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ADDITIVE PROPERTIES OF CERTAIN
CLASSES OF PATHOLOGICAL FUNCTIONS

Abstract

Some additive properties of the following three families of “patholog-
ical” functions are briefly discussed: continuous nowhere differentiable
functions, Sierpiński-Zygmund functions, and absolutely nonmeasurable
functions.

In this note we will be dealing with additive properties of some families of
“pathological” functions (cf. [2]–[6], [8], [9], [13], [14]).

Let us consider the following three classes of functions acting from the real
line R into itself:

1. Continuous nowhere differentiable functions;

2. Sierpiński-Zygmund functions, i.e., those functions whose restrictions to
all subsets of R of cardinality continuum are discontinuous;

3. Absolutely nonmeasurable functions, i.e., those functions which are non-
measurable with respect to all nonzero σ-finite continuous measures
on R.

The functions belonging to the first class are very bad from the differential
point of view, the functions belonging to the second class are very bad from
the topological point of view, and the functions belonging to the third class
can be regarded as very bad from the measure-theoretical point of view.
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As is well known, there are concrete individual examples of continuous
nowhere differentiable functions (recall that the first examples of such kind
are due to Bolzano and Weierstrass). The next important step was made by
Banach [1] and Mazurkiewicz [11]. They demonstrated (independently) that
in the space C[0, 1] of all continuous real-valued functions defined on the unit
segment [0, 1] the family of nowhere differentiable functions is co-meager, i.e.,
is the complement of a first category subset of C[0, 1].

A nontrivial consequence of their result is the following fact:

Any continuous real-valued function on R can be represented as a sum
(difference) of two continuous nowhere differentiable functions.

This fact does not follow from concrete individual constructions of a con-
tinuous nowhere differentiable function on R, so needs an argument based on
the above-mentioned result of Banach and Mazurkiewicz. Indeed, for any real
numbers a and b such that a < b, consider the Banach space C[a, b] of all con-
tinuous real-valued functions on [a, b] and denote by D ⊂ C[a, b] the set of all
nowhere differentiable functions on [a, b]. Take any function g from C[a, b] and
observe that both sets D and g + D are co-meager in C[a, b]. Consequently,
D ∩ (g +D) 6= ∅ which directly implies the existence of two functions g1 ∈ D
and g2 ∈ D such that g = g1 − g2. Now, let f : R → R be an arbitrary con-
tinuous function and let Z denote, as usual, the set of all integers. For every
integer n, let fn be the restriction of f to the segment [n, n + 1]. According
to the said above, we may write

fn = φn − ψn (n ∈ Z),

where φn and ψn are some continuous and nowhere differentiable functions on
[n, n+ 1]. Without loss of generality, we may assume that

φn(n+ 1) = φn+1(n+ 1) (n ∈ Z).

Keeping in mind these “contact conditions” for the family of functions {φn :
n ∈ Z} and taking into account the trivial equalities

fn(n+ 1) = fn+1(n+ 1) (n ∈ Z),

we get the analogous “contact conditions” for the family of functions {ψn :
n ∈ Z}, i.e.,

ψn(n+ 1) = ψn+1(n+ 1) (n ∈ Z).

Therefore, denoting by φ (respectively, by ψ) the common extension of all
φn (n ∈ Z) (respectively, of all ψn (n ∈ Z)), we obtain that both φ and ψ are
continuous nowhere differentiable functions on R and f = φ− ψ.
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On the other hand, it was shown that there are sufficiently large vector
subspaces U of C[0, 1] such that all members of U \ {0} are nowhere differ-
entiable functions (see, for instance, [5] and [6]). Moreover, it was proved in
the article [14] that, for every separable Banach space W , there exists a closed
vector subspace of C[0, 1] which is isometric to W and all nonzero members
of which are nowhere differentiable functions.

The second type of “pathological” functions are Sierpiński-Zygmund func-
tions first introduced in [15]. They are usually constructed by the method
of transfinite recursion and it is clear that their existence needs uncountable
forms of the Axiom of Choice (since every such function turns out to be non-
measurable with respect to the standard Lebesgue measure on R).

Moreover, every Sierpiński-Zygmund function is nonmeasurable with re-
spect to the completion of any nonzero continuous (diffused) σ-finite Borel
measure on R. However, it was demonstrated in [7] that there exists a trans-
lation invariant measure µ on R extending the standard Lebesgue measure
and such that some Sierpiński-Zygmund functions become measurable with
respect to µ.

