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ON PARTICLE TYPE STRING SOLUTIONS IN AdS3 × S3

G. JORJADZE, Z. KEPULADZE AND L. MEGRELIDZE

Abstract. The AdS3 × S3 string dynamics is described in a confor-
mal gauge using the SL(2,R) and SU(2) group variables as the target
space coordinates. A subclass of string surfaces with constant induced
metric tensor on both AdS3 and S3 projections is considered. The
general solution of string equations on this subclass is presented and
the corresponding conserved charges related to the isometry trans-
formations are calculated. The subclass of solutions is characterized
by a finite number of parameters. The Poisson bracket structure on
the space of parameters is calculated, its connection to the particle
dynamics in SL(2,R)×SU(2) is analyzed and a possible way of quan-
tization is discussed.

îâäæñéâ. SL(2,R) áŽ SU(2) þàñòñîæ ùãèŽáâĲæ àŽéëõâêâĲñèæŽ
ïæãîùâ-áîëæï çëëîáæêŽðâĲŽá áŽ éŽåæ ïŽöñŽèâĲæå ŽôûâîæèæŽ
AdS3× S3 ïæéæï áæêŽéæçŽ çëêòëîéñè õŽèæĲöæ. àŽêýæèñèæŽ ïæéæï
äâáŽìæîâĲæï óãâçèŽïæ éñáéæãæ æêáñùæîâĲñèæ éâðîæçæå îëàëîù
AdS3 æïâ S3 ìîëâóùæŽäâ. Žôêæöêñèæ óãâçèŽïæïåãæï êŽìëãêæŽ ïæ-
éæï àŽêðëèâĲâĲæï äëàŽáæ ŽéëýïêŽ, îëéèæïåãæïŽù àŽéëåãèæèæŽ
æäëéâðîñèæ àŽîáŽóéêâĲæï öâïŽĲŽéæïæ öâêŽýãŽáæ éñýðâĲæ. Žéëýï-
êâĲæï óãâçèŽïæ ýŽïæŽåáâĲŽ ïŽïîñèæ îŽëáâêëĲæï ìŽîŽéâðîâĲæå.
Žé ìŽîŽéâðîâĲæï ïæãîùâäâ êŽìëãêæŽ ìñŽïëêæï òîøýæèâĲæï ïðîñó-
ðñîŽ, àŽŽêŽèæäâĲñèæŽ éæïæ çŽãöæîæ SL(2,R) × SU(2) êŽûæèŽçæï
áæêŽéæçŽïåŽê áŽ ŽôûâîæèæŽ áŽóãŽêðãæï öâïŽúèë àäâĲæ.

Introduction

The AdS/CFT correspondence [1] is one of the most fruitful research
topic in modern theoretical and mathematical physics of the last decade.
The correspondence is usually realized by a set of mapping rules for certain
quantities of the partner theories, which are N = 4 supersymmetric Yang-
Mills gauge theory in four-dimensional Minkowski space from one side and
AdS5×S5 superstring theory from the other. One of such rules is the map of
conformal scaling dimensions of composite operators of the gauge theory to
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the energy spectrum of certain string configurations [2]. After the discovery
of an integrable structure behind the spectral problem of scaling dimensions
[3] and the Lax pair formulation of the AdS5 × S5 string dynamics [4], the
issue of integrability became the main research line in AdS/CFT [5].

In the present paper we study string dynamics in the AdS3 × S3 back-
ground, which can be treated as a subspace of AdS5 × S5. The paper is
a natural continuation of the work done in [6] and [7], where the authors
studied spacelike string configurations in AdS3 × S3 with null polygons at
the AdS boundary. The motivation of that work was the analysis of gluon
scattering amplitudes at strong coupling given by a regularized area of string
surfaces [8–12].

The integration methods used in [6, 7] can be generalized for dynamical
strings, replacing the holomorphic structure of Euclidean surfaces by the
chiral structure of Lorentzian worldsheets. An additional new point is the
periodicity condition, which has to be imposed for closed string dynamics.

