ON NONMEASURABLE UNIFORM SUBSETS OF THE EUCLIDEAN PLANE

ALEXANDER KHARAZISHVILI

Abstract. It is shown that the cardinality continuum is not measurable in the Ulam sense if and only if for every nonzero σ -finite diffused measure μ on \mathbf{R}^2 there is a μ -nonmeasurable uniform subset of \mathbf{R}^2 . Several related results are also considered.

The main goal of this communication is to discuss briefly uniform subsets of the Euclidean plane \mathbb{R}^2 in the context of their nonmeasurability in some generalized sense.

Let l be a straight line in the plane \mathbf{R}^2 considered as a certain direction in \mathbf{R}^2 .

A set $Z \subset \mathbf{R}^2$ is called uniform in direction l if any line of \mathbf{R}^2 , parallel to l, meets Z at most at one point.

A set $Z \subset \mathbf{R}^2$ is called a graph in direction l if any line of \mathbf{R}^2 , parallel to l, meets Z exactly at one point.

Accordingly, we say that a set $Z \subset \mathbf{R}^2$ is uniform in \mathbf{R}^2 (is a graph in \mathbf{R}^2) if there exists a line l in \mathbf{R}^2 such that Z is uniform (is a graph) in direction l.

There were established interesting properties of uniform subsets of the plane, which are closely related to the Continuum Hypothesis (**CH**) and to certain propositions in the plane geometry (see, e.g., [1-3, 8, 9]).

Some other properties of uniform sets in \mathbf{R}^2 are connected (more or less) with the notion of measurability. To illustrate the above-said, let us give several examples.

1. Every uniform set is G-negligible, where G denotes the group of all translations of \mathbf{R}^2 (see [5,6]).

2. There exist uniform sets which are not G-absolutely negligible (see again [5, 6]).

3. For any straight line l in \mathbf{R}^2 , there exists a *G*-invariant measure μ_l on \mathbf{R}^2 which extends the standard Lebesgue measure λ_2 on \mathbf{R}^2 and is such that all uniform sets in direction l belong to dom (μ_l) (it is clear that if Z is uniform in direction l, then $\mu_l(Z) = 0$).

4. There exists a graph in direction l, which is a Hamel basis of \mathbf{R}^2 . Since every Hamel basis of \mathbf{R}^2 is *G*-absolutely negligible (see [4]), one can conclude that there exist *G*-absolutely negligible graphs in \mathbf{R}^2 .

5. No finite family of uniform subsets of \mathbf{R}^2 can be a covering of \mathbf{R}^2 (see [8]).

Observe that the last fact easily follows from Banach's classical result stating that there exists a finitely additive translation invariant measure on \mathbf{R}^2 , which extends λ_2 and is defined for all bounded subsets of \mathbf{R}^2 . Notice also that the analogous fact remains valid for uniform hyper-surfaces in the multi-dimensional Euclidean spaces.

In the sequel, we need a simple auxiliary proposition.

Let l be any fixed straight line in \mathbb{R}^2 and let $Z \subset \mathbb{R}^2$ be uniform in direction l. The following two assertions are valid:

(a) every subset of Z is uniform in the same direction l;

(b) $Z = Z_1 \cap Z_2$, where Z_1 and Z_2 are two graphs in the same direction l.

Recall that a measure μ defined on some σ -algebra of subsets of a ground set E is diffused (or continuous) if all singletons in E belong to dom(μ) and μ vanishes on all of them.

Also, recall that a cardinal number \mathbf{a} is measurable in Ulam's sense if there exists a probability diffused measure whose domain is the power set of \mathbf{a} .

Theorem 1. Let $\{l_j : j \in J\}$ be a countably infinite family of pairwise non-parallel directions in \mathbb{R}^2 . The following two assertions are equivalent:

²⁰²⁰ Mathematics Subject Classification. 28A05, 28D05.

Key words and phrases. Euclidean plane; Uniform set; Nonmeasurable set; Cardinality of the continuum.

