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Abstract

The notion of semi-abelian category as proposed in this paper is designed to capture typical
algebraic properties valid for groups, rings and algebras, say, just as abelian categories allow
for a generalized treatment of abelian-group and module theory. In modern terms, semi-abelian
categories are exact in the sense of Barr and protomodular in the sense of Bourn and have :nite
coproducts and a zero object. We show how these conditions relate to “old” exactness axioms
involving normal monomorphisms and epimorphisms, as used in the :fties and sixties, and we
give extensive references to the literature in order to indicate why semi-abelian categories provide
an appropriate notion to establish the isomorphism and decomposition theorems of group theory,
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1. Introduction

1.1. Perhaps the shortest way of de:ning a category C to be abelian is to require that
(see, for example [28, 1.597]; [38, 41.A]).

(A∗1) C has :nite products, and a zero object,
(A∗2) C has (normal epi, normal mono)-factorizations, i.e., every morphism in C

factors into a cokernel followed by a kernel.

Among the many consequences of these two powerful conditions, we note here only
that C must be additive, and that therefore the :nite products are biproducts, i.e., serve
also as coproducts. It is fair to say that the study of abelian categories dominated the
:rst two decades of Category Theory; indeed, it :gures prominently in many important
papers and monographs of the time—see, for example, [16,21,34,37,31,54,27,58,15,55].
(Here and below all references are given in chronological order.) After the name
“abelian (bi)category” had been used by Mac Lane [53] to denote a more restrictive
concept (which involved a predecessor of Grothendieck’s famous AB5 axiom), the
notion in today’s sense appeared :rst in [16], but under the name “exact category”
(which later was reserved for categories satisfying just (A∗2)).
Of course, the “role model” for all abelian categories is the category of abelian

groups (a statement that has been made precise in [28, 1.59], while the category of
(not necessarily abelian) groups is painfully non-abelian (since not all monomorphisms
are normal). However, when reading once again from [53, p. 507] that
“A further development giving the :rst and second isomorphism theorem, and so
on, can be made by introducing additional carefully chosen axioms. This will be
done below only in the more symmetrical abelian case”,

we are reminded that, right from the beginning of Category Theory, it was very much
the intention to :nd a list of axioms which re<ect the properties of groups, rings and
algebras as nicely as the abelian-category axioms do for abelian groups and modules.
This is the theme of this paper.

1.2. There seems to be no easy way of weakening (A∗1); (A∗2) and arriving at such a
list. Indeed, there have been many proposals for axioms in order to give a categorical
approach to the isomorphism and decomposition theorems of group theory, to the
general theory of radicals, and to homological algebra of non-abelian structures, but
no generally accepted list of axioms emerged from these investigations. Nevertheless,
we :nd it useful to recall several of these early developments, especially since some
of them seem to have been forgotten, if not ignored from the outset, but still have
considerable bearing on this paper.
Let us recall then that one important line of early categorical research grew out of

the desire to establish isomorphism and decomposition theorems for general varieties
of universal algebras and then for categories satisfying certain axioms (see particu-
larly [3,33,2,39,51,40,22,66], ultimately leading to rather eOcient lists of the needed
categorical hypotheses, as presented in [63] and especially in [67,29]. Another line
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of categorical research was marked by Amitsur [1] and Shul’geifer [62] which led to
rather concise lists of axioms for categorical radical theory, as presented in [42] and,
more compactly, in [56]. Thirdly, we mention a group of early categorical papers di-
rected at non-abelian homological algebra, including the little-known articles [41,30],
which were used later in [43] to deal abstractly with commutators, nilpotency, and
solvability, and in [7,8] with primary ideals. Better known is the important paper [32]
which introduces a set of axioms suitable for general Baer extension theory (see also
[59]). Other than the existence of certain limits and colimits, the axioms given in each
of these papers require “good behaviour” of normal epi- and monomorphisms. In this
paper, we generally refer to these types of requirements as to old (-style) axioms.

1.3. A distinctly new era began with [4]. Barr-exact categories no longer require
the existence of a zero object and replace normal epimorphisms by regular epimor-
phisms, which had been studied systematically in [49]. Their subtle exactness condi-
tion (that equivalence relations be ePective) is satis:ed by all varieties of universal
algebras; yet, Barr’s notion is strong enough to satisfy Tierney’s “equation” for pointed
categories:

(Barr-exact) + (additive)= (abelian):

