} \quad (t \in [0,1]),$$

where $\chi_{[0,t]}$ denotes the characteristic function of [0, t]. This g is injective and continuous. It can readily be seen that X = g([0,1]) is an rt-set in $\mathbf{L}_2[0,1]$. This X is usually called the Wiener curve (it is homeomorphic to [0,1]; see also Remark 1 below).

Example 6. Take the segment [0, 1/2] and consider the mapping $f : [0, 1/2] \rightarrow \mathbf{l}_2$ defined by the formula

$$f(t) = (t, t^2, t^3, \dots, t^n, \dots) \quad (t \in [0, 1/2]).$$

148

This f is injective and continuous. It can easily be verified that X = f([0, 1/2]) is an *ot*-subset of l_2 .

We say that an *at*-set (respectively, *rt*-set, *ot*-set) $X \subset H$ is maximal if there is no *at*-set (respectively, *rt*-set, *ot*-set) in H properly containing X.

As a straightforward consequence of the Kuratowski-Zorn lemma, we get that any *at*-set (respectively, rt-set, ot-set) in a Hilbert space H over \mathbf{R} is contained in some maximal *at*-set (respectively, maximal rt-set, maximal ot-set).

As far as we know, the following problem remain unsolved.

Problem 1. Give a characterization of all maximal at-subsets (respectively, maximal ot-subsets) of H.

Remark 1. In [6] a certain characterization of all rt-sets in H is given in terms of linear orderings.

It is not difficult to show that no finite *ot*-subset of H can be maximal. On the other hand, the following statement was proved in [7].

Theorem 1. If $m \ge 2$, then there exists a countable locally finite maximal ot-set in the space \mathbb{R}^m .

Example 7. In the Euclidean plane \mathbf{R}^2 consider the half-circumference of the unit circle, from which one of its endpoints is removed, i.e., consider the set

 $X = \{ (\cos(\phi), \sin(\phi)) : 0 \le \phi < 2\pi \}.$

It can be demonstrated that X is a maximal *ot*-subset of \mathbb{R}^2 .

Theorem 1 and Example 7 show us that there exist maximal ot-sets whose cardinalities are ω and **c** respectively. Keeping in mind this fact, it is natural to formulate the next unsolved problem concerning ot-sets in Euclidean space.

Problem 2. Let $m \geq 2$ be a natural number and let κ be a cardinal number from the open interval $]\omega, \mathbf{c}[$. Does there exist a maximal *ot*-set in \mathbf{R}^m whose cardinality is equal to κ ?

Obviously, under the Continuum Hypothesis the above problem becomes trivial.

Let $\varepsilon > 0$ be a real number and let \triangle be a triangle in H whose sidelengths are a_1, a_2 , and a_3 . We shall say that \triangle is an equilateral triangle with exactness to ε if the inequalities

$$1 - \varepsilon < a_i / a_j < 1 + \varepsilon$$

hold true whenever $i \in \{1, 2, 3\}$ and $j \in \{1, 2, 3\}$.

Theorem 2. Let X be a subset of H. Then the disjunction of the following two statements is satisfied:

(1) X is separable;

(2) for any $\varepsilon > 0$, there exists an infinite set $Y \subset X$ such that all threepoint subsets of Y form equilateral triangles with exactness to ε .

The proof of Theorem 2 is based on the infinite (countable) version of the well-known combinatorial theorem of Ramsey (see [11]).

As a consequence of Theorem 2, we obtain the next statement.

Theorem 3. Let X be a set in H such that every three-point subset of X forms either right-angled or obtuse-angled triangle. Then X is separable. Therefore, $\operatorname{card}(X) \leq \mathbf{c}$.

It directly follows from Theorem 3 that any *ot*-subset (*rt*-subset) X of H is separable, so satisfies the inequality $\operatorname{card}(X) \leq \mathbf{c}$.

The following question naturally arises: is it true, for a finite set $Z \subset \mathbb{R}^m$ containing sufficiently many points no three of which are collinear, that there exists an *ot*-set $Y \subset Z$ containing the prescribed number of points?

