T. KANDELAKI

Vanishing of Hochschild, Cyclic and Periodic Homologies on the Category of Fredholm Modules

Let A be an involutive algebra over k, the field of complex or real numbers, and let \mathscr{H} be a countably generated Hilbert space over k. A pair (ϕ, p) is said to be a separable Fredholm module over A if

- $\phi: A \to \mathscr{L}(\mathscr{H})$ is a *-homomorphism, where the latter algebra is the C*-algebra of bounded linear maps from \mathscr{H} to itself;
- the closure of $\phi(A)$ in $\mathscr{L}(\mathscr{H})$ is a separable C*-algebra;
- p is a projection in $\mathscr{L}(\mathscr{H})$ such that

 $[\phi(a),p]\in \mathscr{K}(\mathscr{H})$

for all $a \in A$, where $\mathscr{K}(\mathscr{H})$ is the ideal of compact operators in $\mathscr{L}(\mathscr{H})$.

One can construct the following category, denoted $\mathscr{F}_{\sigma}(A)$. It contains the separable Fredholm modules as objects, and a morphism $f : (\phi, p) \to (\phi', p')$ is a bounded linear map $f : \mathscr{H} \to \mathscr{H}'$ such that

$$fp = pf$$
 and $f\phi(a) - \phi'(a)f \in \mathscr{K}(\mathscr{H}, \mathscr{H}')$

for all $a \in A$, where $\mathscr{K}(\mathscr{H}, \mathscr{H}')$ is the linear space of compact linear maps from \mathscr{H} to \mathscr{H}' . One easily checks that $\mathscr{F}_{\sigma}(A)$ is a pseudo-abelian category.

Our objective in this article is to give a scheme of how to prove the following theorem.

Theorem. Let A be an involutive algebra over the field k of complex or real numbers. Then

$$HH_*^{\mathrm{Mc}}(\mathscr{F}_{\sigma}(A)) = 0,$$
$$HC_*^{\mathrm{Mc}}(\mathscr{F}_{\sigma}(A)) = 0,$$
$$HP_*^{\mathrm{Mc}}(\mathscr{F}_{\sigma}(A)) = 0,$$

where HH_*^{Mc} , HC_*^{Mc} and HP_*^{Mc} are McCarthy's Hochschild, cyclic and periodic homologies of additive categories with split short exact sequences [5].

One can prove this theorem step by step in the following way.

Step 1. The category $\mathscr{F}_{\sigma}(A)$ has the natural structure of a C*-category. Let $s: (\phi, p) \to (\phi', p')$ be an isometry, i. e. $s^*s = \mathrm{id}_{(\phi, p)}$. Using Morita invariance of usual Hochschild, cyclic and periodic homologies of k-algebras one has homomorphisms

$$\tau_{(\phi,p)}^{(\phi',p')}: HH_*(\operatorname{End}(\phi,p)) \to HH_*(\operatorname{End}(\phi',p'))$$

(resp., for HC_* and HP_*), which arises from a *-homomorphism t_s : $End(\phi, p) \rightarrow End(\phi', p')$ defined by the map $x \mapsto sxs^*$. The homomorphism τ does not depend on choice of s. Since the latter homology groups commute with directed colimits as well as the McCarthy's, one gets the following isomorphisms

$$HH^{\mathrm{Mc}}_{*}(\mathscr{F}_{\sigma}(A)) = \underline{\lim} \left(HH_{*}(\mathrm{End}(\phi, \mathbf{p})); \tau^{(\phi', \mathbf{p}')}_{(\phi, \mathbf{p})} \right)$$

2000 Mathematics Subject Classification: 19K33, 19K35, 46M18, 46M99.

Key words and phrases. Category of Fredholm modules, McCarthy's Hochschild, cyclic and periodic homologies.

133

(resp. for $HC^{\mathrm{Mc}}_*(\mathscr{F}_{\sigma}(A))$ and $HP^{\mathrm{Mc}}_*(\mathscr{F}_{\sigma}(A))$).