But their generality also means that Barr-exact categories are not restrictive enough
to capture typical properties which would distinguish groups, rings and algebras from
pointed sets, monoids and lattices, say. Universal algebraists have therefore pointed at
the modularity of the congruence lattices in group-like varieties. This property is usu-
ally deduced from the stronger property that every reSexive (homomorphic) relation
is already an equivalence relation, a condition which is equivalent to congruence per-
mutability and which de:nes Malcev varieties. Among many other things, they allow
for a satisfactory commutator theory (see [64]). For their categorical generalization,
the Reader is referred to [19], which combines and elaborates on crucial observa-
tions by Klein [50], Meisen [57], Fay [24], Fay [25], Burgess–Caicado [17], Johnstone
[47], Faro [23], Carboni–Lambek–Pedicchio [20], and others. The paper convincingly
establishes the notion of Malcev category and characterizes Barr-exact Malcev cate-
gories. Commutator theory was extended from Malcev varieties to congruence-modular
varieties in [36] (see also [35,26], and, for recent developments in the non-modular
case, [48]) and then treated categorically in [60,61,45]; however, a good categorical
de:nition appeared already in [43], under general conditions close to ours.

1.4. The notion of semi-abelian category as proposed in this paper is slightly stronger
than that of a Barr-exact Malcev category which seems to suit, in many aspects, the
needs of universal algebra perfectly, but those of homological algebra of group- and
ring-like structures much less so. It combines Barr’s exactness property with a crucial
property that Mac Lane at the very end of [53] calls the ABC extension equivalence
theorem and which we formulate here equivalently as the:
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Short Five Lemma. For every commutative diagram

L l−−→ F
q−−→ C

u

� � w

� v

K k−−→ E
p−−→ B

(1)

with regular epimorphisms p; q and k, l their kernels, respectively, w is an isomor-
phism if u and v are isomorphisms.

In fact, in the presence of Barr-exactness it suOces to require this property just for
split epimorphisms, and it can be formulated without reference to a zero object and
kernels, just using pullbacks. This then is Bourn’s elegant notion of protomodular cat-
egory (see [9]), a term coined after Carboni’s modular categories [18], although the
connection with the Short Five Lemma is also emphasized in Bourn’s paper. Despite
the fact of being a very elementary concept, protomodularity provides very powerful
group-like tools. For example, in a Barr-exact category with pushouts of split monomor-
phisms it is equivalent to the existence of semi-direct products (see [13]), with the
latter property also referred to as semi-additivity when C has :nite coproducts and a
zero object. Hence, when we de:ne a category to be semi-abelian if it is Barr-exact
and Bourn-protomodular with :nite coproducts and a zero object, there is (almost by
de:nition) the “equation”

(Barr-exact) + (semi-additive)= (semi-abelian)

for pointed categories. Unlike abelianness, semi-abelianness is of course not self-dual;
however, the conjunction with the dual concept is easily seen to give abelianness:

(semi-abelian) + (semi-abelian)op = (abelian):

These facts are presented in Sections 2 and 4 of the paper.

1.5. The main part of this paper is Section 3 where we describe the new notion of
semi-abelian category (which grows out of Barr-exactness and Bourn-protomodularity)
with old-style axioms, in terms of normal monomorphisms and normal epimorphisms.
Apart from Mac Lane’s original work, the “old” counterpart of protomodularity seems
to appear as an axiom :rst in the practically unknown paper [41], in the following
form:

Hofmann’s Axiom. For every commutative diagram

F
q−−→ C

w

� � v

E
p−−→ B

(2)

with normal epimorphisms p, q and monomorphisms v, w, the monomorphism w is
normal if v is normal and kerp6w.
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The only other old axioms needed to characterize semi-abelian categories concern
the existence of :nite limits and colimits as well as of images and inverse images
of (normal) subobjects. In this context, Barr’s exactness condition is hidden under
the slogan that images of normal subobjects under normal epimorphisms are
normal.

1.6. We :nally wish to point out that all axioms considered in this paper are of
:rst-order type, whereas many “old papers” contain second-order requirements (such
as “the subobjects of each object form a set”). Nevertheless, the references given in
Section 1 show that semi-abelian categories provide a good foundation for a meaningful
categorical treatment of
• isomorphism and decomposition theorems,
• radical and commutator theory,
• homology theory of non-abelian structures,
and therefore seem to capture precisely Mac Lane’s fundamental ideas of half a century
ago. Further evidence for this has been provided by Bourn in two recent preprints: see
[11,12].

2. Semi-abelian categories in terms of “new” axioms

2.1. For a category C to be Barr-exact or e@ective regular (see, for example, [28,66])
one usually postulates that

(Ex1) C has :nite limits,
(Ex2) C has a pullback-stable (regular epi, mono)-factorization system,
(Ex3) all equivalence relations in C are ePective;

conditions (Ex1), (Ex2) make C regular. Axiom (Ex1) is somewhat arbitrary; indeed,
Barr himself did not require it (see [4]).
Recall that regular epimorphisms are morphisms occurring as coequalizers of pairs