A. KHARAZISHVILI

(1) the cardinality continuum \mathbf{c} is not measurable in Ulam's sense;

(2) for any nonzero σ -finite diffused measure μ on \mathbf{R}^2 , there exist a direction l_j and a graph in this direction, which is nonmeasurable with respect to μ .

The proof of Theorem 1 is essentially based on the profound result of Davies [3].

Remark 1. Let $\{l_k : k \in K\}$ be a fixed finite family of pairwise non-parallel directions in \mathbb{R}^2 and suppose that for any nonzero σ -finite diffused measure μ on \mathbb{R}^2 there exist a direction l_k and a uniform set in this direction, which is nonmeasurable with respect to μ . Then, using the result from [1], it can be shown that $\mathbf{c} = \omega_n$ for some natural number n. So, in this case, \mathbf{c} is substantially restricted in its size and automatically turns out to be nonmeasurable in Ulam's sense.

Theorem 2. Assume Martin's Axiom (MA) and let $\{l_j : j \in J\}$ be a countably infinite family of pairwise non-parallel directions in \mathbb{R}^2 .

- Then there exists a countable family $\{Z_t : t \in T\}$ of sets in the plane \mathbb{R}^2 such that:
- (1) every set Z_t is a graph in some direction $l_{j(t)}$, where $j(t) \in J$;

(2) for any nonzero σ -finite diffused measure μ on \mathbb{R}^2 , at least one set from the family $\{Z_t : t \in T\}$ is nonmeasurable with respect to μ .

The proof of Theorem 2 is again based on the result of Davies [3] and on the fact that under **MA** there exists a countable family $\{B_i : i \in I\}$ of subsets of \mathbb{R}^2 , which is absolutely nonmeasurable with respect to the family of all nonzero σ -finite diffused measures on \mathbb{R}^2 . Actually, the role of $\{B_i : i \in I\}$ can be played by a countable topological base of some generalized Luzin subset of \mathbb{R}^2 .

Remark 2. Under the assumption that **c** is not measurable in Ulam's sense, the problem of generalized nonmeasurability can be considered for other classes of point sets in \mathbf{R}^2 , e.g., for the class of all Vitali subsets of \mathbf{R}^2 , for the class of all Bernstein subsets of \mathbf{R}^2 , or for the class of all Hamel bases of \mathbf{R}^2 (cf. [6,7]).

References

- 1. F. Bagemihl, Decompositions of the plane into sets, and coverings of the plane with curves. *Czechoslovak Math. J.* **18(93)** (1968), 616–621.
- 2. R. O. Davies, The power of the continuum and some propositions of plane geometry. Fund. Math. 52 (1963), 277–281.
- 3. R. O. Davies, Covering the plane with denumerably many curves. J. London Math. Soc. 38 (1963), 433–438.
- 4. A. B. Kharazishvili, On a property of Hamel bases. (Russian) Bull. Acad. Sci. GSSR 95 (1979), no. 2, 277–280.
- A. B. Kharazishvili, Transformation Groups and Invariant Measures. Set-theoretical aspects. World Scientific Publishing Co., Inc., River Edge, NJ, 1998.
- A. B. Kharazishvili, On Mazurkiewicz sets from the measure-theoretical point of view. Bull. TICMI 21 (2017), no. 1, 45–54.
- 7. A. B. Kharazishvili, On the generalized nonmeasurability of Vitali sets and Bernstein sets. *Georgian Math. J.* https://doi.org/10.1515/gmj-2020-2083.
- 8. S. Mazurkiewicz, Sur la décomposition du plan en courbes. Fund. Math. 21 (1933), 43-45.
- 9. W. Sierpiński, Hypothèse du Continu. Monografje Matematyczne, Tome 4, Warszawa-Lwow, Subwencji Funduszu Kultur, 1934.

(Received 13.09.2020)

A. RAZMADZE MATHEMATICAL INSTITUTE OF I. JAVAKHISHVILI TBILISI STATE UNIVERSITY, 6 TAMARASHVILI STR., TBILISI 0186, GEORGIA

I. VEKUA INSTITUTE OF APPLIED MATHEMATICS, 2 UNIVERSITY STR., TBILISI 0186, GEORGIA *E-mail address:* kharaz2@yahoo.com