The aim of the work we are starting here is to quantize AdS3× S3 string
dynamics and to investigate its energy spectrum. This is a hard problem, in
general, and in the present paper we restrict ourselves to a subclass of string
solutions, with similar characteristics as in [6,7]. In terms of invariant geo-
metrical quantities these are intrinsically flat surfaces, with constant mean
curvatures on both AdS3 and S3 projections. These restrictions provide a
finite dimensional mechanical system like a particle in AdS3×S3. However,
in contrast to a particle, our string solutions are characterized by winding
numbers and they have additional degrees of freedom.

The fact that AdS3 and S3 spaces can be treated as group manifolds,
simplifies the analysis of integrability on the basis of the left and right
symmetry transformations. However, for a physical interpretation of results,
usually it is more convenient to use embedding coordinates of AdS3 and S3.
Therefore, we apply both target space coordinates in the text. Due to the
additional freedom mentioned above, the left and right Casimir numbers,
in general, are different. This asymmetry, which is absent for the particle
dynamics, has to be realized on the quantum level by a special representation
of the SL(2,R)× SL(2,R) and SU(2)× SU(2) symmetries.

The outline of the paper is the following: we describe the AdS3×S3 string
dynamics in terms SL(2,R) and SU(2) target space variables and confor-
mal worldsheet coordinates. Components of the metric tensors on the AdS3

and S3 projections are simplified by turning the chiral and antichiral ones
to constants, as in the Pohlmeyer reduction [13–17]. We then consider the
subclass of worldsheets which have the remaining component of the metric
tensor also constant on both AdS3 and S3 parts. This subclass is exactly in-
tegrable and the corresponding string solutions are characterized by a finite
number of parameters. Among the parameters are four integers which de-
scribe different topological sectors of string configuration. We calculate the
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conserved charges related to the isometry transformations and reduce the
symplectic structure of the system to the subspace of solutions. To simplify
the analysis of the physical phase space, we choose a topological sector of
the solutions characterized by one winding number around a cylinder and
a torus, which describe string configurations in AdS3 and S3 projections,
respectively. Finally, we compare the obtained string configurations to the
particle dynamics in AdS3 × S3 and discuss a possible way of quantization.
Some technical details are given in the Appendix.

AdS3 and S3 as Group Manifolds

The AdS3 and S3 spaces are realized as the SL(2,R) and SU(2) group
manifolds, respectively, via

g =
(

Y 0′ + Y 2 Y 1 + Y 0

Y 1 − Y 0 Y 0′ − Y 2

)
, h =

(
X4 + iX3 X2 + iX1

−X2 + iX1 X4 − iX3

)
. (1)

Here (Y 0′ , Y 0, Y 1, Y 2) are coordinates of the embedding space R2,2 and the
equation for the hyperboloid

Y · Y ≡ −Y 2
0′ − Y 2

0 + Y 2
1 + Y 2

2 = −1, (2)

which defines the AdS3 space, is equivalent to g ∈ SL(2,R). Similarly, the
equation for S3 embedded in R4

X ·X ≡ X2
1 + X2

2 + X2
3 + X2

4 = 1 (3)

is equivalent to h ∈ SU(2).
We use the following basis in sl(2,R)

t0 =
(

0 1
−1 0

)
, t1 =

(
0 1
1 0

)
, t2 =

(
1 0
0 −1

)
. (4)

These three matrices tµ (µ = 0, 1, 2) satisfy the relations

tµ tν = ηµν I + ερ
µν tρ, (5)

where ηµν = diag(−1, 1, 1) and εµνρ is the Levi-Civita tensor with ε012 = 1.
The inner product defined by 〈 tµ tν 〉 ≡ 1

2 tr(tµ tν) = ηµν provides the
isometry between sl(2,R) and 3d Minkowski space.