of parallel morphisms; pullback stability means that every pullback of a (regular
epi, mono)-factorization is again such a factorization. An equivalence relation on
an object A in C is given by a pair of morphisms r1; r2 :R → A for which the
maps hom(X; r1), hom(X; r2) are (up to isomorphism) the projections of an equiva-
lence relation on the set hom(X; A), for every object X in C (see [5,6]); it is ef-
fective if it is induced by some morphism f :A → B, i.e., if it is the kernelpair of
some f.
For a (regular epi, mono)-factorization f=m · e in any category C, the morphism

e is necessarily the coequalizer of the kernelpair of f, provided that the latter exists.
Conversely, letting e be the coequalizer of the kernelpair of f and m be the morphism
with f=m ·e, then m is certainly a monomorphism if all pullbacks of e are epic, since
then the kernelpair of m must be trivial.
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Taking into account also the well-known fact that the diagrams

B� g

A
f−−→ C

A× B� 1A×〈g;1B〉

A× B
〈lA;f〉×1B−−−−−→ A× C × B

(3)

have isomorphic limits, we arrive at the following equivalent formulation of (Ex1),
(Ex2):

(Ex1a) C has :nite products,
(Ex1b) C has pullbacks of pairs of (split) monomorphisms,
(Ex2a) C has coequalizers of kernelpairs,
(Ex2b) regular epimorphisms are stable under pullback.

We mention that in (Ex2) and (Ex2b), regular epimorphisms may be traded for
strong ones, i.e., those which are orthogonal to monomorphisms (see [65]). However,
the formally weaker strong epimorphisms (even extremal ones, see 2:4 below) then
turn out to be regular.

2.2. For a category C with a terminal object 1, put PtC=(1 ↓ C). For an object B in
any category C, call PtC(B)=Pt(C ↓ B) the category of points of B in C; its objects
are triples (E; p; s) with morphisms p :E → B, s :B → E in C with p · s=1B, and a
morphism f : (E; p; s)→ (E′; p′; s′) in PtC(B) satis:es p′ · f=p, f · s= s′.
A category C is (Bourn-)protomodular (see [9]) if C has pullbacks and if

(PM) for every morphism v :C → B in C, the pullback functor v∗ : PtC(B)→ PtC(C)
(which pulls back p of (E; p; s) along v) reSects isomorphisms.

It is easy to see that in the presence of pullbacks, (PM) is equivalent to the condition
that in every commutative diagram

for which both and are pullback diagrams, also is a pullback diagram, provided
that q is a split epimorphism (just consider the pullback E ×B C; see Proposition 8 of
[9]). As shown in [13], the provision may be changed to the requirement that q be a
regular epimorphism and p an ePective descent morphism in C. If C is Barr-exact, so
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that every regular epimorphism is ePective for descent (see [46]), it suOces to let p,
q be regular epimorphisms.

2.3. In the presence of a zero object 0 in C, condition (PM) may be simpli:ed further.
Then it suOces to consider the morphism iB : 0→ B instead of an arbitrary morphism
v :C → B (since iB= v · iC , so that reSection of isomorphisms by i∗B= i∗C · v∗ implies
the same for v∗). Pulling back p :E → B along iB is taking the kernel of p; hence,
(PM) now becomes:

(PM0) for every object B in C, the kernel functor kerB : PtC(B) → C (∼= PtC(0))
reSects isomorphisms.

More elaborately, (PM0) means that the Split Short Five Lemma holds true in C:
consider any commutative diagram

in C with k =kerp and l=ker q; then w is an isomorphism if u, v are isomorphisms
and p, q are split epimorphisms (see [9]). Equivalently: is a pullback diagram, if
u is an isomorphism and q is a split epimorphism; or if u is an isomorphism, q a
regular epimorphism and p an ePective descent morphism (see [13]). Hence, if C is
Barr-exact with a zero object, (PM0) is equivalent to the Short Five Lemma as stated
in Section 1, as well as to the pullback cancellation property discussed in 2:2; where
now just q (not necessarily p) is assumed to be a regular epimorphism.

2.4. If C has binary sums (= coproducts), in addition to pullbacks and a zero object,
then the functor kerB : PtC(B)→ C of 2.3 has a left adjoint, given by

K →
(
K + B;

(
0
1B

)
; coproduct injection

)
:

Consequently, kerB reSects isomorphisms if and only if the counits of this adjunction
do not factor through proper subobjects of their codomains; since C has equalizers,
this simply means that the counits are extremal epimorphisms.
Calling a diagram

K k−→E
p
�
s
B; (6)

with k =kerp and p · s=1B a split short exact sequence, we now see that (PM) is
equivalent to:

(PM+
0 ) for every split short exact sequence (6); the morphism

(
k
s

)
:K + B → E is

an extremal epimorphism.
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Note that if C is regular, “extremal” is equivalent to “regular”. Analysing this con-
dition further, one obtains:

Proposition. A category C with pullbacks; binary sums and a zero object is proto-
modular if and only if:

(PM+
0 1) for every split short exact sequence (6); the morphism

(
k
s

)
:K + B → E is

an epimorphism;
(PM+

0 2) for every commutative diagram (2) with monomorphisms w; v and kerp6w;
regularity of v implies regularity of w; provided that q is a split
epimorphism.

