A MEASURE ZERO SET IN THE PLANE WITH ABSOLUTELY NONMEASURABLE LINEAR SECTIONS

ALEXANDER KHARAZISHVILI

Abstract. It is proved that there exists a translation invariant extension μ of the two-dimensional Lebesgue measure λ_2 on the plane \mathbf{R}^2 such that μ is metrically isomorphic to λ_2 and all linear sections of some μ -measure zero set are absolutely nonmeasurable.

Throughout this paper, we use the following fairly standard notation.

 $X \triangle Y$ is the symmetric difference of two sets X and Y;

dom(f) is the domain of a function f;

 $\operatorname{card}(X)$ is the cardinality of a set X;

 ω is the least infinite ordinal (cardinal) number;

R is the real line equipped with the group of all its translations;

 \mathbf{c} is the cardinality of the continuum, i.e., \mathbf{c} is card(\mathbf{R});

 λ is the standard one-dimensional Lebesgue measure on **R**;

 \mathbf{R}^n is the Euclidean *n*-dimensional space equipped with the group of all its translations;

 λ_n is the standard *n*-dimensional Lebesgue measure on \mathbf{R}^n (in particular, $\lambda_1 = \lambda$).

As is widely known, if Z is a λ_2 -measure zero subset of the Euclidean plane \mathbb{R}^2 , then almost all (with respect to λ) linear sections of Z, parallel to the coordinate axes, i.e., λ -almost all sets of the form

$$\{y : (x, y) \in Z\}$$
 $(x \in \mathbf{R}),$
 $\{x : (x, y) \in Z\}$ $(y \in \mathbf{R}),$

are of λ -measure zero. This fact is a direct consequence of Fubini's classical theorem. More generally, it follows from the same theorem that if l is any straight line in \mathbb{R}^2 , then λ -almost all linear sections of Z, parallel to l, are of λ -measure zero.

The main goal of the present paper is to show that for a certain translation invariant extension μ of λ_2 , which is metrically isomorphic to λ_2 , the above-mentioned fact fails to be true in a very strong sense.

For our further purposes, we need some auxiliary notions from the general theory of invariant (quasi-invariant) measures (see, e.g., [1, 6, 11]).

Let E be an infinite ground set and let G be a group of transformations of E.

A nonzero complete σ -finite measure θ on E is called quasi-invariant with respect to G (in short, G-quasi-invariant) if the domain of θ is a G-invariant σ -algebra of subsets of E and the family of all θ -measure zero sets is a G-invariant σ -ideal of subsets of E.

A set $X \subset E$ is called almost G-invariant in E if for every transformation $g \in G$ one has

$$\operatorname{card}(g(X) \triangle X) < \operatorname{card}(E).$$

Almost G-invariant subsets of E play an important role in many topics of general topology and of the theory of invariant (quasi-invariant) measures (see, e.g., [1-4, 6, 10, 11]).

A set $Y \subset E$ is called G-absolutely nonmeasurable if for every nonzero σ -finite G-quasi-invariant measure μ on E one has $Y \notin \operatorname{dom}(\mu)$.

²⁰²⁰ Mathematics Subject Classification. 28A05, 28D05.

Key words and phrases. Invariant (quasi-invariant) measure; Almost invariant set; Measure zero set; Absolutely nonmeasurable set.

In other words, $Y \subset E$ is G-absolutely nonmeasurable if Y is absolutely nonmeasurable with respect to the class of all nonzero σ -finite G-quasi-invariant measures on E.

In particular, if E is a group, then one can take as G the group of all left translations of E. In such a case, identifying E and G, one can speak of E-absolutely nonmeasurable subsets of E.

Lemma 1. Let (G, +) be an uncountable commutative group identified with the group of all its translations, and let Y be a subset of G.

The following two assertions are equivalent:

(1) there exists a countable family $\{g_j : j \in J\}$ of elements of G such that

$$\cup \{q_j + Y : j \in J\} = G;$$

(2) there exists a G-absolutely nonmeasurable set entirely contained in Y.

For a detailed proof of Lemma 1, see [7].

We shall use this lemma in the special case where G is a group, isomorphic to the additive group of \mathbf{R} .

