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A MEASURE ZERO SET IN THE PLANE WITH ABSOLUTELY

NONMEASURABLE LINEAR SECTIONS

ALEXANDER KHARAZISHVILI

Abstract. It is proved that there exists a translation invariant extension µ of the two-dimensional
Lebesgue measure λ2 on the plane R2 such that µ is metrically isomorphic to λ2 and all linear

sections of some µ-measure zero set are absolutely nonmeasurable.

Throughout this paper, we use the following fairly standard notation.
X4Y is the symmetric difference of two sets X and Y ;
dom(f) is the domain of a function f ;
card(X) is the cardinality of a set X;
ω is the least infinite ordinal (cardinal) number;
R is the real line equipped with the group of all its translations;
c is the cardinality of the continuum, i.e., c is card(R);
λ is the standard one-dimensional Lebesgue measure on R;
Rn is the Euclidean n-dimensional space equipped with the group of all its translations;
λn is the standard n-dimensional Lebesgue measure on Rn (in particular, λ1 = λ).

As is widely known, if Z is a λ2-measure zero subset of the Euclidean plane R2, then almost all
(with respect to λ) linear sections of Z, parallel to the coordinate axes, i.e., λ-almost all sets of the
form

{y : (x, y) ∈ Z} (x ∈ R),

{x : (x, y) ∈ Z} (y ∈ R),

are of λ-measure zero. This fact is a direct consequence of Fubini’s classical theorem. More generally,
it follows from the same theorem that if l is any straight line in R2, then λ-almost all linear sections
of Z, parallel to l, are of λ-measure zero.

The main goal of the present paper is to show that for a certain translation invariant extension µ
of λ2, which is metrically isomorphic to λ2, the above-mentioned fact fails to be true in a very strong
sense.

For our further purposes, we need some auxiliary notions from the general theory of invariant
(quasi-invariant) measures (see, e.g., [1, 6, 11]).

Let E be an infinite ground set and let G be a group of transformations of E.
A nonzero complete σ-finite measure θ on E is called quasi-invariant with respect to G (in short,

G-quasi-invariant) if the domain of θ is a G-invariant σ-algebra of subsets of E and the family of all
θ-measure zero sets is a G-invariant σ-ideal of subsets of E.

A set X ⊂ E is called almost G-invariant in E if for every transformation g ∈ G one has

card(g(X)4X) < card(E).

Almost G-invariant subsets of E play an important role in many topics of general topology and of
the theory of invariant (quasi-invariant) measures (see, e.g., [1–4,6, 10,11]).

A set Y ⊂ E is called G-absolutely nonmeasurable if for every nonzero σ-finite G-quasi-invariant
measure µ on E one has Y 6∈ dom(µ).
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In other words, Y ⊂ E is G-absolutely nonmeasurable if Y is absolutely nonmeasurable with respect
to the class of all nonzero σ-finite G-quasi-invariant measures on E.

In particular, if E is a group, then one can take as G the group of all left translations of E. In such
a case, identifying E and G, one can speak of E-absolutely nonmeasurable subsets of E.

Lemma 1. Let (G,+) be an uncountable commutative group identified with the group of all its trans-
lations, and let Y be a subset of G.

The following two assertions are equivalent:
(1) there exists a countable family {gj : j ∈ J} of elements of G such that

∪{gj + Y : j ∈ J} = G;

(2) there exists a G-absolutely nonmeasurable set entirely contained in Y .

For a detailed proof of Lemma 1, see [7].
We shall use this lemma in the special case where G is a group, isomorphic to the additive group

of R.
More precisely, let l be any straight line in the plane R2. For l, we may consider the family Gl of all

those translations g of R2 which satisfy g(l) = l. In other words, Gl is the stabilizer of l in the group
of all translations of R2. Also, l is equipped with the isomorphic image µl of λ and µl is invariant
with respect to Gl. But there are many other measures on l which are invariant (or, more generally,
quasi-invariant) under Gl. Let us denote by Ml the class of all nonzero σ-finite Gl-quasi-invariant
measures on l (notice that the domains of such measures are various Gl-invariant σ-algebras of subsets
of l).

According to the general definition presented above, we say that a set Y ⊂ l is Gl-absolutely
nonmeasurable in l if Y is nonmeasurable with respect to each measure from the class Ml.

Using Lemma 1, it is not hard to show the validity of the next auxiliary statement.

Lemma 2. Let l be a straight line in the plane R2 and let X be a set in l such that card(l \X) < c.
Then X contains a Gl-absolutely nonmeasurable subset of l.

Proof. Since card(l \X) < c, there is an element g ∈ Gl such that

(g + (l \X)) ∩ (l \X) = ∅

or, equivalently,

(g +X) ∪X = l.

Now, taking into account Lemma 1, we conclude that X contains some Gl-absolutely nonmeasurable
set. �

Lemma 3. There exists a set Z ⊂ R2 which satisfies the following three conditions:
(1) Z is almost R2-invariant, i.e., card((h+ Z)4Z) < c for every h ∈ R2;
(2) the inner λ2-measure of the set Z is equal to zero;
(3) for any straight line l in R2, the set l \ Z has cardinality strictly less than c.