The provision in (PM+
0 2) may be changed to p being e@ective for descent and q a

regular epimorphism; even to p; q being regular epimorphisms when C is Barr-exact.

Proof. (PM+
0 ) trivially implies (PM

+
0 1), but also (PM

+
0 2). In fact, given (2) (= as

in (5)) with monomorphisms v; w and k =kerp6w, the morphism l with w · l= k is
the kernel of q. Hence, if q splits, (2) is a pullback diagram, so that regularity of v
implies the same for w.

Conversely, given the split short exact sequence (6), assuming
(
k
s

)
=w · f with

a monomorphism w, we may put v=1B, q=p · w, l=f · i and t=f · j (with i; j
the injections of K + B) and obtain q · t=1B, w · l= k, hence kerp6w. Now, w
is an epimorphism, by (PM+

0 1), and a regular monomorphism, by (PM
+
0 2), hence an

isomorphism. This shows extremality of ( ks ), as needed in
(
PM+

0

)
.

Remark. In the Proposition above, we may relativize (PM+
0 2) by trading regular

monomorphisms for any class M of morphisms in C which is stable under pullback
and satis:es M ∩ EpiC= IsoC, as follows:
for every commutative diagram (2) with monomorphisms w; v with kerp6w; v∈M

implies w∈M, provided that q is a split epimorphism.
The choiceM= IsoC gives the Short Five Lemma of 2.3, whileM= {normal monos}

gives Hofmann’s Axiom 1.5.

2.5. We now combine the conditions discussed so far:

De'nition. C is called semi-abelian if C is Barr-exact and Bourn-protomodular and if
C has a zero object and :nite sums (=coproducts).

Phrased less redundantly, a semi-abelian category C is a category which satis:es:

(SA1) C has binary products and sums and a zero object;
(SA2) C has pullbacks of (split) monomorphisms;
(SA3) C has coequalizers of kernelpairs;
(SA4) the Split Short Five Lemma holds true in C (see 2.3);
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(SA5) regular epimorphisms in C are stable under pullback;
(SA6) equivalence relations in C are ePective.

2.6. Examples (1) Abelian categories. Barr-exact categories which are additive
(=enriched over the category of abelian groups) give precisely the abelian categories.
They are semi-abelian, since additive categories with kernels satisfy (PM0) (see [12]),
and since products in them are biproducts. The category of (not necessarily abelian)
groups gives an example of a semi-abelian category which is not abelian.
(2) �-groups. Every variety of universal algebras (for a :nitary or in:nitary theory

T) gives a Barr-exact category T-Alg(Set). Furthermore, every variety of �-groups
(i.e., a variety of universal algebras with underlying group structure such that the trivial
subgroup is a subalgebra, see [39]) is protomodular and therefore semi-abelian. Hence,
in addition to the category of groups, many “classical” algebraic categories (rings (not
necessarily unital), Lie algebras, Jordan algebras (over a ring), etc.) are semi-abelian.
In fact (:nitary) varieties T-Alg(Set) of T-algebras which are semi-abelian have

been completely characterized in [14], by the following syntactical condition:
there are a nullary operation e∈�, binary terms t1; : : : ; tn and an (n + 1)-ary
term t such that

t(x; t1(x; y); : : : ; tn(x; y))=y;

t1(x; x)= · · ·= tn(x; x)= e;

!(e; : : : ; e)= e for all !∈�
are identities in T-Alg(Set).
(3) Internal varieties. Recall that the abelian group objects in an exact category

form an abelian category (see [28, 1.595]); in fact, every abelian category is of this
form, since the abelian group objects of an abelian category give the same category.
The characterization of semi-abelian varieties in (2) can be used to prove:

Theorem. Let the Lawvere theory T be such that T-Alg(Set) is semi-abelian. Then
the category T-Alg(C) of internal T-algebras in a Barr-exact category C is semi-
abelian if and only if it has :nite coproducts.

Proof. Only the “if” part needs proof. With C also T-Alg(C) is Barr-exact. Further-
more, using the syntactical features of T given in (2), one proves protomodularity of
T-Alg(C) as in the case C= Set, i.e., the argumentation is Yoneda invariant.