For various interesting properties of Sierpiński-Zygmund functions, see,
e.g., [2] and references given therein.

It is not difficult to prove the following two statements (cf. [13], Proposi-
tion 1).

Theorem 1. Any function from RR can be represented as a sum (difference)
of two injective Sierpiński-Zygmund functions.

Theorem 2. Any additive function from RR can be represented as a sum
(difference) of two injective additive Sierpiński-Zygmund functions.

For the sake of completeness, we present the proof of Theorem 2 here. The
proof of Theorem 1 can be done analogously and, in fact, is much easier.

Let Q denote the field of all rational numbers, ω denote the least infinite
cardinal number, and let c denote the cardinality of the continuum. We may
identify c with the initial ordinal number equinumerous with c. Fix a Hamel
basis {eξ : ξ < c} of R. Let {hξ : ξ < c} be the family of all real-valued
partial Borel functions whose domains are uncountable Borel subsets of R.

Let f : R → R be any additive function. We are going to construct by
transfinite recursion two injective additive functions

f1 : R→ R, f2 : R→ R

such that f = f1 + f2. For this purpose, it suffices to define recursively the
values

f1(eξ), f2(eξ) (ξ < c).
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Suppose that, for an ordinal number ξ < c, the two ξ-sequences of real numbers

{f1(eζ) : ζ < ξ}, {f2(eζ) : ζ < ξ}

have already been defined so that the corresponding partial additive functions

f1 : Eξ → R, f2 : Eξ → R

are injective, where Eξ denotes the vector space over Q generated by the
family {eζ : ζ < ξ}. We may assert that there exist two real numbers y1 and
y2 satisfying the relations:

f(eξ) = y1 + y2, y1 6∈ f1(Eξ), y2 6∈ f2(Eξ),

(f1(Eξ) + Qy1) ∩ (∪{hζ(Eξ + Qeξ) : ζ < ξ}) = ∅,
(f2(Eξ) + Qy2) ∩ (∪{hζ(Eξ + Qeξ) : ζ < ξ}) = ∅.

Indeed, the existence of y1 and y2 easily follows from the inequalities

card(Eξ) ≤ card(ξ) + ω < c,

card(∪{hζ(Eξ + Qeξ) : ζ < ξ}) ≤ card(ξ) + ω < c.

Now, we put f1(eξ) = y1 and f2(eξ) = y2. Proceeding in this manner, we
obtain all the values

f1(eξ), f2(eξ) (ξ < c)

and, consequently, the corresponding two injective additive functions

f1 : R→ R, f2 : R→ R.

It is not difficult to verify that both f1 and f2 are Sierpiński-Zygmund func-
tions.

Remark 1. Let f : R → R be a function. We shall say that f is a
Sierpiński-Zygmund function in the strong sense if, for every set X ⊂ R with
card(X) = c, the restriction f |X is not a Borel function. Both functions
f1 and f2 constructed above are Sierpiński-Zygmund functions in the strong
sense. Notice that, under Martin’s Axiom, there exist Sierpiński-Zygmund
functions which are not Sierpiński-Zygmund functions in the strong sense.

The family RR of all functions acting from R into itself carries the canon-
ical structure of a vector space over the field R. It was demonstrated in the
article [3] that there exists a vector subspace V of RR such that all members
of V \{0} are Sierpiński-Zygmund functions and the cardinality of V is strictly
greater than the cardinality of the continuum.

The following statement strengthens the above-mentioned result of [3].
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Theorem 3. There exists a vector subspace V of RR such that:
(1) all members of V are additive functions;
(2) all members of V \ {0} are Sierpiński-Zygmund functions;
(3) the cardinality of V is strictly greater than the cardinality of the con-

tinuum.

Proof. Let {eξ : ξ < c} be again a Hamel basis of R.
Let {Kξ : ξ < c} be an increasing (by inclusion) transfinite sequence of

subfields of R such that

K0 = Q, ∪ {Kξ : ξ < c} = R, card(Kξ) ≤ card(ξ) + ω

for each ordinal number ξ < c.
Let {hξ : ξ < c} be again the family of all real-valued partial Borel func-

tions whose domains are uncountable Borel subsets of R.
Let c+ denote the successor of c, i.e., the least cardinal number strictly

greater than c. We may assume that c+ coincides with the initial ordinal
number of the same cardinality, i.e, for any ordinal number α < c+, we have
card(α) < c+.

We are going to construct by transfinite recursion a family {fα : α < c+}
of additive functions acting from R into R.