A similar basis in su(2) is given by the anti-hermitian matrices sn = iσn

(n = 1, 2, 3), where σn are the Pauli matrices (σ1 = t1, σ2 = −it0, σ3 =
t2), and they form the algebra

sm sn = −δmn I− εmnl sl . (6)

The inner product is introduced by a similarly normalized trace, but with
the negative sign 〈sm sn〉 ≡ − 1

2 tr(sm sn) = δmn. That provides the isometry
of su(2) with R3.

Two definitions in (1) can be written as g = Y 0′ I + Y µ tµ, h = X4 I +
Xn sn and the corresponding inverse group elements are g−1 = Y 0′ I−Y µ tµ,
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h−1 = X4 I−Xn sn. Using now (5) and (6), one finds the following relations
between the metrics on these spaces

dY · dY = 〈 (g−1 dg) (g−1 dg)〉, dX · dX = 〈 (h−1 dh) (h−1 dh)〉. (7)

These relations allow to write the AdS3 × S3 string action in terms of the
group variables.

String Description in Terms of Group Variables

According to (7), the components of the induced metric tensors on the
AdS3 and S3 projections can be written as∗

fab = 〈 (g−1 ∂ag
) (

g−1 ∂bg
) 〉 , fs

ab = 〈 (h−1 ∂ah
) (

h−1 ∂bh
) 〉 , (8)

where we use the covariant notation ∂a = ∂ξa (a = 0, 1), (ξ0, ξ1) = (τ, σ).
A timelike surface in AdS3×S3 can be parameterized by conformal world-

sheet coordinates z = τ+σ, z̄ = τ−σ and one gets a pair of worldsheet fields
g(z, z̄) ∈ SL(2,R) and h(z, z̄) ∈ SU(2). With the notation ∂ = 1

2 (∂τ + ∂σ),
∂̄ = 1

2 (∂τ − ∂σ), the conformal gauge conditions take the form

〈 (g−1 ∂g
)2 〉+ 〈 (h−1 ∂h

)2 〉 = 0 = 〈(g−1 ∂̄g
)2 〉+ 〈 (h−1 ∂̄h

)2 〉 . (9)

We consider a closed string with periodic (σ ∈ S1) boundary conditions.
Its action in the gauge (9) is given by

S =

√
λ

π

∫
dτ

2π∫

0

dσ
[〈 (g−1 ∂g) (g−1 ∂̄g)〉+ 〈 (h−1 ∂h) (h−1 ∂̄h)〉], (10)

where λ is a coupling constant, and the equations of motion become

∂
(
g−1 ∂̄g

)
+ ∂̄

(
g−1 ∂g

)
= 0, ∂

(
h−1 ∂̄h

)
+ ∂̄

(
h−1 ∂h

)
= 0. (11)

These equations provide the chirality conditions

∂̄〈(g−1 ∂g
)2〉 = 0 = ∂〈(g−1 ∂̄g

)2〉 ,

∂̄〈(h−1 ∂h
)2〉 = 0 = ∂〈(h−1 ∂̄h

)2〉 .
(12)

Using then the freedom of conformal transformations one can map the chiral
〈 (h−1 ∂h

)2〉 and antichiral 〈(h−1 ∂̄h
)2 〉 components of the metric tensor on

S3 to positive constants. As a result, from (9) we get the gauge fixing
conditions

〈 (g−1 ∂g
)2 〉 = −µ2 = −〈(h−1 ∂h

)2 〉 ,

〈 (g−1 ∂̄g
)2〉 = −µ̄2 = −〈(h−1 ∂̄h

)2 〉 ,
(13)

with constant µ and µ̄. These constants become dynamical parameters of
string solutions like zero modes on a cylinder.

