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It is proved that there exists a T2-negligible set in the plane R2, which simultaneously is
S2-absolutely nonmeasurable. This result answers one of the questions posed in [5].
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Let (G,+) be a commutative group identified with the group of all its translations
and let H be an uncountable subgroup of G. The following classes of subsets of G
were studied in connection with some general questions of the theory of nonzero
σ-finite H-invariant (H-quasi-invariant) measures on G:

(i) the class of all almost H-invariant subsets of G;
(ii) the class of all H-absolutely negligible sets in G;
(iii) the class of all H-negligible sets in G;
(iv) the class of all H-absolutely nonmeasurable sets in G.
For the precise definitions of these sets and more information about them and

their properties, see [4], [5].
Notice that almost H-invariant subsets of G and H-absolutely negligible subsets

of G turned out to be useful for constructing proper extensions of nonzero σ-
finite H-invariant (H-quasi-invariant) measures on G (see [3], [4], [5], [8], and the
references therein).

The following facts should also be mentioned:
(a) there exists a countable family {Xi : i ∈ I} of G-absolutely negligible sets in

G such that G = ∪{Xi : i ∈ I};
(b) there exist three G-negligible sets X, Y , Z in G such that X ∪ Y ∪ Z = G;
(c) there exist two G-negligible sets A and B in G such that A ∪ B is a G-

absolutely nonmeasurable set in G.
The proofs of these facts can be found in [3], [4], [5]. The most interesting cases

occur when the role of H is played by one of the following two groups:
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TG = the group of all translations of G (which may be identified with the original
group G);

SG = the group, generated by all central symmetries of G.
Recall that a central symmetry of G is any transformation sh of G having the

form

sh(g) = 2h− g (g ∈ G),

where h is a fixed element of G (the center of symmetry). If h = 0, then we have
the central symmetry s0 of G whose center coincides with the neutral element 0 in
G.

It is clear that the group SG is generated by s0 and all translations of G. Besides,
the equality

s0 ◦ g = (−g) ◦ s0

holds true for each element g of G.

Remark 1 : Obviously, if for h ∈ G \ {0}, the relation 2h = 0 is valid, then
sh = s0. It may happen that in an uncountable commutative group (G,+) the
equality 2g = 0 is fulfilled for all elements g of G. In this case s0 coincides with the
identity transformation of G, so TG = SG. The standard example of such a (G,+)
is Cantor’s discontinuum, i.e., the topological group ({0, 1}ω, +2), where ω denotes
the least infinite cardinal (ordinal) number and +2 denotes the addition operation
modulo 2.

We have the following statement (see [3]).

Theorem 1 : For every uncountable commutative group (G,+) and for any subset
X of G, these two assertions are equivalent:

(1) X is TG-absolutely negligible in G;
(2) X is SG-absolutely negligible in G.

Proof : In fact, Theorem 1 is proved in [3]. Notice only that the argument pre-
sented in [3] is concerned with the case of the additive group (R, +), where R
denotes the set of all real numbers. However, the same argument works in the
general case of all uncountable commutative groups. ¤

The equivalence of the assertions (1) and (2) of Theorem 1 fails to be true if we
replace TG-absolutely negligible subsets of G and SG-absolutely negligible subsets
of G, respectively, by TG-negligible subsets of G and SG-negligible subsets of G.

Consider the special case (G,+) = (R2, +), where R2 is the Euclidean plane.
Let T2 be the group of all translations of R2 and let S2 be the group generated by
all central symmetries of R2. The following question was formulated in Chapter 14
of [5]:

Does there exist a T2-negligible subset of R2 which, simultaneously, is S2-
absolutely nonmeasurable in R2?

The main goal of the present paper is to obtain the positive answer to this ques-
tion not only for (G,+) = (R2, +), but also for a more general class of uncountable
commutative groups.

Below, the symbol 4 stands for the operation of the symmetric difference of two
sets.
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As usual, Q denotes the set (field) of all rational numbers and (Z, +) denotes
the additive group of all integer numbers.

We need several auxiliary statements.

Lemma 1 : If E is an uncountable vector space over Q, then there exists a subset
K of E satisfying these two conditions:

(1) K is almost translation invariant, i.e., for each e ∈ E, the set K4(K + e)
has cardinality strictly less than card(E);

(2) s0(K) ∩K = ∅ and s0(K) ∪K = E \ {0}.
Proof : Let α denote the least ordinal number whose cardinality equals card(E)
and let {eξ : ξ < α} be a Hamel basis of E. For every nonzero vector e ∈ E, we
have a unique representation of e in the form

e = q1eξ1 + q2eξ2 + ... + qmeξm
,

where m is a nonzero natural number, q1, q2, ..., qm are some nonzero rational num-
bers, and ξ1, ξ2, . . . ξm are some ordinal numbers such that

ξ1 < ξ2 < ... < ξm < α.

Denote q(e) = qm, and put K = {e ∈ E : q(e) > 0}.
A straightforward verification shows that K satisfies both conditions (1) and (2)

of Lemma 1, which ends the proof. ¤

Remark 2 : Sets analogous to the set K of Lemma 1 were considered by several
authors (cf., for instance, [1], [7]). Note that, in the case E = Rn, where n ≥ 1, a
Hamel basis of Rn can be chosen to be a Bernstein subset of Rn. So both sets K
and −K also turn out to be Bernstein subsets of Rn.