Step 2. For any object $(\phi, 1)$ consider the C*-algebra $A_{\phi} = \overline{\phi(A)}$, i. e. the closure of $\phi(A)$ in $\mathscr{L}(\mathscr{H})$. The category $\mathscr{F}_{\sigma}(A_{\phi})$ is a full subcategory of $\mathscr{F}_{\sigma}(A)$. Let us say $\phi \leq \phi'$ if $\ker(\phi') \subseteq \ker(\phi)$. An easy checking shows that $\mathscr{F}_{\sigma}(A) = \varinjlim \mathscr{F}_{\sigma}(A_{\phi})$ and $HH_*^{\mathrm{Mc}}(\mathscr{F}_{\sigma}(A)) = \varinjlim HH_*(A_{\phi})$ (resp. for $HC_*^{\mathrm{Mc}}(\mathscr{F}_{\sigma}(A))$) and $HP_*^{\mathrm{Mc}}(\mathscr{F}_{\sigma}(A))$). Thus it suffices to prove the theorem when A is a separable C*-algebra.

Step 3. Let $0 \to I \to B \to A \to 0$ be an exact sequence of separable C*-algebras such that the epimorphism has a completely positive and contractive section. Then the following sequence of homology groups

$$\cdots \to HH_{n+1}^{\mathrm{Mc}}(\mathscr{F}_{\sigma}(I)) \to HH_{n}^{\mathrm{Mc}}(\mathscr{F}_{\sigma}(A)) \to HH_{n}^{\mathrm{Mc}}(\mathscr{F}_{\sigma}(B)) \to HH_{n}^{\mathrm{Mc}}(\mathscr{F}_{\sigma}(I)) \to \cdots$$

is exact (resp. for $HC^{\mathrm{Mc}}_*(\mathscr{F}_{\sigma}(A))$ and $HP^{\mathrm{Mc}}_*(\mathscr{F}_{\sigma}(A))$). The proof of this statement is the same as the proof of exactness in [2]. But our approach is purely algebraic and it uses only Morita invariance of homology groups and the well known fact that C*-algebras are H-unital over k [6].

Step 4. Using Higson's homotopy invariance theorem [3], one can conclude that the functors $HH_*^{Mc}(\mathscr{F}_{\sigma}(-))$, $HC_*^{Mc}(\mathscr{F}_{\sigma}(-))$ and $HP_*^{Mc}(\mathscr{F}_{\sigma}(-))$ are homotopy invariant on the category of separable C*-algebras. Then after using the Cuntz-Bott periodicity theorem [1] one gets that the above functors have period 2 in the complex case and 8 in the real case. Using the same periodicity theorem one can express functorially all the $HH_*^{Mc}(\mathscr{F}_{\sigma}(A))$ by $HH_0^{Mc}(\mathscr{F}_{\sigma}(A))$.

Step 5. There is a natural transformation $\mu_* : HH^{Mc}_*(\mathscr{F}_{\sigma}(A)) \to HC^{Mc}_*(\mathscr{F}_{\sigma}(A))$ which is an isomorphism in dimension zero. Taking into account step 4, one easily checks that μ_* is an isomorphism in any dimension $* \geq 1$. Now, the Connes' periodicity theorem (see [4]) guarantees our theorem.

Acknowledgement

The work was partially supported by the FNRS grant No 7GEPJ065513.01 and the INTAS grant No 00566

References

1. J. Cuntz, K-theory of C*-algebras. Lecture Notes in Math. 1046, 55-79.

2. N. Higson, C*-algebra extension theory and duality. J. Funct. Anal. $\mathbf{129}(1995),$ 349–363.

3. N. Higson, Algebraic K-theory of stable C*-algebras. Adv. Math. 67(1988), 1-140.

4. J.-L. Loday, Cyclic Homology. Grundlehren der Mathematischen Wissenschaften, **301**, Springer-Verlag.

5. R. McCarthy, The cyclic homology of an exact category. J. Pure Appl. Algebra **93**(1994), 251–296.

 A. Suslin and M. Wodzicki, Excision in algebraic K-theory. Ann. Math. 136(1992), 51–122.

Author's address: A. Razmadze Mathematical Institute Georgian Academy of Sciences 1, Aleksidze St., Tbilisi 0193 Georgia

134