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Vanishing of Hochschild, Cyclic and Periodic Homologies
on the Category of Fredholm Modules

Let A be an involutive algebra over k, the field of complex or real numbers, and let
H be a countably generated Hilbert space over k. A pair (φ, p) is said to be a separable
Fredholm module over A if

• φ : A → L (H ) is a ∗-homomorphism, where the latter algebra is the C∗-algebra
of bounded linear maps from H to itself;

• the closure of φ(A) in L (H ) is a separable C∗-algebra;
• p is a projection in L (H ) such that

[φ(a), p] ∈ K (H )

for all a ∈ A, where K (H ) is the ideal of compact operators in L (H ).

One can construct the following category, denoted Fσ(A). It contains the separable
Fredholm modules as objects, and a morphism f : (φ, p) → (φ′, p′) is a bounded linear
map f : H → H ′ such that

fp = pf and fφ(a) − φ′(a)f ∈ K (H , H ′)

for all a ∈ A, where K (H , H ′) is the linear space of compact linear maps from H to
H ′. One easily checks that Fσ(A) is a pseudo-abelian category.

Our objective in this article is to give a scheme of how to prove the following theorem.

Theorem. Let A be an involutive algebra over the field k of complex or real numbers.

Then

HHMc
∗

(Fσ(A)) = 0,

HCMc
∗

(Fσ(A)) = 0,

HPMc
∗

(Fσ(A)) = 0,

where HHMc
∗

, HCMc
∗

and HPMc
∗

are McCarthy’s Hochschild, cyclic and periodic ho-

mologies of additive categories with split short exact sequences [5].

One can prove this theorem step by step in the following way.

Step 1. The category Fσ(A) has the natural structure of a C∗-category. Let s :
(φ, p) → (φ′, p′) be an isometry, i. e. s∗s = id(φ,p). Using Morita invariance of usual
Hochschild, cyclic and periodic homologies of k-algebras one has homomorphisms

τ
(φ′,p′)
(φ,p)

: HH∗(End(φ, p)) → HH∗(End(φ′, p′))

(resp., for HC∗ and HP∗), which arises from a ∗-homomorphism ts : End(φ, p) →

End(φ′,p′) defined by the map x 7→ sxs∗. The homomorphism τ does not depend
on choice of s. Since the latter homology groups commute with directed colimits as well
as the McCarthy’s, one gets the following isomorphisms

HHMc
∗

(Fσ(A)) = lim
−→

(

HH∗(End(φ, p)); τ
(φ′,p′)
(φ,p)

)
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(resp. for HCMc
∗

(Fσ(A)) and HPMc
∗

(Fσ(A))).

Step 2. For any object (φ, 1) consider the C∗-algebra Aφ = φ(A), i. e. the closure
of φ(A) in L (H ). The category Fσ(Aφ) is a full subcategory of Fσ(A). Let us say
φ ≤ φ′ if ker(φ′) ⊆ ker(φ). An easy checking shows that Fσ(A) = lim

−→
Fσ(Aφ) and

HHMc
∗

(Fσ(A)) = lim
−→

HH∗(Aφ) (resp. for HCMc
∗

(Fσ(A)) and HPMc
∗

(Fσ(A))). Thus it
suffices to prove the theorem when A is a separable C∗-algebra.

Step 3. Let 0 → I → B → A → 0 be an exact sequence of separable C∗-algebras
such that the epimorphism has a completely positive and contractive section. Then the
following sequence of homology groups

· · · → HHMc
n+1(Fσ(I)) → HHMc

n (Fσ(A)) → HHMc
n (Fσ(B)) → HHMc

n (Fσ(I)) → · · ·

is exact (resp. for HCMc
∗

(Fσ(A)) and HPMc
∗

(Fσ(A))). The proof of this statement is
the same as the proof of exactness in [2]. But our approach is purely algebraic and it uses
only Morita invariance of homology groups and the well known fact that C∗-algebras are
H-unital over k [6].

Step 4. Using Higson’s homotopy invariance theorem [3], one can conclude that the
functors HHMc

∗
(Fσ(−)), HCMc

∗
(Fσ(−)) and HPMc

∗
(Fσ(−)) are homotopy invariant

on the category of separable C∗-algebras. Then after using the Cuntz-Bott periodicity
theorem [1] one gets that the above functors have period 2 in the complex case and 8
in the real case. Using the same periodicity theorem one can express functorially all the
HHMc

∗
(Fσ(A)) by HHMc

0 (Fσ(A)).

Step 5. There is a natural transformation µ∗ : HHMc
∗

(Fσ(A)) → HCMc
∗

(Fσ(A))
which is an isomorphism in dimension zero. Taking into account step 4, one easily checks
that µ∗ is an isomorphism in any dimension ∗ ≥ 1. Now, the Connes’ periodicity theorem
(see [4]) guarantees our theorem.
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