Lemma 2 : If E is an uncountable vector space over Q, then there exists a set Z
in G such that:

(1) ∪{ei + Z : i ∈ I} = E for some countable family {ei : i ∈ I} of vectors from
E;

(2) there exists an uncountable family {fj : j ∈ J} of vectors from E such that,
for any two distinct indices j ∈ J and k ∈ J , in E there are uncountably many
pairwise disjoint translates of the set (fj + Z) ∩ (fk + Z).

The proof of Lemma 2 is given in [5]. It follows from (1) and (2) that the above-
mentioned set Z is TE-absolutely nonmeasurable in E.

Lemma 3 : Let E be an uncountable vector space over Q whose cardinality is not
cofinal with ω, let K be as in Lemma 1, and let Z be as in Lemma 2. Consider the
set

X = K ∩ Z.

Then the following two assertions are valid:
(1) card(K4(∪{ei+X : i ∈ I})) < card(E) for some countable family {ei : i ∈ I}

of vectors from E;
(2) there exists an uncountable family {fj : j ∈ J} of vectors from E such that,

for any two distinct indices j ∈ J and k ∈ J , in E there are uncountably many
pairwise disjoint translates of the set (fj + X) ∩ (fk + X).
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Proof : Taking into account the almost TE-invariance of K, assertion (1) of Lemma
3 easily follows from assertion (1) of Lemma 2.

Assertion (2) of Lemma 3 is implied by assertion (2) of Lemma 2, because the
set X is contained in the set Z. ¤

Theorem 2 : The set Z of Lemma 3 is TE-negligible and, simultaneously, SE-
absolutely nonmeasurable.

Proof : First of all, observe that the properties of K described in Lemma 1 imply
that the TE-invariant σ-ideal of sets generated by {K} is proper, i.e., differs from
the family of all subsets of E (for example, the set −K does not belong to this
σ-ideal).

Since X ⊂ K, the same is true for the TE-invariant σ-ideal of sets generated by
{X}. The latter circumstance implies that there exists a probability TE-invariant
measure ν on E such that X ∈ dom(ν) and ν(X) = 0.

If now µ is an arbitrary σ-finite TE-quasi-invariant measure on E, then from
assertion (2) of Lemma 3 we have

X ∈ dom(µ) ⇒ µ(X) = 0.

Consequently, X turns out to be a TE-negligible subset of E.
Let θ be an arbitrary nonzero σ-finite SE-quasi-invariant measure on E and

suppose for a moment that X ∈ dom(θ). Then condition (2) of Lemma 1 and
assertion (1) of Lemma 3 imply that

E = ∪{hi(X) : i ∈ I}

for a certain countable family {hi : i ∈ I} of transformations of E, all of which
belong to SE . So, we must have θ(X) > 0. On the other hand, assertion (2) of
Lemma 3 implies that θ(X) must be equal to zero. The obtained contradiction
shows that X cannot belong to dom(θ) and, consequently, X is SE-absolutely
nonmeasurable in E.

Theorem 2 has thus been proved. ¤

Remark 3 : Let n ≥ 1 be a natural number. Consider the n-dimensional Eu-
clidean space Rn as a vector space E over the field Q. Since the cardinality of the
continuum is not cofinal with ω, we may apply Theorem 2 to this E. Consequently,
there exists a Tn-negligible set in Rn which simultaneously is Sn-absolutely non-
measurable (here Tn denotes the group of all translations of Rn and Sn denotes
the group generated by all central symmetries of Rn).

In [5] the following statement was proved:
Let g be a rotation of the plane R2 (about its origin), which differs from the

identity transformation of R2 and differs from the central symmetry s0 of R2.
Then there exists a T2-negligible subset of R2 which is Γ-absolutely nonmeasurable,
where Γ stands for the group generated by T2 ∪ {g}.

Theorem 2 enables us to strengthen the above statement in the following form.

Theorem 3 : Let g be a rotation of the plane R2 (about its origin), distinct from
the identity transformation of R2.

Then there exists a T2-negligible subset of R2 which is Γ-absolutely nonmeasur-
able, where Γ stands for the group generated by T2 ∪ {g}.
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Lemma 4 : Let (G,+) and (H, +) be two commutative groups and let φ be a
surjective homomorphism from G onto H.

If Y is an H-negligible subset of H, then φ−1(Y ) is a G-negligible subset of G.

For a proof of Lemma 4, see [4] or [5].
Using Theorem 3 and Lemma 4, it is not difficult to obtain the next statement

(cf. Chapter 14 of [5]).

Theorem 4 : Let g be a rotation of the space R3 (about its origin) distinct from
the identity transformation of R3.

Then there exists a T3-negligible subset of R3 which is Γ-absolutely nonmeasur-
able, where Γ stands for the group, generated by T3 ∪ {g}.
Remark 4 : The statement analogous to Theorem 2 can be proved for any com-
mutative group (G,+), satisfying the following conditions:

(*) the cardinality of G is not cofinal with ω;
(**) (G,+) is a direct sum of a family of groups, all of which are isomorphic to

(Z, +).
It would be interesting to characterize all those uncountable commutative groups

(G, +) in which there exists at least one TG-negligible SG-absolutely nonmeasurable
set (cf. Remark 1). In this context, it makes sense to recall a profound result of
Kulikov (see [2], [6]). According to Kulikov’s theorem, any commutative group
(G, +) admits a representation in the form

G = ∪{Gm : m < ω},

where {Gm : m < ω} is an increasing (by inclusion) countable family of subgroups
of G, all of which are direct sums of cyclic groups.
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