Suppose that, for an ordinal β < c+, the partial family {fα : α < β} has
already been constructed.

In order to define the additive function fβ , it suffices to define the values

fβ(eξ) (ξ < c).

Since card(β) ≤ c, we may represent {fα : α < β} in the form of a c-
sequence {gξ : ξ < c}. Here we do not assume that {gξ : ξ < c} is necessarily
injective (if card(β) < c, then it is clear that the corresponding {gξ : ξ < c}
cannot be injective).

For every ordinal ξ < c, let Vξ denote the vector space over Kξ generated
by the family of functions {gζ : ζ < ξ}.

Also, for every ordinal ξ < c, introduce the notation:
Eξ = the vector space over Q generated by the family {eζ : ζ < ξ};
E′ξ = the vector space over Q generated by the family {eζ : ζ ≤ ξ}.
Now, we define the values fβ(eξ) (ξ < c) by transfinite recursion over ξ.
Suppose that, for ξ < c, the partial family {fβ(eζ) : ζ < ξ} has already

been constructed. Then we may consider the corresponding additive functional
fβ on the vector space Eξ. As usual, denote

Vξ(E
′
ξ) = {g(x) : g ∈ Vξ, x ∈ E′ξ}
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and choose the value fβ(eξ) so that the relation

(Vξ(E
′
ξ) +Kξfβ(Eξ) + (Kξ \ {0})fβ(eξ)) ∩ (∪{hζ(E′ξ) : ζ < ξ}) = ∅

would be satisfied. It is not difficult to check that such a choice of fβ(eξ) is
always possible because of the inequalities

card(Vξ) ≤ card(ξ) + ω < c,

card(Eξ) ≤ card(E′ξ) ≤ card(ξ) + ω < c.

Proceeding in this manner, we obtain the family of real numbers fβ(eξ)
(ξ < c) and, consequently, the associated additive function fβ : R→ R.

So we come to the transfinite sequence of additive functions {fα : α < c+}
each of which acts from R into itself.

Let V denote the vector space over R generated by {fα : α < c+}. We
claim that V is as required, i.e., V satisfies conditions (1) - (3) of the theorem.

Indeed, condition (1) is trivially valid.
Let us show that condition (2) holds true, too. For this purpose, take any

nonzero function f from V and any function h from the family {hξ : ξ < c}.
The function f can be written as

f = t1fα1
+ t2fα2

+ · · ·+ tnfαn
+ tfβ ,

where n is a natural number, t1, t2, . . . , tn, t are some nonzero real numbers,
and α1, α2, . . . , αn, β are ordinals such that

α1 < α2 < · · · < αn < β < c+.

Obviously, we can find an ordinal number ξ0 < c such that

{t1, t2, . . . , tn, t} ⊂ Kξ,

{fα1 , fα2 , . . . , fαn} ⊂ {gζ : ζ < ξ},
h ∈ {hζ : ζ < ξ}

for every ordinal number ξ satisfying the inequalities ξ0 < ξ < c.
Now, let us consider an element z ∈ R whose representation via our Hamel

basis {eξ : ξ < c} looks as follows:

z = q1eζ1 + q2eζ2 + · · ·+ qmeζm + qeξ,

where m is a natural number, q1, q2, . . . , qm, q are some nonzero rational
numbers, and ζ1, ζ2, . . . , ζm, ξ are some ordinal numbers such that

ζ1 < ζ2 < · · · < ζm < ξ, ξ0 < ξ.
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Then it is not difficult to see from the definition of fβ(eξ) that f(z) 6= h(z).
Consequently, we have

card({x ∈ R : f(x) = h(x)}) ≤ card(ξ0) + ω < c,

which yields that f is a Sierpiński-Zygmund function. Moreover, f has the
following much stronger property: for every set X ⊂ R with card(X) = c, the
restriction of f to X is not a Borel function, i.e., f is a Sierpiński-Zygmund
function in the strong sense.

It remains to check the validity of condition (3). The preceding argument
shows, in particular, that if ordinals α and β are such that α < β < c+, then
the difference fα − fβ is a Sierpiński-Zygmund function and, consequently,
fα 6= fβ . It immediately follows from this observation that

card(V ) = c+ > c,

i.e., condition (3) is satisfied. Notice also that if f and f∗ are any two dis-
tinct functions from V , then the difference f − f∗ also belongs to V and is a
nonzero function. According to the said above, f−f∗ is a Sierpiński-Zygmund
function, so

card({x ∈ R : (f − f∗)(x) = 0}) < c

or, equivalently,
card({x ∈ R : f(x) = f∗(x)}) < c.