(4) Crossed modules. The category of crossed modules (= internal category objects
of the category of groups) can be considered as a variety of �-groups and is therefore
semi-abelian; likewise for pre-crossed modules, crossed complexes, etc. This fact is
based on the observation that Loday’s categorical groups (see [52]) may be described
as groups equipped with two idempotent endomorphisms satisfying additional identities
(see also [44]).
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(5) Relation with Malcev categories. Recall that a Malcev operation on a set X is a
map $ :X 3 → X satisfying the equations $(x; y; y)= x and $(x; x; y)=y (see [65]). A
:nitely complete category C is naturally Malcev if it admits a natural transformation
$X :X 3 → X satisfying the identities of a Malcev operation (see [47]). Pointed naturally
Malcev categories are additive (see [9]), hence trivially semi-abelian, in case they are
Barr-exact with :nite coproducts.
Conversely, protomodular categories have the important property that every reSexive

relation (i.e., every monic pair r1; r2 :R → A with a common splitting) is already an
equivalence relation (see [10]); in other words: every protomodular (and, a fortiori,
every semi-abelian category) is Malcev in the sense of [20]. Moreover, the converse
implication fails, even in the presence of a zero object: consider the variety of algebras
with one Malcev operation and one nullary operation.
(6) Further examples. The category of Heyting algebras (=cartesian closed posets

with :nite joins) is protomodular ([10]) and therefore semi-abelian. The category Setop

and, in fact, the dual category of any elementary topos is exact and protomodular (see
[10]) but in general not semi-abelian, because of the missing zero object. However, the
dual of the category of pointed sets (or of poined objects in any topos) is semi-abelian.
More generally, if C is an exact protomodular category with :nite colimits, then PtC(A)
is clearly semi-abelian, for every object A.

2.7. We conclude this section with two useful observations on quotient objects in
protomodular categories (the second of which was already established in [9]). First,
recall that for every object A in any category C with limits and colimits as needed,
there is a Galois equivalence

EER(A)

coequ

→∼←
kerpair

Q(A) (7)

between the ordered class of quotients of A (represented by regular epimorphisms with
domain A) and the ordered class of ePective equivalence relations on A. If C has a
zero object, there is also the Galois correspondence

Q(A)
ker
�
coker

S(A); (8)

with S(A) the ordered class of subobjects of A (represented by monomorphisms with
codomain A); this restricts to an equivalence

NQ(A)
ker

→∼←
coker

NS(A) (9)

between normal quotients and normal subobjects of A. Since in any pullback diagram
arrows on opposite sides have isomorphic kernels, the composite map ker · coequ of
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(7) and (8) can be displayed as

(10)

Proposition. Let C be protomodular. Then:

(1) If equivalence relations are e@ective in C and if C has (regular epi, mono)
-factorizations; then pushouts of regular epimorphisms exist in C.

(2) If C has a zero object and cokernels of kernels; then every regular epimorphism
in C is normal.

Proof. (1) Since a protomodular category is Malcev (see 2.6(3)), binary suprema exist
in the ordered class ER(A) of equivalence relations on A which, under (Ex3), is equal
to EER(A). Hence, suprema exist in Q(A). (Note that the factorization system provides
coequalizers of ePective equivalence relations.) Now it only remains to verify that the
supremum of two regular epimorphisms with domain A satis:es the universal property
of a pushout, which follows elementarily with the given factorization system.
(2) For p∈Q(A) and q=coker(kerp)6p, we have kerp=ker q. Hence, letting

r; s be the induced equivalence relations of p; q, respectively, in order to obtain p= q
we just need to show:

s6 r and ker s1 = ker r1 implies s= r;

which is an immediate consequence of (PM0).

2.8. In the presence of :nite coproducts, pushouts of split epimorphisms suOce to
obtain the existence of all :nite colimits (see 2.1, dual). Hence, Proposition 2:7 gives
immediately:

Corollary. A semi-abelian category C has all :nite colimits and a stable (normal epi,
mono)-factorization system.

3. Semi-abelian categories in terms of “old” axioms.

3.1. Consider the following old-style conditions on a category C:

(SA∗1)= (SA1) C has binary products and sums and a zero object.
(SA∗2) C has binary intersections of monomorphisms (that is: S(A) has binary in:ma,

for every object A in C).
(SA∗3a) Every product projection is a normal epimorphism.



378 G. Janelidze et al. / Journal of Pure and Applied Algebra 168 (2002) 367–386

(SA∗3b) (Images under normal epimorphisms) For every normal epimorphism p :E →
B and every monomorphism w :F → E, there is a commutative diagram

F
q−−→ C

w

� � v

E
p−−→ B

(11)

with a monomorphism v and a normal epimorphism q.
(SA∗4) (Hofmann’s Axiom) For every commutative diagram (11) with normal epimor-

phisms p; q and monomorphisms v; w, the morphism w is normal, provided that
v is normal and that every normal monomorphism k :K → E with p · k =0
factors through w.

(SA∗5) (Inverse images under normal epimorphisms) For every normal epimorphism
p :E → B and every monomorphism v :C → B, there is a commutative dia-
gram (11) with a monomorphism w and a normal epimorphism q.