∗In this paper (as in [6,7]) the index s is used for some variables of the spherical part
to distinguish them from similar variables of the AdS part.
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After imposing the gauge fixing conditions (13), the zz̄ component of the
metric tensor still remains arbitrary and due to (13) its SL(2,R) and SU(2)
parts can be written as

〈 g−1 ∂g g−1 ∂̄g〉 = −µµ̄ cosh α, 〈h−1 ∂h h−1 ∂̄h〉 = µµ̄ cosβ, (14)

where α and β are worldsheet fields.
In the next sections we consider string solutions with constant α and

β. They are characterized by a finite number of parameters. Note that a
constant induced metric tensor on a cylindrical worldsheet is invariant under
translations of (τ, σ) coordinates and this freedom can be used to reduced
the number of parameters by two. Finally, the obtained dynamical system
becomes similar to a particle in SL(2,R)×SU(2). However, there is also an
essential difference, which has to be taken into account in quantization.

Particle Type Solutions

In (τ, σ) coordinates the equations of motion (11) takes the form

∂τ (g−1∂τg)− ∂σ(g−1∂σg) = 0, ∂τ (h−1∂τh)− ∂σ(h−1∂σh) = 0, (15)

and the metric tensors (8) become

fab =
( −2µ̄µ cosh α− µ̄2 − µ2 µ̄2 − µ2

µ̄2 − µ2 2µ̄µ coshα− µ̄2 − µ2

)
,

(16)

fs
ab =

(
µ̄2 + µ2 + 2µ̄µ cosβ µ2 − µ̄2

µ2 − µ̄2 µ̄2 + µ2 − 2µ̄µ cos β

)
.

The integration of (15) for constant metric tensors (16) can be done simi-
larly to the spacelike surfaces with the help of auxiliary linear systems [7].
Constant metric tensors (16) provide constant coefficients of the linear sys-
tems. The integration is then straightforward and we find the solutions

g(τ, σ) = e(λτ+ m
2 σ) l̂ g0 e(ρτ+ n

2 σ) r̂ ,

h(τ, σ) = e(λsτ+ ms
2 σ) l̂s h0 e(ρsτ+ ns

2 σ) r̂s .
(17)

Here g0 ∈ SL(2,R) and h0 ∈ SU(2) are constant group elements, l̂ and r̂ are
unit timelike elements of sl(2,R), l̂s and r̂s are unit vectors of su(2)

〈 l̂ l̂ 〉 = −1 = 〈 r̂ r̂ 〉 , 〈 l̂s l̂s 〉 = 1 = 〈 r̂s r̂s 〉 , (18)

and the other parameters are related to each other by

4λρ = mn, 4λsρs = msns . (19)

The numbers m and n (as well as ms and ns) are integers with a same
parity m−n = 2k (ms−ns = 2ks), that provides the periodicity conditions

g(τ, σ + 2π) = g(τ, σ), h(τ, σ + 2π) = h(τ, σ). (20)
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The isometry transformations of SL(2,R) and SU(2) are given by the left
and right multiplications of the group variables

g 7→ g
L

g g
R

, h 7→ h
L

hh
R

, (21)

and they transform the parameters of the solutions (17) by

l̂ 7→ g
L

l̂ g−1
L

, r̂ 7→ g−1
R

r̂ g
R

, l̂s 7→ h
L

l̂s h−1
L

, r̂s 7→ h−1
R

r̂s h
R

,

g0 7→ gL g0gR , h0 7→ hL h0hR ,
(22)

leaving λ, ρ and λs, ρs invariant. The integers m, n, ms, ns are, of course,
also invariant. Additional invariants of the isometry transformations are
the following parameters

cosh 2θ = −〈 l̂ g0 r̂ g−1
0
〉 , cos 2θs = 〈 l̂s h0 r̂s h−1

0
〉 , (23)

which have an invariant geometrical meaning. Namely, the mean curvatures
of the surfaces in SL(2,R) and SU(2) are given by H = − coth 2θ and
Hs = cot 2θs, respectively.

Using the isometry transformations (21) one can bring the solutions (17)
to the form

g = eθl t0 eθ t1 eθr t0 , h = eθs
l s3 eθs s2 eθs

r s3 ,

θl =λ τ +
m

2
σ, θr =ρ τ +

n

2
σ, θs

l =λs τ +
ms

2
σ, θs

r =ρs τ +
ns

2
σ.