In other words, the graphs of f and f∗ are almost disjoint subsets of the plane
R2 = R×R. Theorem 3 has thus been proved.

Remark 2. Let F be a family of functions acting from R into R. The cardinal
number A(F) is usually defined as the smallest cardinality of a familyH ⊂ RR

for which there exists no h ∈ RR such that h+H ⊂ F . This cardinal number
was investigated for many concrete classes of real-valued functions on R (see
e.g. [13] and references therein). A more general concept was also introduced
in [13]. Namely, let F1 and F2 be two subfamilies of RR. Define the cardinal
number Add(F1,F2) as the smallest cardinality of a family H ⊂ RR for which
there exists no h ∈ F1 such that h+H ⊂ F2. By using an argument somewhat
similar to the proof of Theorem 3, it can be demonstrated that if F1 is the
family of all additive real-valued functions on R and F2 is the family of all
Sierpiński-Zygmund functions on R, then

Add(F1,F2) > c.

For details, see Theorem 10 (iv) from [13] and its proof. In this context, it
is natural to consider the cardinal number A(G), where G denotes the family
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of all those real-valued functions on R which simultaneously are additive and
Sierpiński-Zygmund functions. It is not difficult to check that

A(G) = Add(G,G) + 1 = 2.

Notice also that the equality A(F) = Add(F ,F) + 1 holds true for any family
F ⊂ RR (see again [13], Proposition 1).

Certain analogues of Theorems 1–3 are valid for absolutely nonmeasurable
functions on R. To formulate them, let us recall some notions.

For a given nonempty set A, we shall denote by M(A) the class of all
nonzero σ-finite continuous measures on A (their domains are, in general,
various σ-algebras of subsets of A).

A function f : A → R which is nonmeasurable with respect to any mea-
sure from M(A) can be regarded as an extremely nonmeasurable real-valued
function on A. Such an f will be called an absolutely nonmeasurable function
on A.

In order to describe such functions, we need the classical notion of a uni-
versal measure zero subset of R.

Let Z ⊂ R. We recall that Z is a universal measure zero set if, for any σ-
finite continuous Borel measure µ on R, we have µ∗(Z) = 0 where µ∗ denotes
the outer measure associated with µ.

Equivalently, we may say that Z ⊂ R is a universal measure zero set if
there exists no nonzero σ-finite continuous Borel measure on Z (where Z is
assumed to be endowed with the induced topology).

The following statement yields a characterization of absolutely nonmea-
surable functions with respect to the class M(A).

Theorem 4. For any function f : A→ R, these two assertions are equivalent:
(1) f is absolutely nonmeasurable with respect to M(A);
(2) the range of f is a universal measure zero subset of R and, for each

point t ∈ R, the set f−1(t) is at most countable.

The proof of this theorem is not difficult and can be found in [10].
It directly follows from Theorem 4 that:

(i) if a function f : A → R is injective and the range of f is a universal
measure zero set, then f is absolutely nonmeasurable with respect to
M(A);

(ii) the composition of any two functions which are absolutely nonmeasur-
able with respect to the class M(R) is absolutely nonmeasurable with
respect to the same class.
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Theorem 4 also implies that if card(A) > c, then there exist no functions on
A which are absolutely nonmeasurable with respect toM(A). More precisely,
the existence of an absolutely nonmeasurable function with respect to M(A)
is equivalent to the existence of a universal measure zero set Z ⊂ R with
card(Z) = card(A). Consequently, the following two assertions are equivalent:

(a) there exists a function f : R→ R absolutely nonmeasurable with respect
to the class M(R);

(b) there exists a universal measure zero set Z ⊂ R with card(Z) = c.

Remark 3. Several classical constructions (within ZFC theory) of uncount-
able universal measure zero subsets of R are known. Those constructions
belong to Hausdorff, Luzin, Sierpiński, Marczewski, and others. According
to them, every nonempty perfect set P ⊂ R contains an uncountable uni-
versal measure zero subset. It was also shown that there exists a model of
ZFC set theory in which the Continuum Hypothesis fails to be true and every
universal measure zero subset of R has cardinality less than or equal to ω1,
where ω1 stands for the least uncountable cardinal number. Therefore, the
existence of absolutely nonmeasurable functions acting from R into R cannot
be established within ZFC set theory.

Recall that L ⊂ R is a Luzin set if L is uncountable and the intersection
of L with any first category subset of R is at most countable.