(SA∗6) For every commutative diagram (11) with normal epimorphisms p, q and
monomorphisms v, w, the morphism v is normal if w is normal.

The purpose of this section is to show that conditions (SA 1–6) are equivalent to
(SA∗ 1–6). More precisely, we shall often work with the (formally weaker) conditions

(SA∗∗2) C has binary intersections of split monomorphisms,
(SA∗∗3)= (SA∗3a)&(SA∗3b), but with p a normal split epimorphism,
(SA∗∗4)= (SA∗4), but with p, q normal split epimorphisms,
(SA∗∗5)= (SA∗5) (no change),
(SA∗∗6)= (SA∗6), but with p, q normal split epimorphisms,

and then prove:

Theorem. Let C satisfy (SA1) and (SA∗∗2). Then:
(1) C has (normal epi, mono)-factorizations if and only if (SA∗∗3) is satis:ed; in

this case C has all :nite limits.
(2) C is protomodular with (normal epi, mono)-factorizations if and only if (SA∗∗3)

and (SA∗∗4) are satis:ed; in this case; the canonical morphism(
1 0

0 1

)
:A+ B→ A× B

is a normal epimorphism, for all objects A; B.
(3) C is protomodular with stable (normal epi, mono)-factorizations if and only if

(SA∗∗3–5) are satis:ed.
(4) C is protomodular and Barr exact if and only if (SA∗∗3–6) or; equivalently; if

(SA∗3–6) are satis:ed; in this case; C has all :nite colimits.

3.2. First we note that a regular category C trivially satis:es (SA2), hence (SA∗2),
but also (SA∗3b) and (SA∗5), provided that regular epimorphisms are normal. This
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provision is certainly given when C is semi-abelian (see 2.7); here we show its link
with (SA∗3a):

Proposition. Let the category C satisfy (SA1) and (SA∗∗2). Then:
(1) The following conditions are equivalent:

(i) C has (normal epi, mono)-factorizations;
(ii) C satis:es (SA∗∗3);
(iii) C satis:es (SA∗3b), and split epimorphisms are normal;
(iv) C satis:es (SA∗3b), and regular epimorphisms are normal.

(2) Each of (i)–(iv) implies that C has all :nite limits, and that
(v) kernels and their cokernels exist in C, and every morphism f with ker f=0

is a monomorphism.
(3) In the presence of (SA∗5), condition (v) is equivalent to (i)–(iv).

Proof. (1) The implications (iv) ⇒ (iii) ⇒ (ii) are trivial, and for (ii) ⇒ (i) factor
the given morphism f :A→ B through its graph as in

(12)

Then note that (SA∗3a) allows us to apply (the split version of) (SA∗3b) in this
situation and obtain the desired factorization of f.
(i)⇒ (iv) Condition (i) trivially gives (SA∗3b), and also that extremal epimorphisms

in C must be normal, which is then a fortiori true for regular epimorphisms.
(2) Having (normal epi, mono)-factorizations one shows immediately that in:ma

in S(A) enjoy the universal property of pullbacks. Hence, using 2.1, from (SA1) and
(SA∗∗2) we obtain the existence of all :nite limits in C. In particular, any morphism
f must have a kernel, the cokernel of which is the normal-epi part of f. In case
kerf=0 the cokernel is 1, and f coincides with the mono part of its factorization.
(3) For (v) ⇒ (i), consider the commutative diagram

(13)

with k =kerf, p=coker k and l=kerm. With (SA∗5) one can :nd a normal epimor-
phism q :D→ L and a morphism w :D→ A with l ·q=p ·w. Since f ·w=m · l ·q=0,
w factors as w= k · x, and since l is monic, one sees that the normal epimorphism q
must be 0. Hence L ∼= 0, and we obtain with (v) that m is a monomorphism.

Corollary. Under conditions (SA∗1–3b); C has all :nite limits and (normal epi,
mono)-factorizations; these are stable under pullback along monomorphisms if and
only if (SA∗5) is satis:ed.
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Proof. Apply 2.1 and the proposition above. For the additional statement use the fact
that, in the presence of the factorization system, a composite q= r · t is a normal
epimorphism only if r is one.

3.3. Next we wish to clarify the meaning of (SA∗4) in modern terms. In fact, :rst we
shall be able to do this only for (SA∗∗4):

Proposition. Let C have pullbacks; a zero object and (normal epi, mono)-factorizations.
Then C is protomodular if and only if (SA∗∗4) is satis:ed.