(24)

The corresponding 2× 2 matrices are (see Appendix)

g =

(
sinh θ sin ξ + cosh θ cos η cosh θ sin η + sinh θ cos ξ

sinh θ cos ξ − cosh θ sin η cosh θ cos η − sinh θ sin ξ

)
,

h =

(
cos θs eiξs sin θs eiηs

− sin θs e−iηs cos θs e−iξs

)
,

(25)

with η = θl + θr, ξ = θl − θr, ηs = θs
l − θs

r , ξs = θs
l + θs

r . The embedding
coordinates of the AdS3 and S3 spaces then become

Y 0′ = cosh θ cos η, Y 0 = cosh θ sin η,

Y 1 = sinh θ cos ξ, Y 2 = sinh θ sin ξ,

X1 = sin θs sin ηs , X2 = sin θs cos ηs ,

X3 = cos θs sin ξs , X4 = cos θs cos ξs .

(26)

These surfaces represent a tube in AdS3 and a torus in S3 (see Fig. 1). Thus,
the string is located around the ‘center’ of AdS3 like a static particle in a
rest frame. If one makes a boost transformation, string will oscillate around
the center like a massive particle in AdS.

To understand the physical characteristics of the solutions (17), we in-
troduce the conserved currents related to the isometry transformations
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(a) (b)

Figure 1. The plot (a) here corresponds to the AdS pro-
jection given by the first line of equation (26) and the plot
(b) to the spherical one.

(21). The Lie algebra valued currents in the SL(2,R) sector are given by
La = ∂ag g−1, Ra = g−1 ∂ag and inserting here the solution (17), we find

Lτ = λ l̂ + ρ eθl l̂ g0 r̂ g−1
0

e−θl l̂, Rτ = λ e−θr r̂ g−1
0

l̂ g0 eθr r̂ + ρ r̂

Lσ =
m

2
l̂ +

n

2
eθl l̂ g0 r̂ g−1

0
ε−θl l̂, Rσ =

m

2
e−θr r̂ g−1

0
l̂ g0 eθr r̂ +

n

2
r̂.

(27)

The equation of motion (15) for the SL(2,R) part is equivalent to the
current conservation law ∂τRτ −∂σRσ = 0 = ∂τLτ −∂σLσ, which is simply
fulfilled by (19).

The induced metric tensor on the SL(2,R) part can be written as

fab = 〈La Lb 〉 = 〈Ra Rb 〉 , (28)

and comparing it with (16) we obtain the equations

λ2 + ρ2 + 2λ ρ cosh 2θ = µ̄2 + µ2 + 2µ̄µ cosh α,

1
4
(m2 + n2 + 2mn cosh 2θ) = µ̄2 + µ2 − 2µ̄µ cosh α, (29)

1
2
[λm + ρn + (λn + ρm) cosh 2θ] = µ2 − µ̄2,

which connect the parameters of the solution to the components of the
induced metric tensor.
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The SU(2) conserved currents have the same form Ls
a = ∂ah h−1, Rs

a =
h−1 ∂ah and from (16) and (17) we find the relations similar to (29)

λ2
s + ρ2

s + 2λs ρs cos 2θs = µ̄2 + µ2 + 2µ̄µ cosβ,

1
4

(m2
s + n2

s + 2msns cos 2θs) = µ̄2 + µ2 − 2µ̄µ cos β, (30)

1
2

[
λsms + ρsns + (λsns + ρsms) cos 2θs

]
= µ2 − µ̄2.