It turns out that the answer to this question is positive. Indeed, taking into account Example 1 and the finite version of Ramsey's theorem [11], it is not difficult to prove that, for each $k \in \mathbf{N}$, there exists a natural number p = p(k, m) having the following property:

(*) any set $Z \subset \mathbf{R}^m$ with $\operatorname{card}(Z) \geq p$, no three points of which are collinear, contains some *ot*-set Y with $\operatorname{card}(Y) = k$.

The infinite (countable) version of Ramsey's theorem yields a natural analogue of the above result, which can be formulated as follows:

(**) if X is an arbitrary infinite subset of \mathbf{R}^m no three points of which are collinear, then there exists an infinite *ot*-set $Y \subset X$.

Remark 2. (**) does not admit a generalization to the case of uncountable sets in \mathbb{R}^m . More precisely, if $X \subset \mathbb{R}^m$ is an uncountable set no three points of which are collinear, then we cannot assert (in general) that Xcontains an uncountable *ot*-subset. The corresponding counterexample can be constructed by assuming the Continuum Hypothesis, with the aid of an appropriate Luzin or Sierpiński subset of \mathbb{R}^m (extensive information on Luzin and Sierpiński sets may be found in [9] and [10]).

Theorem 4. Under the Continuum Hypothesis, there exists an uncountable set X in a separable Hilbert space H, such that:

(a) all points of X are in general position;

(b) every at-subset (rt-subset, ot-subset) of X is at most countable.

Notice that in Theorem 4 the role of X is played by a certain Luzin set in H. Actually, X has a much stronger property than property (b). Namely, every uncountable subset of X contains three-point sets which form a triangle almost similar to any given triangle.

It is useful to compare Theorem 4 with Examples 4, 5 and 6.

150

Remark 3. It follows from the well-known Erdös-Rado combinatorial theorem [5] that if $\mathbf{a} \geq \mathbf{c}$ is a cardinal number and X is a subset of a pre-Hilbert space H satisfying the inequality $\operatorname{card}(X) \geq (2^{\mathbf{a}})^+$, then there exists a set $Y \subset X$ such that $\operatorname{card}(Y) \geq \mathbf{a}^+$ and all three-element subsets of Y form equilateral triangles. Obviously, this Y is an *at*-set in H.

References

- M. Aigner and G. M. Ziegler, Proofs from The Book. Including illustrations by Karl H. Hofmann. Third edition. Springer-Verlag, Berlin, 2004.
- V. G. Boltyanskii and I. Ts. Gokhberg, Theorems and Problems from Combinatorial Geometry. (Russian) *Izd. Nauka, Moscow*, 1965.
- L. Danzer and B. Grünbaum, Über zwei Probleme bezüglich konvexer Körper von P. Erdös und von V. L. Klee. (German) Math. Z. 79 (1962), 95–99.
- P. Erdös and Z. Füredi, The greatest angle among n points in the d-dimensional Euclidean space. Combinatorial mathematics (Marseille-Luminy, 1981), 275–283, North-Holland Math. Stud., 75, North-Holland, Amsterdam, 1983.
- P. Erdös and R. Rado, A partition calculus in set theory. Bull. Amer. Math. Soc. 62 (1956), 427–489.
- A. B. Kharazishvili, Selected Topics in Geometry of Euclidean spaces. (Russian) Izd. Tbil. Gos. Univ., Tbilisi, 1978.
- A. B. Kharazishvili, On maximal ot-subsets of the Euclidean plane. Georgian Math. J. 10 (2003), No. 1, 127–131.
- 8. P. Konjáth and V. Totik, Problems and theorems in classical set theory. Problem Books in Mathematics. Springer, New York, 2006.
- K. Kuratowski, Topology. Vol. I. New edition, revised and augmented. Translated from the French by J. Jaworowski Academic Press, New York-London; Panstwowe Wydawnictwo Naukowe, Warsaw, 1966.
- J. C. Oxtoby, Measure and category. A survey of the analogies between topological and measure spaces. Graduate Texts in Mathematics, Vol. 2. Springer-Verlag, New York-Berlin, 1971.
- F. P. Ramsey, On a problem of formal logic. Proc. London Math. Soc., Vol. 30, 1930, 264–286.

Author's address:

A. Razmadze Mathemetical Institute

- I. Javakhishvili Tbilisi State University
- 2, University Str., Tbilisi 0186

Georgia

E-mail: kharaz2@yahoo.com