Proof. It is clear that (SA∗∗4) follows from (PM0), just as (PM+
0 2) was derived in

Proposition 2:4: consider M= {normal monos} in Remark 2:4.
Conversely, checking (PM0) we consider the commutative diagram (5) with split

epimorphisms p; q, isomorphisms u, v, and k =kerp; l=ker q. Now w has a (normal
epi, mono)-factorization w=m · e. Any morphism x with e · x=0 factors as x= l · y,
and from k · u · y=m · e · x=0 one derives y=0 and then x=0. Hence, the normal
epimorphism e is the cokernel of 0 and therefore an isomorphism. Consequently, in (5)
we may assume w to be monic. The implication (i) ⇒ (iii) of Proposition 3:2 shows
that the split epimorphisms p, q are normal, so that an application of (SA∗∗4) gives
that w is a normal monomorphism. Dually to the argumentation employed previously
one shows that any morphism x with x ·u=0 must be 0. Hence, w is an isomorphism.

Corollary. Let C satisfy (SA∗1); (SA∗2) and (SA∗3b). Then the following conditions
are equivalent:
(i) C is protomodular;
(ii) (SA∗∗4) is satis:ed; and for every split short exact sequence (6); ( ks ) :K+B→ E

is an epimorphism;
(iii) (SA∗∗4) is satis:ed; and for all objects A; B; the canonical morphism e :A+B→

A× B is an epimorphism;
(iv) (SA∗3a) and (SA∗∗4) are satis:ed.

Proof. (i) ⇒ (ii) follows from the Proposition and (PM∗
01) of 2.4.

(ii) ⇒ (iii) is trivial, as one may consider the split short exact sequence

A
〈1A;0〉→ A× B

p
�

〈0;1B〉
B: (14)

(iii) ⇒ (iv) In (14), we must show that the projection p is the cokernel of 〈1A; 0〉.
But for any x with x · 〈1A; 0〉=0 one routinely checks that x · 〈0; 1B〉 ·p · e= x · e, hence
x · 〈0; 1B〉 ·p= x under hypothesis (iii). Also, any morphism y with y ·p= x necessarily
satis:es y=y · p · 〈0; 1B〉= x · 〈0; 1B〉.
(iv) ⇒ (i) follows from the proposition, in conjunction with Corollary 3:2.
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Remarks. (1) In the corollary, “epimorphism” may be replaced by “extremal epi-
morphism” (see (PM+

0 ) of 2.4) and then in fact by “normal epimorphism” (since by
Proposition 3:2 we have (normal epi, mono)-factorizations).
(2) The corollary in conjunction with Proposition 3:2 proves Theorem 3:1(1), (2).
(3) Once we have established Barr-exactness of C we may trade (SA∗∗4) for (SA∗4):

see the equivalent formulations of (PM0) in 2.3.

3.4. Next we give the proof of Theorem 3:1 (3). All that needs to be done after
Corollary 3:2 and Remark 3:3 is to show that, in the presence of (SA∗∗4), condition
(SA∗5) guarantees full pullback stability, not just along monomorphisms.
In any pullback diagram

D
p′
−−→ A

f′
� � f

E
p−−→ B

(15)

f factors through a split epi followed by a split mono, as in (12).
Hence, we may assume f to be a split epimorphism. Considering now the (normal

epi, mono)-factorization p′=m · e, putting g:=f · m we have a pullback diagram

D e−−→ C

f′
� � g

E
p−−→ B

(16)

Hence, ker g=kerf′=kerf. Furthermore, since with f also f′ is a split epimorphism,
with p also p ·f′= g · e and then g are regular epimorphisms. Since f is ePective for
descent, (PM0) applied to

C
g−−→ B

m

� � 1B

A
f−−→ B

(17)

gives that m is an isomorphism; equivalently, that p′ is a normal epimorphism.

3.5. Towards Theorem 3:1(4) we :rst prove:

Proposition. In a protomodular category C with a zero object and (normal epi;
mono)-factorizations satisfying (SA∗∗6); re<exive relations are e@ective equivalence
relations.

Proof. A reSexive relation is a monic pair r1, r2 :R → A with a common section d.
Let k =ker r1 and n= r2 ·k. Clearly, n is a monomorphism (since r1 ·k ·x=0= r1 ·k ·y
for all x; y); in fact, it is normal, as one sees applying (SA∗∗6) to

K 1K−−→ K

k

� � n

R r2−−→ A

(18)
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We now let q=coker n :A→ B and s be its induced equivalence relation s1; s2 : S → A.
One has

q · r1 · k =0= q · n= q · r2 · k; q · r1 · d= q= q · r2 · d;
hence q · r1 = q · r2, since k, d are jointly epic in the protomodular category C (cf.
(PM+

0 1)). Consequently, there is a morphism t :R→ S with si · t= ri (i=1; 2).
We must show that t is an isomorphism. But since h:=ker s1 = ker q, we have the

commutative diagram

K k−−→ R r1−−→ A

1K

� � t

� 1A

K h−−→ S s1−−→ A

(19)

in which the horizontal arrows form split short exact sequences. Hence, everything
follows with (PM0).