The calculation of the SL(2,R) conserved charges

L =

2π∫

0

dσ

2π
Lτ , R =

2π∫

0

dσ

2π
Rτ , (31)

for the solution (17) yields (see Appendix)

L = (λ + ρ cosh 2θ) l̂, R = (λ cosh 2θ + ρ) r̂, (32)

and, similarly, for the SU(2) charges one gets

Ls = (λs + ρs cos 2θs) l̂s , Rs = (λs cos 2θs + ρs) r̂s . (33)

One can solve µ2 and µ̄2 from the equations (29) and (30) separately
and then comparing these solutions one finds two relations between the
invariant parameters λ, ρ, θ and their spherical counterparts λs, ρs, θs.
Together with (19), we conclude that the space of isometrically invariant
parameters is two dimensional. At this point we relate to each other the
parameters of the AdS3 and S3 spaces. The joint analysis of the equations
(29)-(30) for arbitrary m, n and ms, ns is rather complicated and, in general,
they have no consistent solutions. In this paper we concentrate to the case
ms = ns = −m = n > 0. The corresponding AdS3 and S3 solutions (26)
become

Y =
(
cosh θ cos Eτ, cosh θ sin Eτ,

sinh θ cos(Fτ − nσ), sinh θ sin(Fτ − nσ)
)
,

X =
(
sin θs sin Aτ, sin θs cosAτ, cos θs sin(Bτ + nσ),

cos θs cos(Bτ + nσ)
)
,

(34)

where E = λ + ρ, F = λ − ρ, A = λs − ρs and B = λs + ρs. Due to (19),
the new parameters are related by

F 2 − E2 = n2, B2 −A2 = n2, (35)

where n is the winding number. For fixed τ , the string (34) winds n-times
around the circles in the (Y 1, Y 2) and (X3, X4) planes. Since the polar
angle in the (Y 0′ , Y 0) plane corresponds to the time variable, the solution
(34) describes string in a static gauge.
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From equation (29) we find

µ2 =
n2

4
(f − 1)(f + cosh 2θ), µ̄2 =

n2

4
(f + 1)(f − cosh 2θ),

cosh α =
e√

e2 − sinh2 2θ
, (36)

where e and f are the rescaled variable e = E/n, f = F/n, with f2−e2 = 1.
Similarly, equation (30) provides

µ2 =
n2

4
(b + 1)(b + cos 2θs), µ̄2 =

n2

4
(b− 1)(b− cos 2θs),

cos β =
a√

a2 − sin2 2θs

, (37)

with a = A/n b = B/n, b2 − a2 = 1. Choosing b and f as independent
variables on the space of invariants, we find

cosh 2θ = bf − b2 + 1, cos 2θs = f2 − bf − 1. (38)

Let us consider the parametrization of g0 . It can be written as

g0 = eφl l̂ e−(γ+θ)n̂ eφr r̂, (39)

where n̂ is a normalized commutator of the matrixes l̂ and r̂ (see (A.6)), γ
is the corresponding ‘angle’ variable between them and φl, φr are arbitrary
parameters. Equation (39) has the following geometrical interpretation: n̂

is a generator of boosts in the (l̂, r̂) ‘plane’ (see (A.8)) and by (A.9) one
finds the boost parameter α = γ + θ to match (23). The angle parameters
φl and φr in (39) then describe the freedom that leaves (23) invariant.

The parametrization of h0 is obtained in a similar way

h0 = eφs
l l̂s e−(γs+θs)n̂s eφs

r r̂s , (40)

where ns, γs and φs
l , φs

r have the same geometrical interpretation in SU(2)
as their counterparts in SL(2,R).

Now we recall that (τ, σ) coordinates still have a freedom in translations.
Using equations (39), (40), and the form of the solutions (17), one can
reduce the number of angle parameters (φl, φr, φs

l , φs
r) from four to two.

We denote these two parameter by ϕ1, ϕ2. One can choose, for example,
ϕ1 = φl = −φr and ϕ2 = φs

l = φs
r.

Thus, solutions (17) are described by four unit vectors (l̂, r̂, l̂s, r̂s), two
isometrically invariant parameters (f , b) and two remaining angle variables
(ϕ1, ϕ2). Totally, one gets twelve dimensional space of parameter.