More precisely, let l be any straight line in the plane \mathbb{R}^2 . For l, we may consider the family G_l of all those translations g of \mathbb{R}^2 which satisfy g(l) = l. In other words, G_l is the stabilizer of l in the group of all translations of \mathbb{R}^2 . Also, l is equipped with the isomorphic image μ_l of λ and μ_l is invariant with respect to G_l . But there are many other measures on l which are invariant (or, more generally, quasi-invariant) under G_l . Let us denote by \mathcal{M}_l the class of all nonzero σ -finite G_l -quasi-invariant measures on l (notice that the domains of such measures are various G_l -invariant σ -algebras of subsets of l).

According to the general definition presented above, we say that a set $Y \subset l$ is G_l -absolutely nonmeasurable in l if Y is nonmeasurable with respect to each measure from the class \mathcal{M}_l .

Using Lemma 1, it is not hard to show the validity of the next auxiliary statement.

Lemma 2. Let l be a straight line in the plane \mathbb{R}^2 and let X be a set in l such that $\operatorname{card}(l \setminus X) < \mathbf{c}$. Then X contains a G_l -absolutely nonmeasurable subset of l.

Proof. Since card $(l \setminus X) < \mathbf{c}$, there is an element $g \in G_l$ such that

$$(g + (l \setminus X)) \cap (l \setminus X) = \emptyset$$

or, equivalently,

$$(g+X) \cup X = l.$$

Now, taking into account Lemma 1, we conclude that X contains some G_l -absolutely nonmeasurable set.

Lemma 3. There exists a set $Z \subset \mathbf{R}^2$ which satisfies the following three conditions:

(1) Z is almost \mathbf{R}^2 -invariant, i.e., $\operatorname{card}((h+Z)\triangle Z) < \mathbf{c}$ for every $h \in \mathbf{R}^2$;

- (2) the inner λ_2 -measure of the set Z is equal to zero;
- (3) for any straight line l in \mathbb{R}^2 , the set $l \setminus Z$ has cardinality strictly less than c.

Proof. We follow the argument used in [5].

Let α be the least ordinal number of cardinality c. We introduce the following notation.

 $\{l_{\xi}: \xi < \alpha\}$ is the injective family of all straight lines in \mathbb{R}^2 .

 $\{F_{\xi}: \xi < \alpha\}$ is the family of all closed subsets of \mathbf{R}^2 having strictly positive λ_2 -measure.

 $\{G_{\xi}: \xi < \alpha\}$ is a family of groups of translations of \mathbb{R}^2 such that:

(a) $\{G_{\xi} : \xi < \alpha\}$ is increasing by the standard inclusion relation;

(b) $\operatorname{card}(G_{\xi}) \leq \operatorname{card}(\xi) + \omega$ for each ordinal $\xi < \alpha$;

(c) $\cup \{G_{\xi} : \xi < \alpha\}$ is the group of all translations of \mathbb{R}^2 .

Further, we construct by transfinite recursion a family $\{z'_{\xi} : \xi < \alpha\}$ of points of \mathbb{R}^2 .

Suppose that for an ordinal $\xi < \alpha$, the partial family $\{z'_{\zeta} : \zeta < \xi\}$ has already been defined. Let us put

$$L_{\xi} = G_{\xi}(\cup\{l_{\zeta}: \zeta < \xi\}) \cup G_{\xi}(\{z_{\zeta}': \zeta < \xi\}).$$

Keeping in mind the fact that $\lambda_2(F_{\xi}) > 0$, it is not hard to show that there exists a point $z' \in F_{\xi} \setminus L_{\xi}$. Then we define $z'_{\xi} = z'$.

Proceeding in this manner, we obtain the required α -sequence $\{z'_{\xi} : \xi < \alpha\}$ of points of \mathbb{R}^2 . It follows from the above construction that the set

$$Z' = \cup \{G_{\xi}(z'_{\xi}) : \xi < \alpha\}$$

is almost \mathbf{R}^2 -invariant and λ_2 -thick in \mathbf{R}^2 . Moreover, it is not difficult to check that

 $\operatorname{card}(Z' \cap l) < \mathbf{c}$

for every straight line l in \mathbb{R}^2 . These properties of Z' imply that the set

$$Z = \mathbf{R}^2 \setminus Z'$$

satisfies all conditions (1), (2) and (3) of Lemma 3, so is as required.