3.6. In order to complete the proof of Theorem 3:1, we only need to show:

Proposition. A semi-abelian category C satis:es (SA∗6).

Proof. Considering once again the commutative diagram (2) with normal epimorphisms
p, q, a monomorphism v and a normal monomorphism w, we let e=cokerw. In the
exact Malcev category C the pushout diagram

E
p−−→ B

e

� � f

P
g−−→ Q

(20)

exists, and the canonical morphism h :E → P×Q B is a normal epimorphism: see [19],
Theorem 5:7. Let k =kerf, and let t :C → K be the monomorphism with k · t= v.
Since the pullback f′ :P×Q B→ P of f along g has the same kernel as f, k ′=kerf′

satis:es g′ · k ′= k, where g′ :P ×Q B → B is the pullback of g along f. Now the
commutative diagram

F w−−→ E e−−→ P

t·q
� � h

� 1P

K k′−−→ P ×Q B
f′
−−→ P

(21)

shows that its left-hand side is a pullback. Consequently, t ·q is a normal epimorphism,
whence also t is one. Hence, t is in fact an isomorphism, and v must be normal.

3.7. Combining 2:5; 3:1 and 3.2 we see that the following list of “old” conditions also
characterizes semi-abelian categories C:

(SA’1)=(SA1) C has binary products and sums and a zero object;
(SA’2)=(SA2) C has pullbacks of (split) monomorphisms;
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(SA’3) C has cokernels of kernels, and every morphism with zero kernel is a monomor-
phism;
(SA’4)=(SA4) the (Split) Short Five Lemma holds true in C;
(SA’5) normal epimorphisms are stable under pullback;
(SA’6) images of normal monomorphisms under normal epimorphisms are normal
monomorphisms.

4. Additional remarks

4.1. We mentioned in Section 1.4 that a category C is abelian if and only if both C

and Cop are semi-abelian. In fact, with 1.59 of [28], this follows from the following
rather obvious statement:

Proposition. If for the pointed protomodular category C also its dual category Cop

is protomodular; then :nite products in C are biproducts.

Proof. We must show that, for all objects A, B in C, the canonical morphism A+B→
A×B is an isomorphism. Indeed, applying (PM∗

0) to (14) one sees that it is an extremal
epimorphism and, dually, also an extremal monomorphism.

Remark. For the proposition it suOces that Cop satis:es (PM+
0 1) (see 2.4).

4.2. We wish to explain the notion of semi-additive category as mentioned in Section
1.4. In [13], a category C with (split) pullbacks is said to have semidirect products
if the functor v∗ : PtC(B) → PtC(E) is monadic for all v :E → B in C; it is shown
that when C is Barr-exact and protomodular, PtC(B) has coequalizers of reSexive pairs
and v∗ preserves them. Hence, if C is Barr-exact, C has semi-direct products if and
only if it is protomodular and has pushouts of split monomorphisms (with the latter
guaranteeing the existence of left adjoints to the functors v∗; see [9]).

Corollary. If C is Barr-exact with :nite coproducts and a zero object; C is semi-
abelian if and only if C has semidirect products.

To explain what semi-direct products are in this situation, consider v= iB : 0→ B, so
that v∗=kerB : PtC(B)→ C. With TB the monad induced by kerB, the semi-direct prod-
uct (X; +)oB of a TB-algebra (X; +) with B is simply the PtC(B)-object corresponding
to (X; +) under the category equivalence PtC(B) ∼ CTB . The paper [13] explains that
this de:nition gives indeed the usual semi-direct product in the category of groups. If
C is an additive category, TB is simply (isomorphic to) the identity monad on C, so
that (X; +) is given by the object X alone, and the semi-direct product becomes the
direct sum: X oB=X × B=X ⊕ B.
If we, therefore, call a category C semi-additive if C has :nite sums, a zero object

and kernels such that each kernel functor PtC(B)→ C is monadic, we obtain:
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Corollary. C is semi-abelian if and only if C is Barr-exact and semi-additive.

4.3. As an epilogue we wish to reSect once again on the choice of axioms for
semi-abelianness. We hope that the Reader will agree that the requirements of Barr-
exactness and protomodularity are natural and indispensable. Also the requirement for
the existence of :nite coproducts seems natural since they provide fundamental al-
gebraic constructions. There then remains the condition for the existence of a zero
object, which really breaks down into the existence requirement for an initial object
0 and a terminal object 1 on the one hand, and the condition 0 ∼= 1 on the other.
Under the mission outlined in Section 1, it is this very last condition which appears to
be dispensable. Abandoning it would certainly give additional interesting examples but
would also come with a considerable price tag in terms of technical complications (as
the Reader of [11,12] will realize immediately). But more importantly for our paper,
a direct comparison with old-style axioms would no longer be possible.
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