To find the Poisson bracket structure on this space, one can calculate the
symplectic form of the system ω = dϑ on the space of solutions (17) and
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invert it. The presymplectic 1-form ϑ is defined from the string Lagrangian
in the first order formalism

ϑ =

2π∫

0

dσ

2π

[〈R g−1 dg〉+ 〈Rs h−1 dh〉] . (41)

Here R and Rs are Lie algebra valued variables, which in the conformal
gauge are associated with g−1∂τg and h−1∂τh, respectively. Before we
discuss the reduction of the symplectic form on the string solutions, let
us consider particle dynamics in SL(2,R) × SU(2) and compare it to our
system.

Particle trajectories in the SL(2,R) sector are parameterized either by a
pair (g0 , R) or (g0 , L)

g(τ) = eL τ g0 = g0 eR τ , (42)

where R and L are the dynamical integrals for the isometry transforma-
tions.† They are related to each other by the adjoint transformation

g R g−1 = L, (43)

and, therefore, they are on the same coadjoint orbit.
The description of SU(2) sector is similar and the orbits in both cases

are defined by the Casimir numbers

〈LL 〉 = 〈R R 〉 = −m2, 〈Ls Ls 〉 = 〈Rs Rs 〉 = m2
s. (44)

These numbers are related to the particle mass M by the massshell condition

m2 −m2
s = M2, (45)

and the dynamical integrals can be written as

L = m l̂, R = m r̂ ; Ls = ms l̂s , Rs = ms r̂s , (46)

where l̂, r̂ and l̂s, r̂s are unit vectors as for the string solutions (see (32)-
(33)).

Hamiltonian formulation can be started in (R, g), (Rs, h) variables and
the presymplectic 1-form ϑ = 〈R g−1 dg 〉 + 〈Rs h−1 dh 〉, as in (41). How-
ever, in order to make further comparison with the string solutions, it is
more convenient to use left and right dynamical integrals symmetrically
and express g and h through them.

Let us consider the SL(2,R) part. One can show that equation (43)
defines g up to an angle variable ϕ [18]

g = eθ
L

n̂
L eϕ t0 eθ

R
n̂

R . (47)

†We use same notations as for string solutions.
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Here

n̂
L

=
[t0, l̂]

2 sinh 2θ
L

, n̂
R

= − [t0, r̂]
2 sinh 2θ

R

(48)

are normalized vectors and cosh 2θ
L

= −〈 l̂ t0 〉, cosh 2θ
R

= −〈 r̂ t0 〉 (see
Appendix).

The simplectic form of the AdS part ω
AdS

= d〈R g−1 dg〉 calculate in the
coordinates (l̂, r̂, m, ϕ) splits into the sum of three terms

ω
AdS

= mω
L

+ mω
R
− dm ∧ dϕ, (49)

where
ω

L
=

dl2 ∧ dl1
l0

, ω
R

dr1 ∧ dr2

r0
(50)

are the symplectic forms on the unit SL(2,R) coadjoint orbits expressed in
terms of the vector components lµ = 〈 tµ l̂ 〉 and rµ = 〈 tµ r̂ 〉.

The SU(2) part of the symplectic form has a similar structure

ωs = ms ωs
L

+ ms ωs
R

+ dms ∧ dϕs, (51)

where now ωs
L

and ωs
R

are symplectic forms on the unit SU(2) coadjoint
orbits.

Finally, the total symplectic form ω = ω
AdS

+ ωs has to be reduced on
the massshell (45). This reduction leads to a ten dimensional phase space
with the symplectic form

ω = mω
L

+ mω
R

+ ms ωs
L

+ ms ωs
R

+ dms ∧ d
(

ϕs − ϕ√
m2

s + M2

)
, (52)

where m =
√

M2 + m2
s . The reduced phase space is parameterized by

four unit vectors (l̂, r̂, l̂s, r̂s), one isometrically invariant parameter ms and
the corresponding angle variable. The inversion of (52) provides a Poisson
bracket realization of the left-right symmetries

{Lµ, Lν} = −2εµν
ρ Lρ , {Rµ, Rν} = 2εµν

ρ Rρ (53)

with Lµ = 〈 tµ L 〉, Rµ = 〈 tµ R 〉 and similarly in the SU(2) part.
The quantization of the particle dynamics on the basis of the symplectic

form (52) is straightforward and it reproduces the same spectrum as other
quantization schemes [19, 20]. Details of the quantization of the particle
dynamics will be presented in a forthcoming paper, which will include the
analysis of more general string solutions as well.