Lemma 4. Let Z be a subset of \mathbb{R}^2 as in Lemma 3.

- There exists a complete translation invariant measure μ on \mathbf{R}^2 such that:
- (1) μ is an extension of λ_2 ;
- (2) $Z \in \operatorname{dom}(\mu)$ and $\mu(Z) = 0$;

(3) every μ -measurable set $X \subset \mathbf{R}^2$ admits a representation in the form

$$X = (X_0 \cup A) \setminus B,$$

where $X_0 \in \text{dom}(\lambda_2)$ and $\mu(A) = \mu(B) = 0$ (in particular, the measures μ and λ_2 are metrically isomorphic).

Proof. Since Z satisfies conditions (1), (2) and (3) of Lemma 3, the required measure μ is obtained in the standard manner, by applying Marczewski's method of extending measures (see, e.g., [8,9,11]). Moreover, slightly modifying the transfinite construction of Z, it can be established that μ is a measure invariant under the group of all isometric transformations of \mathbb{R}^2 .

Using the above lemmas, we can prove the following statement.

Theorem 1. For the measure μ indicated in Lemma 4, there exists a set $W \subset \mathbf{R}^2$ such that:

- (1) $W \subset Z$ and, consequently, $\mu(W) = 0$;
- (2) for any straight line l in \mathbb{R}^2 , the set $l \cap W$ is G_l -absolutely nonmeasurable.

Let α be the least ordinal number of cardinality **c**. We again denote by $\{l_{\xi} : \xi < \alpha\}$ the injective family of all straight lines in \mathbb{R}^2 .

Using the method of transfinite recursion, we construct a disjoint family $\{W_{\xi} : \xi < \alpha\}$ of sets which fulfil the following two conditions:

(a) $W_{\xi} \subset l_{\xi} \cap Z$ for each ordinal $\xi < \alpha$;

(b) W_{ξ} is $G_{l_{\xi}}$ -absolutely nonmeasurable for each ordinal $\xi < \alpha$.

Assume that, for an ordinal $\xi < \alpha$, the partial disjoint family $\{W_{\zeta} : \zeta < \xi\}$ of sets has already been constructed so that

$$W_{\zeta} \subset l_{\zeta} \ (\zeta < \xi).$$

Take the straight line l_{ξ} and consider the set

$$P_{\xi} = (Z \cap l_{\xi}) \setminus \cup \{l_{\zeta} : \zeta < \xi\}.$$

Since $\operatorname{card}(l_{\xi} \setminus Z) < \mathbf{c}$, it is not difficult to verify that

$$\operatorname{card}(l_{\xi} \setminus P_{\xi}) < \mathbf{c}.$$

According to Lemma 2, there exists a set $T \subset P_{\xi}$ which is $G_{l_{\xi}}$ -absolutely nonmeasurable. We then define $W_{\xi} = T$.

Proceeding in this manner, we get the disjoint family of sets $\{W_{\xi} : \xi < \alpha\}$. Finally, putting

$$W = \cup \{W_{\xi} : \xi < \alpha\},\$$

we obtain the set W satisfying conditions (1) and (2) of Theorem 1.

The next auxiliary statement generalizes Lemma 2 to the case of \mathbf{R}^n .

Lemma 5. Let $n \ge 1$ be a natural number and let $\{\Gamma_j : j \in J\}$ be a family of affine hyperplanes in the Euclidean space \mathbb{R}^n such that $\operatorname{card}(J) < \mathbb{C}$.

Then the set $\mathbf{R}^n \setminus \bigcup \{ \Gamma_j : j \in J \}$ contains an \mathbf{R}^n -absolutely nonmeasurable subset.

This lemma can be deduced from the general Lemma 1.

Using Lemma 5, we obtain an analog of Theorem 1 for the space \mathbb{R}^n and for the Lebesgue measure λ_n , where $n \geq 3$.