Proof. We follow the argument used in [5].
Let α be the least ordinal number of cardinality c. We introduce the following notation.
{lξ : ξ < α} is the injective family of all straight lines in R2.
{Fξ : ξ < α} is the family of all closed subsets of R2 having strictly positive λ2-measure.
{Gξ : ξ < α} is a family of groups of translations of R2 such that:
(a) {Gξ : ξ < α} is increasing by the standard inclusion relation;
(b) card(Gξ) ≤ card(ξ) + ω for each ordinal ξ < α;
(c) ∪{Gξ : ξ < α} is the group of all translations of R2.
Further, we construct by transfinite recursion a family {z′ξ : ξ < α} of points of R2.

Suppose that for an ordinal ξ < α, the partial family {z′ζ : ζ < ξ} has already been defined. Let us
put

Lξ = Gξ(∪{lζ : ζ < ξ}) ∪Gξ({z′ζ : ζ < ξ}).
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Keeping in mind the fact that λ2(Fξ) > 0, it is not hard to show that there exists a point z′ ∈ Fξ \Lξ.
Then we define z′ξ = z′.

Proceeding in this manner, we obtain the required α-sequence {z′ξ : ξ < α} of points of R2. It
follows from the above construction that the set

Z ′ = ∪{Gξ(z′ξ) : ξ < α}

is almost R2-invariant and λ2-thick in R2. Moreover, it is not difficult to check that

card(Z ′ ∩ l) < c

for every straight line l in R2. These properties of Z ′ imply that the set

Z = R2 \ Z ′

satisfies all conditions (1), (2) and (3) of Lemma 3, so is as required. �

Lemma 4. Let Z be a subset of R2 as in Lemma 3.
There exists a complete translation invariant measure µ on R2 such that:
(1) µ is an extension of λ2;
(2) Z ∈ dom(µ) and µ(Z) = 0;
(3) every µ-measurable set X ⊂ R2 admits a representation in the form

X = (X0 ∪A) \B,
where X0 ∈ dom(λ2) and µ(A) = µ(B) = 0 (in particular, the measures µ and λ2 are metrically
isomorphic).

Proof. Since Z satisfies conditions (1), (2) and (3) of Lemma 3, the required measure µ is obtained
in the standard manner, by applying Marczewski’s method of extending measures (see, e.g., [8,9,11]).
Moreover, slightly modifying the transfinite construction of Z, it can be established that µ is a measure
invariant under the group of all isometric transformations of R2. �

Using the above lemmas, we can prove the following statement.

Theorem 1. For the measure µ indicated in Lemma 4, there exists a set W ⊂ R2 such that:
(1) W ⊂ Z and, consequently, µ(W ) = 0;
(2) for any straight line l in R2, the set l ∩W is Gl-absolutely nonmeasurable.

Let α be the least ordinal number of cardinality c. We again denote by {lξ : ξ < α} the injective
family of all straight lines in R2.

Using the method of transfinite recursion, we construct a disjoint family {Wξ : ξ < α} of sets which
fulfil the following two conditions:

(a) Wξ ⊂ lξ ∩ Z for each ordinal ξ < α;
(b) Wξ is Glξ -absolutely nonmeasurable for each ordinal ξ < α.
Assume that, for an ordinal ξ < α, the partial disjoint family {Wζ : ζ < ξ} of sets has already been

constructed so that
Wζ ⊂ lζ (ζ < ξ).

Take the straight line lξ and consider the set

Pξ = (Z ∩ lξ) \ ∪{lζ : ζ < ξ}.
Since card(lξ \ Z) < c, it is not difficult to verify that

card(lξ \ Pξ) < c.

According to Lemma 2, there exists a set T ⊂ Pξ which is Glξ -absolutely nonmeasurable. We then
define Wξ = T .

Proceeding in this manner, we get the disjoint family of sets {Wξ : ξ < α}. Finally, putting

W = ∪{Wξ : ξ < α},
we obtain the set W satisfying conditions (1) and (2) of Theorem 1.

The next auxiliary statement generalizes Lemma 2 to the case of Rn.
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Lemma 5. Let n ≥ 1 be a natural number and let {Γj : j ∈ J} be a family of affine hyperplanes in
the Euclidean space Rn such that card(J) < c.

Then the set Rn \ ∪{Γj : j ∈ J} contains an Rn-absolutely nonmeasurable subset.

This lemma can be deduced from the general Lemma 1.
Using Lemma 5, we obtain an analog of Theorem 1 for the space Rn and for the Lebesgue mea-

sure λn, where n ≥ 3.

Theorem 2. For any natural number n ≥ 3, there exist a complete measure ν on Rn and a set
V ⊂ Rn such that:

(1) ν extends λn and is invariant under the group of all isometric transformations of Rn;
(2) ν is metrically isomorphic to λn;
(3) ν(V ) = 0;
(4) for every affine hyperplane Γ in Rn, the set V ∩ Γ is absolutely nonmeasurable with respect to

the class of all nonzero σ-finite translation quasi-invariant measures on Γ.

A set U ⊂ Rn is called Rn-negligible in Rn if U satisfies the following two relations:
(i) there exists at least one nonzero σ-finite Rn-quasi-invariant measure θ such that U ∈ dom(θ)

(equivalently, U is not Rn-absolutely nonmeasurable);
(ii) for every σ-finite Rn-quasi-invariant measure θ′ such that U ∈ dom(θ′), the equality θ′(U) = 0

holds true.
Some structural properties of Rn-negligible sets are considered in [4] and [6].
It would be interesting to study the question of whether there exists an Rn-negligible set U ⊂ Rn

such that, for any affine hyperplane Γ in Rn, the set U ∩ Γ is absolutely nonmeasurable with respect
to the class of all nonzero σ-finite translation quasi-invariant measures on Γ.
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