At the end of the present paper we return to the SL(2,R)× SU(2) string
dynamics. The calculation of the presymplectic 1-form (41) on the space
of solutions (17) is similar to the calculation of the conserved charges given
in Appendix. The exterior derivative then acts on the space of parameters
and provides the following symplectic form

ω = m
L

ω
L

+ m
R

ω
R

+ ms
L

ωs
L

+ ms
R

ωs
R

+ ω̃(f, b; ϕ1, ϕ2). (54)
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Here m
L
, m

R
, ms

L
, ms

R
are the coefficients of the unit vectors in (32)-

(33) and they define the Casimir numbers. An essential difference with the
particle case is the asymmetry between the left and right Casimir numbers
here. The rest part of the symplectic form (54) given by ω̃(f, b; ϕ1, ϕ2) is
rather complicated. However, it does not contribute to the Poisson bracket
structure of dynamical integrals. In particular, the isometrically invariant
variables m

L
, m

R
, ms

L
, ms

L
have vanishing Poisson brackets with them-

selves and with the dynamical integrals. As it was mentioned above, the
space of isometrically invariant variables is two dimensional. The structure
of this space defines the character of coadjoint orbits, that is crucial for the
symmetry group representations.

Quantization based on the symplectic form (54) is in progress.

Appendix

Here we present useful formulas for the SU(2) and SL(2,R) groups and
sketch some calculations used in the main text.

From the algebras (5) and (6) follow simple exponentiation rules

eθ t0 =
(

cos θ sin θ
− sin θ cos θ

)
, eθ t1 =

(
cosh θ sinh θ
sinh θ cosh θ

)
, (A.1)

eθ s2 =
(

cos θ sin θ
− sin θ cos θ

)
, eθ s3 =

(
eiθ 0
0 e−iθ

)
, (A.2)

which gives to the solutions (24) a compact matrix form (25).
Our convention on signatures correspond to the following summation rule

εµνρεµ′ν′
ρ = ηµν′ ηνµ′ − ηµµ′ ηνν′ . (A.3)

The charge R in (31) can be written as R = λĴ + ρ r̂, where Ĵ is the
integral (see (27))

Ĵ =

2π∫

0

dσ

2π
e−θr r̂ l̂′ eθr r̂ , (A.4)

with l̂′ = g−1
0

l̂ g0 and θr given by (24). The exponents e±θr r̂ = cos θr I ±
sin θr r̂ create σ dependent trigonometric functions in (A.4) and after inte-
gration we find Ĵ = 1

2 (l̂′ − r̂ l̂′ r̂). By (5) and (A.3) one gets

r̂ l̂′ r̂ = l̂′ + 2〈 r̂ l̂′ 〉 r̂, (A.5)

and taking into account (23), we obtain Ĵ = cosh 2θ r̂. This leads to equa-
tion (32) for R. The calculation of other charges is similar.

Let us introduce a normalized commutator of l̂ and r̂

n̂ =
[l̂, r̂]

2 sinh 2γ
, with cosh 2γ = −〈 l̂ r̂ 〉 . (A.6)
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This matrix satisfies the relations n̂2 = I, n̂ r̂ = −r̂ n̂ and it generates the
boost transformation between l̂ and r̂

e−γn̂ r̂eγn̂ = e−2γn̂ r̂ = l̂. (A.7)

The general boost transformation of r̂ is given by

e−αn̂ r̂eαn̂ =
sinh 2(γ − α)

sinh 2γ
r̂ +

sinh 2α

sinh 2γ
l̂, (A.8)

and provides
〈 l̂ e−αn̂ r̂eαn̂ 〉 = − cosh 2(γ − α). (A.9)

This equation is used in (39) to fix the boost parameter α in g0 .
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