Theorem 2. For any natural number $n \ge 3$, there exist a complete measure ν on \mathbb{R}^n and a set $V \subset \mathbb{R}^n$ such that:

(1) ν extends λ_n and is invariant under the group of all isometric transformations of \mathbf{R}^n ;

(2) ν is metrically isomorphic to λ_n ;

(3) $\nu(V) = 0;$

(4) for every affine hyperplane Γ in \mathbb{R}^n , the set $V \cap \Gamma$ is absolutely nonmeasurable with respect to the class of all nonzero σ -finite translation quasi-invariant measures on Γ .

A set $U \subset \mathbf{R}^n$ is called \mathbf{R}^n -negligible in \mathbf{R}^n if U satisfies the following two relations:

(i) there exists at least one nonzero σ -finite \mathbf{R}^n -quasi-invariant measure θ such that $U \in \operatorname{dom}(\theta)$ (equivalently, U is not \mathbf{R}^n -absolutely nonmeasurable);

(ii) for every σ -finite \mathbb{R}^n -quasi-invariant measure θ' such that $U \in \operatorname{dom}(\theta')$, the equality $\theta'(U) = 0$ holds true.

Some structural properties of \mathbf{R}^n -negligible sets are considered in [4] and [6].

It would be interesting to study the question of whether there exists an \mathbb{R}^n -negligible set $U \subset \mathbb{R}^n$ such that, for any affine hyperplane Γ in \mathbb{R}^n , the set $U \cap \Gamma$ is absolutely nonmeasurable with respect to the class of all nonzero σ -finite translation quasi-invariant measures on Γ .

Acknowledgement

This work was partially supported by the Shota Rustaveli National Science Foundation of Georgia, Grant FR-18-6190.

References

- E. Hewitt, K. A. Ross, Abstract Harmonic Analysis. vol. I: Structure of topological groups. Integration theory, group representations. Die Grundlehren der mathematischen Wissenschaften, Bd. 115 Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
- 2. A. Hulanicki, Invariant extensions of the Lebesgue measure. Fund. Math. 51 (1962/63), 111-115.
- S. Kakutani, J. C. Oxtoby, Construction of a non-separable invariant extension of the Lebesgue measure space. Ann. of Math. (2) 52 (1950), 580–590.
- 4. A. Kharazishvili, Invariant Extensions of Lebesgue Measure. (Russian) Tbilis. Gos. Univ., Tbilisi, 1983.
- A. Kharazishvili, Subsets of the plane with small linear sections and invariant extensions of the two-dimensional Lebesgue measure. *Georgian Math. J.* 6 (1999), no. 5, 441–446.
- A. Kharazishvili, Topics in Measure Theory and Real Analysis. Atlantis Studies in Mathematics, 2. Atlantis Press, Paris; World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009.
- A. Kharazishvili, A characterization of sets containing absolutely nonmeasurable subsets. Georgian Math. J. 24 (2017), no. 2, 211–215.
- 8. E. Marczewski (E. Szpilrajn), Sur l'extension de la mesure lebesguienne. Fund. Math. 25 (1935), no. 1, 551–558.
- E. Marczewski (E. Szpilrajn), On problems of the theory of measure. (Russian) Uspekhi Mat. Nauk. vol. 1, 12 (1946), no. 2, 179–188.
- J. C. Oxtoby, Measure and Category. A survey of the analogies between topological and measure spaces. Graduate Texts in Mathematics, vol. 2. Springer-Verlag, New York-Berlin, 1971.
- Sh. S. Pkhakadze, The theory of Lebesgue measure. (Russian) Akad. Nauk Gruzin. SSR. Trudy Tbiliss. Mat. Inst. Razmadze 25 (1958), 3–271.

(Received 28.06.2020)

A. RAZMADZE MATHEMATICAL INSTITUTE OF I. JAVAKHISHVILI TBILISI STATE UNIVERSITY, 6 TAMARASHVILI STR., TBILISI 0177, GEORGIA

I. VEKUA INSTITUTE OF APPLIED MATHEMATICS, 2 UNIVERSITY STR., TBILISI 0186, GEORGIA *E-mail address:* kharaz2@yahoo.com