Various properties of Luzin sets are presented in widely known text-book
by Oxtoby [12].

A set L′ ⊂ R is a generalized Luzin set if card(L′) = c and the intersection
of L′ with any first category subset of R has cardinality strictly less than c.

Notice that every Luzin subset of R and, under Martin’s Axiom, every
generalized Luzin subset of R are universal measure zero sets in R. These two
facts are easy to prove (see, e.g., [12]).

Theorem 5. Assuming Martin’s Axiom, for any function f : R → R, there
exist two injective functions f1 : R→ R and f2 : R→ R which are absolutely
nonmeasurable with respect to the class M(R) and for which the equality f =
f1 + f2 holds true.

Theorem 6. Assume Martin’s Axiom. Let f : R → R be any additive
function. Then there exist two injective additive functions f1 : R → R and
f2 : R → R which are absolutely nonmeasurable with respect to M(R) and
satisfy the equality f = f1 + f2.

The proofs of Theorems 5 and 6 are given in [9].
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Theorem 7. Under the Continuum Hypothesis, there exists a group G ⊂ RR

satisfying the relations:
(1) card(G) = c+;
(2) every g ∈ G is an additive function;
(3) every g ∈ G \ {0} is a function absolutely nonmeasurable with respect

to M(R).
In particular, assuming 2c = c+, we obtain that card(G) = card(RR).

The proof of Theorem 7 can be found in [8].

Remark 4. The usage of the Continuum Hypothesis in the formulation of
Theorem 7 is in some sense necessary. Indeed, suppose that Martin’s Axiom
and the negation of the Continuum Hypothesis hold. Then, as is well known,
we have the equalities

2ω = 2ω1 = c,

where ω1 stands, as usual, for the least uncountable ordinal number. Let
G ⊂ RR be a group satisfying condition (3) of Theorem 7. Fix a subset X of
R with card(X) = ω1. For any function g ∈ G, consider the restriction of g
to X and let Gr(g|X) denote the graph of this restriction. Thus, we have the
mapping

F (g) = Gr(g|X) (g ∈ G)

acting from G into the family of all those subsets of R×R whose cardinalities
are equal to ω1. By virtue of Theorem 4, the introduced mapping F is injective,
which yields

card(G) ≤ card((R×R)ω1) = 2ω1 = c.

So we conclude that, under Martin’s Axiom and the negation of the Continuum
Hypothesis, there is no large subgroup of RR all nonzero members of which
are absolutely nonmeasurable with respect to the class M(R).

Remark 5. As has been already mentioned, in some models of set theory
there are no absolutely nonmeasurable functions with respect to M(R). On
the other hand, if we assume Martin’s Axiom, then the class of Sierpiński-
Zygmund functions on R and the class of absolutely nonmeasurable functions
with respect toM(R) are in general position, i.e., they have nonempty inter-
section and none of them contains another one.

Finishing this note, let us introduce a version of Sierpiński-Zygmund func-
tions which is closely connected with the notion of absolute nonmeasurability.

Let T be a non-universal measure zero topological space (all singletons in
which are Borel).
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We shall say that a function f : T → R is a Sierpiński-Zygmund type
function (in the measure-theoretical sense) if, for any non-universal measure
zero set X ⊂ T , the restriction f |X is not a Borel function.

Theorem 8. Let T be a non-universal measure zero topological space (all sin-
gletons in which are Borel) and let f : T → R be an absolutely nonmeasurable
function. Then there exists a non-universal measure zero subset Y of T such
that the restriction f |Y is an injective Sierpiński-Zygmund type function on Y .

Proof. According to Theorem 4, the set ran(f) is universal measure zero and
the set f−1(x) is at most countable for every point x ∈ R. Consequently, there
exists a countable disjoint family {Yi : i ∈ I} such that ∪{Yi : i ∈ I} = T and
the restriction f |Yi is injective for any i ∈ I. Since T is not universal measure
zero, at least one set Yi is not universal measure zero either. Let Y denote
one of such sets. We assert that the restriction f |Y is an injective Sierpiński-
Zygmund type function on Y . Suppose otherwise, i.e., suppose that there
exists a non-universal measure zero set Z ⊂ Y for which the corresponding
restriction f |Z is Borel. Let µ be some probability continuous Borel measure
on Z. For every Borel subset B of ran(f), define

ν(B) = µ((f |Z)−1(B)).

In this way, we come to a probability continuous Borel measure ν on ran(f),
which contradicts the fact that ran(f) is a universal measure zero set. The
obtained contradiction finishes the proof.
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